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ABSTRACT. Let 0 < ¢ < oo. In this study, we introduce the spaces BV, and L8, of
g-bounded variation double sequences and g-summable double series as the domain of
four-dimensional backward difference matrix A and summation matrix S in the space £,
of absolutely g-summable double sequences, respectively. Also, we determine their a- and
B-duals and give the characterizations of some classes of four-dimensional matrix trans-
formations in the case 0 < ¢ < 1.

1. Introduction

We denote the set of all complex valued double sequences by €2 which forms
a vector space with coordinatewise addition and scalar multiplication. Any vector
subspace of € is called as a double sequence space.

By M, we denote the space of all bounded double sequences, that is

k,lEN

M, = {x = (zr) € Q:||2||cc = sup |ag| < oo} ,

which is a Banach space with the norm || - ||so; where N = {0,1,2,...}.
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272 H. Qapan and F. Basgar

If for every € > 0 there exists N = N(¢) € N and L € C such that |z —
L| < ¢ for all k,1 > N, then we call that the double sequence x = (zg;) € Q is
convergent to L in the Pringsheim’s sense (shortly, p-convergent to L) and write
p—limy ;o0 Ty = L; where C denotes the complex field (see Pringsheim [16]). We
denote the space of all p-convergent double sequences by C,,.

It is well-known that in single sequence spaces a convergent single sequence is
bounded. But, in double sequence spaces a p-convergent double sequence may be
unbounded. A double sequence x € €, N M,, is called boundedly convergent to L in
the Pringsheim’s sense (shortly, bp-convergent to L), where L is the p-limit of x.
We denote the space of such sequences by Cyy,.

Throughout the text the summation without limits runs from 0 to oo, for ex-
ample ko Tki MeANS that ZZ?l:o 1, and unless stated otherwise, we assume that
1 denotes any of the symbols p or bp.

We denote the space of all absolutely g-summable double sequences by £, that
is,

Ly = x:(ackl)EQ:Z\xkg|q<oo , (0<g<o0).
kol

If we take ¢ = 1, we obtain the space £, of all absolutely summable double se-
quences.
Let ekl = (e%‘jl) be a double sequence defined by

ekl — 1 9 (Zvj) = (kvl)v
L0 (b)) A (KD
for all 4,7,k,l € N and e = Zk,z eX! (coordinatewise sums), is a double sequence

that all elements are one. All considered spaces are supposed to contain ®, the set
of all finitely non-zero double sequences; i.e.,

® = {z=(z)€Q:INENV (k) € N\[0,N]?, zy =0}
= span{eklzkr,leN}.

Let X\ be a space of double sequences, converging with respect to some linear
convergence rule ¢ —lim : A — C. The sum of a double series ), ; Tij with respect

to this rule is defined by ¥ — >, ;x5 =9 — lim >3""%, 2;;. Then, the a-dual \*

m,n—o00 1,5=0

and the B(19)-dual \?®) of a double sequence space A are respectively defined by

Y= a=(ag) €N: Z |akixg| < oo for all x = (zxy) € A o,
k.l
P ACO R a=(ag) €Q:9— Zaklazkl exists for all z = (xg;) € A

k,l



Absolutely g-summable Double Sequences

It is easy to see for any two spaces A and p of double sequences that pu® C A
whenever A C p.

Let A and p be two double sequence spaces, and A = (amnii) be any four-
dimensional complex infinite matrix. Then, we say that A defines a matriz mapping
from A into p and we write A : A — p, if for every sequence © = (zy;) € A the
A-transform Az = {(AZ)mn }m.nen of x exists and belongs to y; where

(1.1) (AZ)pn =9 — Zamnklxkl for each m,n € N.
k.l

We define the ¢-summability domain )\Ef) of A in a space A of double sequences by

)\Ef) =Rr=(r) €EN:Ar= |09 — Zamnkmkl exists and is in A

kil m,neN

We say with the notation (1.1) that A maps the space A into the space u if A C uff)

and we denote the set of all four dimensional matrices transforming the space A
into the space u by (A : p). Thus, A = (amnrr) € (A : p) if and only if the double
series on the right side of (1.1) converges in the sense of ¥ for each m,n € N,
ie, Apmn € M@ for all m,n € N and every z € ), and we have Az € p for all
x € X; where A, = (@mnki)k,ien for all m,n € N. In this paper, we only consider
bp-summability domain.

For all k, I, m,n € N, we say that A = (anki) i a triangular matriz if @,k = 0
for k > morl > n or both, [1]. By following Adams [1], we also say that a triangular
matrix A = (@mnr) is called a triangle if apnmn 7 0 for all m,n € N. Referring to
Cooke [13, Remark (a), p. 22], one can conclude that every triangle matrix has an
unique inverse which is also a triangle.

We shall write throughout for simplicity in notation for all k,[,m,n € N that

kl
Avoarr = @k — kg1, Af5Gmnkl = Gmnkl — Gmn k41,0
Kl
Aorag = Ak — aki+1,  A§iGmnkl =  Gmnkl — Gmnk,i+1,
_ kl _ AKL(AKL
Anap = Ap(Aorar), Afimnr = ATG(A1Gmnki),
_ AR AKL
= Api(Aroan), = AG(AToGmnki)-
The four dimensional backward difference matrix A = (d;nxi) is defined by
d f (—ymtn=RED 1 <k<m and n—1<1<n,
mnkl 0 , otherwise

for all k,1,m,n € N. We suppose that the terms of the double sequences z = (z;)
and y = (yr;) are connected with the relation

00 . kl=0,

Top — To,i—1 , k=0andl>1,

(1.2)  yu = (Az)y = Tho — Th—1,0 , l=0and k>1,
Th—1,1-1 — Th—1,1 k> 1

—Tg,1—1 + Tkl
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274 H. Qapan and F. Basgar

for all k,I € N. Additionally, a direct calculation gives the inverse A=l = § =
(Smnki) of the matrix A as follows:

. 1 , 0<k<m and 0<1<n,
Smnkl = , otherwise

for all k,1, m,n € N. Here, we can redefine the relation between the double sequences
x = (x) and y = (yg) by summation matrix S as follows:

(1.3) T = (SY)m = Z Yij

4,j=0

for all k,l € N.

It is worth mentioning here that Altay and Basar [2] have defined the spaces BS
and €8y by using summation matrix S and also Demiriz and Duyar [14] recently
defined the spaces M, (A) and Cy(A) by using backward difference matrix A, as
folllows:

BS = { (Tr) s sup [(Sz)m| < oo}7

k,lEN

€8y = {r=(om)€Q: Sz = {(Sthubsen €€}
My (A) = { (k1) :sup [(Az)g| < oo} ,
k,leN
€)(8) = {o= () € Q: A = {(A0)u}yen € G}

In this study, we introduce the spaces BV, and £§, of all double sequences
whose A-transforms and S-transforms are absolutely g-summable, that is,

BV, = Sa=(wn)€Q:Y |(Az)u|" < ooy,
k,l
L8, = z=(x;5) €Q: Z |(S2)m|? < 0o

k,l

One can easily observe that the sets BV, and £8, are the domain of the backward
difference matrix A and summation matrix S in the space £, which are g-normed
spaces with

|2l mv, =Y [(Ax)ul? and [ales, = Y 1(Sz)xl?
Kl Kl
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for 0 < ¢ <1, and normed spaces with
1/q 1/q

zllev, = Z| Az)p|? and |[|zf[cs, = Z| Sx)p|?

for 1 < g < oo, respectively . In the special case ¢ = 1, we obtain the space
BV = (Ly)a, defined by Altay and Basar in [2], and the space £8 = (£,,)s.

2. New Sequence Spaces

In the present section, we examine some topological properties of the spaces
BV, and L£8,, and also give important inclusion theorems related to them.

Theorem 2.1. The spaces BV, and L&, are linearly isomorphic to the space L,
where 0 < q < 0.

Proof. We will only show BV, = £, with 0 < ¢ < o0.

Let 0 < g < oco. With the notation of (1.2), consider the transformation T from
BV, to L4 defined by z — Tx = Az. Then, clearly T is linear and injective. Let
y € L, and define the sequence © = Sy as in (1.3). Then, we have Az = A(Sy) =y
which gives ||z|sv, = [|yllc, with 0 < ¢ <1 and ||z|sv, = [|yllc, With 1 < ¢ < oo,
i.e., z € BV,. Hence, T is surjective and is norm preserving.

This completes the proof. O

Since BV, = L, and L8, = L, we can give following theorem without proof.

Theorem 2.2. The sets BV, and L8, are linear spaces with the coordinatewise
addition and scalar multiplication, and the following statements hold:

(i) Let0 < g <1. Then, BY, and L8, are complete q-normed spaces with || 'ﬂBVq
and || - || s, , respectively.

(ii) Let 1 < q < oo. Then, BV, and L8, are Banach spaces with || - ||y, and
Il lles,, respectively.

Now, we define the double sequences b¥! = (bg‘jl) and d¥! = (d%‘jl) by

bkl . 1 , i>kandj>I,
b 0 , otherwise,
L, (4,5) = (k1),(k+1,1+1),
dd = ¢ -1, (i) = (k+ LD, (k I+ 1),
0 , otherwise

for all 4, 7, k,1 € N. Then it is obvious that the sets {e, ekl bkl dXl k] N} C BV,
and {dkl; k,l € N} C £8,. These double sequences will be used in the rest of the
study.
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Definition 2.3.([18, p. 225]) A double sequence space A is said to be monotone if
zu = (Trug) € A (coordinatwise product) for every z = (xg;) € A and u = (ug;) €
{0, 1NN where {0, 1}"*N denotes the set of all double sequences consisting of 0’s
and 1’s.

If X is monotone, then A* = M) but the converse is not true in general.

Theorem 2.4. The spaces BV, and £8, are not monotone, where 0 < g < co.

Proof. Let A\ be a double sequence space. To show A is not monotone, we must
find a sequence u = (ug;) € {0, 1}"*N such that zu = (zguk) ¢ A for a sequence
T = (xkl) e\

Let us define the double sequence u = (ug;) by

1 otherwise

)

{0 , k or I odd,
Upy =

for all k,i € N. Then e € BV, but eu = u ¢ BV,. Hence, the space BV, is not
monotone.

To show £8, is not monotone take u = ek!. Then, d¥! € £§,, but d¥lek! =
el ¢ L8, O

Theorem 2.5. Let 0 < ¢ < co. Then, the inclusion L, C BV, is strict.

Proof. Let © = (x1;) € L£4. Then, by neglecting negative indexed terms of x, we
obtain

lzllav, = Z |Th—1,0-1 — Th—1,0 — Tha—1 + Tha|?
ol
< 4 ol =4z,
ol

for 0 < ¢ < 1 and by using Minkowski’s inequality

1/q
lzllsv, = Z |Th—1,1-1 — Th—1,0 — Thi—1 + Tpa|?
Kl
1/q
<

4> ol = 4|z ¢,
k,l

for 1 < ¢ < oo, that is, z € BV, for 0 < ¢ < co. Also, by e € BV, \ £, the inclusion
L4 C BV, is strict. O

Since backward difference matrix A and summation matrix S are opposite work-
ing matrices we can give the following inclusion theorem without proof.
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Theorem 2.6. Let 0 < q < co. Then, the inclusion L8, C L is strict.

Theorem 2.7. Let 1 < q < co. Then, the sets L4 and BY do not contain each
other.

Proof. Tt is immediate that e € BV \ £, and eX! € BV N L,. Consider the sequence
x = (xg;) defined by

(_l)k-l-l

B CES V()]

for all k,1 € N. Since ¢ > 1, the series
1
9 — —_—
; [ ; [(E+ 1)1+ 1)

is convergent, that is, x € £,. Nevertheless, we get from

(2.1)
1 , k,1=0,
20+ 1
_1)! — >
(-1 Ty ., k=0andl>1,
(Az)u = % +1
_1)k — >
( )k(kJrl) , l=0andk >1,
(_1)k+l(k+1)(l+1)+(k+1)l+k(l+1)+kl ki1
Kk + 1)1+ 1)

that the series

2l+1 = 2k +1
k,l =1
+i(k+1)(l+1)+(k+1)l+k(l+1)+kl
= El(k+1)(1+1)
= = k+1 — (k+1(1+1)
> 1
= +; +kzlk Rk + D+ 1)

?MH

diverges which gives the fact that = ¢ BV. Therefore, x € £, \ BYV. O

=1
2

7

277



278 H. Qapan and F. Basgar

Theorem 2.8. Let 1 < q < oco. Then, the sets £, and £8, do not contain each
other.

Proof. One can easily see that e*! € £, \ £8, and d¥! € £, N £8,. Consider the
sequence Az = {(Ax)} as in (2.1) for all k,7 € N. Then, we obtain

1
A 4= 7= S
Ekl {S(Az) bl Ekl e Ekl CESES Tkt
ie., Az € LS§,, but Az ¢ L, by Theorem 2.7. O

Theorem 2.9. Let 0 < g < 1. Then, the sets L, and BV, do not contain each
other.

Proof. 1t is clear that e € BV, \ £,, and ekl ¢ BV, N L,. Define x = (z4) by

(_1)k+l
[(k+1)(1+1)]Y4e

Tl =

for all k,1 € N. Since 1/q > 1, the series

1
2l = 2

k.l k,l

is convergent. On the other hand, we see from

(2.2)
1 . k=0,
ll/q+(l+1)l/q -
(_1IW , k=0andl>1,
kY94 (k+ 1)1/e -
(Az)i = (=1)* [k(k + 1)]1/a , l=0and k>1,
(—1)k+ [(k+ 1)+ D]V + [(k + 1)I]H9
el (ke + 1)(I + 1)] /4
, kil>1
[k(l + 1)]Y9 + (k)14
AR Ty
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that the series

S l(Az)lf

k,l

kl/qu k+1)Ya|?

k(k+1)]*/a

1V4 4 (14 1)Va -
+ (I + +Z
[1(1+1)] 1/q —

[(k+ 1)1+ D]V + [(k+ 1) ]W + [k(l + 1))V 4 (k1)M/a
[kl(k +1)(1 +1)]/q

q

ki=1
>1+§: Mq+i Mq i [(k+ 1)+ D] |
= — [1(l+1)]Y/a P [k(k +1)]/a A [kl(k + 1)(1+ 1)]/a
1l =l 1
=1 — — _
+Z l +Z k * Z kl
=1 k=1 k=1
is divergent. Hence, z € £,, \ BV,. O

Theorem 2.10. Let 0 < ¢ < 1. Then, the sets L, and £8 do not contain each
other.

Proof. It is easy to see that el € L, \ L8 and d¥! ¢ L,N LS. If we consider the
sequence z in (2.2), then it is immediate that x € £8\ £,. O

Let 0 < ¢ < s < oo. It is known that the inclusions £, C £, C M, strictly
hold. By combining this fact with Theorem 2.1, we can give the following theorem
without proof.

Theorem 2.11. Let 0 < g < s < oco. Then, the inclusions BV, C BV, C M, (A)
and L8, C L8, C B8 strictly hold.

Theorem 2.12. Let A denotes any of the spaces My, or Cy and 1 < g < co. Then,
neither of the spaces BV, and X includes the other one.

Proof. Tt is clear that e € BV, N A. Define z = (xy;) and y = (yx) by

k,l

. '_Z 1 and ] 1 , k=0and! even,
M G+1)(G+1) Y= 0 , otherwise

1,5=0

for all k,l € N. Then, since

1
(Az)g = —————— and (Ay)p =

(k+1)(1+1)

(-1t k=0,1andl €N,
0 , otherwise

one can conclude that € BV, \ A and y € A\ BV,. Hence, the spaces BV, and A
are overlap but neither contains the other. O
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3. Dual Spaces

In this section, we give the a- and B(bp)-duals of the spaces BV, and L§, in
the case 0 < ¢ < 1. It is worth mentioning that although the alpha dual of a
double sequence space is unique its beta dual may be more than one with respect to

Y-convergence rule. By A", we mean that {)\("_1)4}4 for a double sequence space
A and n € Ny, the set of positive integers. It is well-known that £ = M, and
ME = L,.

Theorem 3.1. Let 0 < ¢ < 1. Then, the followings hold for all k € Ny:

no o, Lu , n= 2k — 1,

(3.1) BV = { Mo
ne . M, , n=2k-1,

€87 = { L, , n=2k

Proof. Let 0 < g < 1.

(i) BV = Ly

L, C BV((;: Let us consider a = (ax) € £, and © = (zg;) € BV,. Then, we have
by relation (1.3) that y € £, C £,, which gives

Yl

k,l
D lawzl < lawl Y lvil < llalle,
kool k.l

i,j=0

that is, ax € £,. Hence, a € BVY.

BV; C L,: Suppose that a € BV;‘ \ £,. Then, we have ax € £, for x € BY,
but a ¢ L. If we consider e € BYV,, then we obtain ae = a ¢ L., that is, a ¢ BV,
a contradiction. Hence, @ must be in £,,.

(ii) £85 = M.
M, C L8]: Take a € M, and z € £8, C L. Then, we get by

laz]lz, < llallcoll2l .,

that a € £87.

LS? C M,: Consider a € LSS‘ \M,,. Since a ¢ M,,, there exist the subsequences
of natural numbers {k(7)} and {I(7)}, at least one of them is strictly increasing, such
that

agya@ > (i+1)29
for all i € N. If we define the sequence 2 by using the double sequence dX! as

r = Z(Z + 1)*2/qdk(i),1(i),

2
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then we obtain that

i oo AT k= k(i) and 1= 1(),
P v 0 . k# k(i) and I #1(3)

which leads us to the fact that

q

1
P ORA ) S

k,0 |i,j=0

ie., x € £8,. Nevertheless, by choosing k(i) +1 < k(i +1) or (i) +1 < I(i + 1) we
get

V

Z|ak(z 1(3)Th(4),1( )|
> > (i + 1) k]
Z 1=00

i.e., a ¢ L8], a contradiction. Hence, a € M,.
Now, by using the facts £L& = M,, and M$ = £, one can easily show that (3.1)
holds with mathematical induction. ad

> lawzi|
k,l

We give the following lemma which is needed in proving the (¢#)-dual of the
spaces BV, and L§,.

Lemma 3.2.([17]) Let 0 < ¢ < 1. Then, a four-dimensional matriz A = (Gmnki) €
(L4 : Cy) if and only if the following conditions hold:

(3.2) Sup @] < 00,
m,n,k,lEN
(3.3) Jag; € C 3> ¥ — lim  ampr = ag for each k1 € N.
m, n—oo

Now, we may give the beta-duals of the new spaces with respect to the -
convergence rule using the technique in [4] and [5] for the spaces of single sequences.
Let us define the sets BS(u) and C8y(u) via the double sequence u, as follows:

BS(U) = {CL = (aij) e€Q:au= (aijuij)i,jeN < 'BS},
6819(’[1,) = {a = (aij) €eQ:au= (aijuij)iﬁjeN c 6819} .

Theorem 3.3. Let 0 < q < 1. Then, the B(9)-dual of the space BV, is CS8p,(bX!).

281
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Proof. We will determine the necessary and sufficient conditions in order to the
sequence t = (t,,y,) defined by

m,n
tmn = Z AijTij; T = (l‘u) € B\?q

4,J=0

for all m,n € N to be ¥-convergent for a sequence a = (a;;) € Q.
Let us define the sequence z = (z;;) € BV, by the relation (1.3) which gives
y = (yr1) € L4. Then, we can write t = (¢,,) in the matrix form, as follows:

m,n m,n ,J
timn = E xijaijzg E Ykt | Gij
i,j=0 i,j=0 \k,i=0

m,n m,n

Z Z Qij | Ykl

k=0 \i,j=k,l

m,n
Z bmnklykl = (By)mna
k,1=0

where the four-dimensional matrix B = (b,nx) is defined by

o Z;njﬁklaij , 0<k<m and 0<I<n,
(3.4) bonkl = { 0

, otherwise

for all k,I,m,n € N. Now, it is easy to see that ax = (a;jz;;) € C8y whenever
x = (x;;) € BV if and only if t = (t;,,) € Cy whenever y = (yi1) € £, which leads
us to the fact that B € (£, : Cy). Therefore, by using the conditions (3.2) and (3.3)
of Lemma 3.2, we obtain the conditions

m,n m,n
\ . . Kkl
(3.5) sup  |bmnki| = sup E a;j| = sup g aijbgj| < o0,
m,n,k,leN m,n,k,lEN ikl m,n,k,lEN ij=0
m,n
(3.6) ¥ — lm bppr =9 — lim E aijbi-‘jl exists
m,n— oo m,n—o00 4 o
ij=

for all k,1 € N. By means of (3.5) and (3.6), we can say that ab*! = (a;;b}{) €
{BS8,C8y}, in other words, a € BS(b*!) N €8y (bX!) = €8y, (bX!).
This completes the proof. O

Theorem 3.4. Let 0 < ¢ < 1. Then, the 5(¥)-dual of the space L8 is the set M,,.

Proof. We prove the theorem it by the similar way used in the proof of Theorem
3.3.
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Consider y = (yr1) € £84 by (1.2). Then, x = (xy;) € L4. Therefore, we obtain
by applying Abel’s generalized transformation for double sequences that

m,n
tin = E AklYkl

k,l=0
m—1n—1 m—1 n—1
= E (Allakl)xkl + E (Aloakn)xkn + § (A01aml)x7nl + G Tmn
k,l=0 k=0 =0
m,n
= E CrmnkiThl = (CT)mn,
k,l=0

where the four-dimensional matrix C' = (¢pnii) is defined by

Apap; , 0<k<m-land0<Ii<n-1,
Aparn, , 0<k<m-—1land!l=n,
Cmnkl = AOlaml 5 0 § l <n-— 1 and k£ = m,
Amn , k=mandl=n,
0 , otherwise

for all k,1,m,n € N. By using similar approach in Theorem 3.3, C € (£, : Cy).
Therefore, we get by Lemma 3.2 that

U — lim  cppr = A11ak,
m,n—oo

ie., ¥ —limy,, nyoo Cmnkl always exists for each k,I € N. Also, from the condition

SUp  |Cmnki| < 00
m,n,k,lEN

we have (amn) € My, (Ao1ami) € My, (Aroarn) € M, and (Ajjag) € M, for all
k,l,m,n € N. Tt is easy to show that the condition a = (am,) € M, is sufficient for

the matrix C' = (¢nri) to be bounded for all k,1,m,n € N.
This completes the proof. O

4. Matrix Transformations

In the present section, we characterize the classes (Lq : Lg,), (BV4:Lg,),
(L£84:L4q,), (BVy : Cpp) and (L8, : Cpp) together with a corollary characteriz-
ing some classes of four-dimensional matrices without proof; where 0 < ¢ < 1 and
0<q1 <oo.

Theorem 4.1. Let 0 < ¢ <1 and 0 < ¢1 < 0. Then, A = (amni1) € (Lq: Ly,) if
and only if the following condition holds:

(4.1) sup Z | it |1 < 0.

k,leN m,n
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Proof. Let us consider A = (amnki) € (Lg: Ly,) with0 < ¢ <1land 0 < ¢ < occ.
Then, Az exists and belongs to £, for all x € £,. Since X! € £,, we obtain

q1

kl
E § amnijeij = § ‘amnkl|q1 < o0

m,n | 1,5 m,n

for all k,1 € N. Hence, (4.1) is necessary.
Conversely, suppose that the condition (4.1) holds and x = (xy) € £,. Since
Ly, C L, for 0 < g <1, z also belongs to £,,. Thus, we have

q1 a1
Z Z Amnkl Tk < Z Z @kt [Tk
myn | k|l m,n k,l
q1
< Z |@mnkolo| Z |kt
m,n k,l
<

”x”{gu Z |aﬂﬂ“bkolo|q1 <%0
m,n

for any fixed ko,lo € N. Therefore, A € (L4 : Lyq,).
This completes the proof. O

Theorem 4.2. Let 0 < ¢ <1 and 0 < q; < 0co. Then, A = (amni1) € (BVq : Ly,)
if and only if the following condition holds:

q1

(4.2) sup Z i Amnij| < 00.

k,leN m,n |i,j=Fk,l

Proof. We obtain the necessity of the condition (4.2) by choosing the double se-
quence b¥! € BY,.

Let us define z = (z;5) € BV, by (1.3) which gives y = (yw) € Lq. Then, we
derive by the s, t-th rectangular partial sum of the series Zl ; OmnijTij that

i.j
(A(E)le’é] = Z Z Ykl | Omnij

1,5=0 \ k,I=0

s,t
= E Amnij | Ykl

k=0 \i,j=k,l
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for all m,n,s,t € N. Therefore, we see by letting s,¢ — oo that

(Ax)mn = Z Z Amnij | Ykl

k1 \ij=k,l

for all m,n € N. Thus, we get the desired result by the same way used in proving
Theorem 4.1. a

Theorem 4.3. Let 0 < ¢ <1 and 0 < ¢1 < 0o. Then, A = (amnki) € (L84 : Ly,)
if and only if the following conditions hold:

(4.3) sup Z |A’f§a,,,mkl|q1 < 00,
k,leN f—
(4.4) sup Z |A’féamnkl|ql < 00,
k,EN 7
(4.5) sup Z |A’gl1amnkl|ql < 00,
kylEN 5
(4.6) ks;lepNZ |@mnkl|" < oo
’ m,n

Proof. Take x = (zy;) € £8, by the relation x = Ay which gives y = (yx) € £,

Let us define the four-dimensional matrix A" = (a5! ,,) by

ast — Gmnkl , 0<k<sand 0<I<t,
mnkl - 0 , kE>sorl>t

for each s,t € N and all m,n,k,l € N. By using generalized Abel transformation
for double series, we obtain the equalities

s,t
t
(AS ﬂf)mn = E AmnklTkl
k,l=0
s—1,t—1 s—1
kl kl
= (Allamnkl) Yl + § (A10amnkt) Ykt
k,i=0 k—0
t—1
kl
+ E : (AOIGWTLSZ) Ysi + OmnstYst
=0
_ st
= (0",

which gives that A" € (£8, : L) if and only if D € (£, : L), where the

285
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: : : st st
four-dimensional matrix D% = (d7f .,

) defined by

Ay, 0<k<s—land0<I<t-—1,
A¥apmmi , 0<k<s—Tlandl=t,

At =19 Aflamnw . 0<I<t—1landk=s,
Amnkl , k=sandl=t,
0 , k>sorl>t

for each s,t € N and all m,n,k,l € N. Now, one can easily derive the conditions
(4.3)-(4.6) for all s,t € N. O

By using Theorem 4.2 and Theorem 4.3, we can give the following two theorems
without proof.

Theorem 4.4. Let 0 < ¢ < 1. Then, A = (amnki) € (BV, : Cy) if and only if the
following conditions hold:

oo
(4.7 sup Z Amnij| < 00,
m,n,k,leN | . P
i,j=Fk,
o
(4.8) Y — m,lriLILloo z;c lammj ezists for all k,1 € N.
i,j=k,

Theorem 4.5. Let 0 < g < 1. Then, A = (amnkt) € (L84 : Cy) if and only if the
conditions (3.2) and (3.3) hold.

Theorem 4.6. Suppose that the elements of the four-dimensional infinite matrices
E = (emnkt) and F = (fmnki) are connected with the relation

Kl
(4.9) Criij = > frmis

m,n=0

for all i,7,k,l,m,n € N and A\, u be any given two double sequence spaces. Then,
Eec (X:pa)ifand only if F € (A : p) and also F € (X : pg) if and only if
Ee(\:p).

Proof. Let = (z;;) € A. By using (4.9), we derive that

s,t k,l s,t
E €LlijTij = § E frnijTij
i,j=0 m,n=01i,j=0

for all k,I,m,n,s,t € N and by letting s,t — oo that

kel
E ChlijTij = E E Jmnii Tij
%)

m,n=0 4,j
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which lead us to the fact

k,l

m,n=0

for all k,1 € N. Then, it is easy to see by (4.10) that Ex € pua whenever z € A if
and only if F'x € pu whenever x € A and similarly, Fz € us whenever z € A if and
only if Ex € 1 whenever x € A.

This completes the proof. O

As a consequence of Theorem 4.6, we can give the following corollary.

Corollary 4.7. Let 0 < ¢ < 1, 0 < ¢1 < oo and the elements of the four-
dimensional matrices E = (emnki) and F = (fmnki) are connected with the relation
(4.9). Then, the following statements hold:
(1) E = (emnkt) € (Lq: Cy(A)) if and only if the conditions (3.2) and (3.3) hold
with fonk nstead of Gmnki-
(i) F = (emnkt) € (Lq:C8y) if and only if the conditions (3.2) and (3.3) hold
with epnk instead of Gpnki-

(i) E = (emnki) € (Lq : BVy,) if and only if the condition (4.1) holds with frnk

instead of Qmnkl-

(iv) F = (emnkt) € (Lq: £8¢,) if and only if the condition (4.1) holds with emnk
instead of amnki-
(V) E = (emnki) € (BVy:BVy,,) if and only if the condition (4.2) holds with
fmnkl instead of amniil-
(vi) F = (emnkt) € (BV, : £8y,) if and only if the condition (4.2) holds with epmnk
instead of Gmnki-
(vil) E = (emnk1) € (L84 : BVy,) if and only if the conditions (4.3)-(4.6) hold with
Fmnkl instead of amnil-

(vill) F = (emnii) € (£84 : £84,) if and only if the conditions (4.3)-(4.6) hold with
emnkl instead of Qmnki-

(ix) E = (emnrt) € (BVq: Cy(A)) if and only if the conditions (4.7) and (4.8)
hold with fynkr instead of apmnk-

(x) F = (emnkt) € (BVy : C8y) if and only if the conditions (4.7) and (4.8) hold

With emnikr instead of Ammnii -

(xi) E = (emnkt) € (£84: Cy(A)) if and only if the conditions (3.2) and (3.3)
hold with fpnkr instead of apmnk-

(xii) F = (emnkt) € (L84 : C8y) if and only if the conditions (3.2) and (8.8) hold
with emnk; instead of Gmnki -
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5. Conclusion

As the domain of backward difference matrix in the space £, of absolutely p-
summable sequences, the space bv, of p-bounded variation single sequences were
studied in the case 1 < p < oo by Basar and Altay [5], and in the case 0 < p <1
by Altay and Basar [3]. Later, by introducing the space Zp as the domain of double
band matrix B(r, s) in the space ¢, Kirig¢i and Bagar [15] generalized the space bu,,.
Besides this, the space bv, was extended to the paranormed space bv(u, p) of single
sequences by Bagar et al. [6].

Recently, the space £, of absolutely g-summable double sequences with ¢ > 1
was introduced by Basar and Sever [9], and some complementary results related to
the space £, have been recently given by Yesilkayagil and Basar [17]. We introduce
the space £§, as the domain of four dimensional summation matrix S in the space
L4 with 0 < ¢ < oco. It is natural to expect the extension of the space £§, to the
paranormed space £8,(t) as a generalization of the space M derived by Choudhary
and Misra [12] as the domain of the two dimensional summation matrix in the
paranormed space £(p) of single sequences. Our main goal is to investigate the
space BV, of g-bounded variation double sequences and is to extend to the results
obtained for the space bv,. Of course, it is worth mentioning here that the domain
of the backward difference matrix A in the paranormed space ¢(p) and also the
investigation of the results for double sequences corresponding to Bagar et al. [6]
remains open.

Additionally, one can generalize the main results of the present paper related
to the space BV, by using the four dimensional triangle matrix B(r,s,t,u) =
{bmnki(r, s,t,u)} instead of the four dimensional backward difference matrix A,
where 7, s,t,u € R with r, ¢t # 0 and

rt (kvl) = (man)a

st (kal):(m_l’n)v
bk (1, 8, t,u) =< ru , (k)= (m,n—1),

su , (B,)=(m-1,n-1),

0 , otherwise

for all m,n, k,l € N. Furthermore, following Basar and Capan [7, 8] and Capan and
Bagar [10, 11], one can also extend the main results of this paper to the paranormed
case.
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