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İnönü University, 44280 - Malatya, Turkey
Current address: KısıklıMah. Alim Sok. Alim Apt. No: 7/6, 34692 - Üsküdar/
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Abstract. Let 0 < q < ∞. In this study, we introduce the spaces BVq and LSq of

q-bounded variation double sequences and q-summable double series as the domain of

four-dimensional backward difference matrix ∆ and summation matrix S in the space Lq

of absolutely q-summable double sequences, respectively. Also, we determine their α- and

β-duals and give the characterizations of some classes of four-dimensional matrix trans-

formations in the case 0 < q ≤ 1.

1. Introduction

We denote the set of all complex valued double sequences by Ω which forms
a vector space with coordinatewise addition and scalar multiplication. Any vector
subspace of Ω is called as a double sequence space.

By Mu, we denote the space of all bounded double sequences, that is

Mu :=

{
x = (xkl) ∈ Ω : ‖x‖∞ = sup

k,l∈N
|xkl| <∞

}
,

which is a Banach space with the norm ‖ · ‖∞; where N = {0, 1, 2, . . .}.
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If for every ε > 0 there exists N = N(ε) ∈ N and L ∈ C such that |xkl −
L| < ε for all k, l > N , then we call that the double sequence x = (xkl) ∈ Ω is
convergent to L in the Pringsheim’s sense (shortly, p-convergent to L) and write
p− limk,l→∞ xkl = L; where C denotes the complex field (see Pringsheim [16]). We
denote the space of all p-convergent double sequences by Cp.

It is well-known that in single sequence spaces a convergent single sequence is
bounded. But, in double sequence spaces a p-convergent double sequence may be
unbounded. A double sequence x ∈ Cp ∩Mu is called boundedly convergent to L in
the Pringsheim’s sense (shortly, bp-convergent to L), where L is the p-limit of x.
We denote the space of such sequences by Cbp.

Throughout the text the summation without limits runs from 0 to ∞, for ex-
ample

∑
k,l xkl means that

∑∞
k,l=0 xkl, and unless stated otherwise, we assume that

ϑ denotes any of the symbols p or bp.
We denote the space of all absolutely q-summable double sequences by Lq, that

is,

Lq :=

x = (xkl) ∈ Ω :
∑
k,l

|xkl|q <∞

 , (0 < q <∞).

If we take q = 1, we obtain the space Lu of all absolutely summable double se-
quences.

Let ekl = (ekl
ij ) be a double sequence defined by

ekl
ij :=

{
1 , (i, j) = (k, l),
0 , (i, j) 6= (k, l)

for all i, j, k, l ∈ N and e =
∑
k,l e

kl (coordinatewise sums), is a double sequence
that all elements are one. All considered spaces are supposed to contain Φ, the set
of all finitely non-zero double sequences; i.e.,

Φ :=
{
x = (xkl) ∈ Ω : ∃ N ∈ N ∀ (k, l) ∈ N2\[0, N ]2, xkl = 0

}
:= span

{
ekl : k, l ∈ N

}
.

Let λ be a space of double sequences, converging with respect to some linear
convergence rule ϑ− lim : λ→ C. The sum of a double series

∑
i,j xij with respect

to this rule is defined by ϑ−
∑
i,j xij = ϑ− lim

m,n→∞

∑m,n
i,j=0 xij . Then, the α-dual λα

and the β(ϑ)-dual λβ(ϑ) of a double sequence space λ are respectively defined by

λα :=

a = (akl) ∈ Ω :
∑
k,l

|aklxkl| <∞ for all x = (xkl) ∈ λ

 ,

λβ(ϑ) :=

a = (akl) ∈ Ω : ϑ−
∑
k,l

aklxkl exists for all x = (xkl) ∈ λ

 .
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It is easy to see for any two spaces λ and µ of double sequences that µα ⊂ λα

whenever λ ⊂ µ.
Let λ and µ be two double sequence spaces, and A = (amnkl) be any four-

dimensional complex infinite matrix. Then, we say that A defines a matrix mapping
from λ into µ and we write A : λ → µ, if for every sequence x = (xkl) ∈ λ the
A-transform Ax = {(Ax)mn}m,n∈N of x exists and belongs to µ; where

(Ax)mn = ϑ−
∑
k,l

amnklxkl for each m,n ∈ N.(1.1)

We define the ϑ-summability domain λ
(ϑ)
A of A in a space λ of double sequences by

λ
(ϑ)
A :=

x = (xkl) ∈ Ω : Ax =

ϑ−∑
k,l

amnklxkl


m,n∈N

exists and is in λ

 .

We say with the notation (1.1) that A maps the space λ into the space µ if λ ⊂ µ(ϑ)
A

and we denote the set of all four dimensional matrices transforming the space λ
into the space µ by (λ : µ). Thus, A = (amnkl) ∈ (λ : µ) if and only if the double
series on the right side of (1.1) converges in the sense of ϑ for each m,n ∈ N,
i.e, Amn ∈ λβ(ϑ) for all m,n ∈ N and every x ∈ λ, and we have Ax ∈ µ for all
x ∈ λ; where Amn = (amnkl)k,l∈N for all m,n ∈ N. In this paper, we only consider
bp-summability domain.

For all k, l,m, n ∈ N, we say that A = (amnkl) is a triangular matrix if amnkl = 0
for k > m or l > n or both, [1]. By following Adams [1], we also say that a triangular
matrix A = (amnkl) is called a triangle if amnmn 6= 0 for all m,n ∈ N. Referring to
Cooke [13, Remark (a), p. 22], one can conclude that every triangle matrix has an
unique inverse which is also a triangle.

We shall write throughout for simplicity in notation for all k, l,m, n ∈ N that

∆10akl = akl − ak+1,l, ∆kl
10amnkl = amnkl − amn,k+1,l,

∆01akl = akl − ak,l+1, ∆kl
01amnkl = amnkl − amnk,l+1,

∆11akl = ∆10(∆01akl), ∆kl
11amnkl = ∆kl

10(∆kl
01amnkl),

= ∆01(∆10akl), = ∆kl
01(∆kl

10amnkl).

The four dimensional backward difference matrix ∆ = (dmnkl) is defined by

dmnkl :=

{
(−1)m+n−(k+l) , m− 1 ≤ k ≤ m and n− 1 ≤ l ≤ n,

0 , otherwise

for all k, l,m, n ∈ N. We suppose that the terms of the double sequences x = (xkl)
and y = (ykl) are connected with the relation

ykl = (∆x)kl =


x00 , k, l = 0,

x0l − x0,l−1 , k = 0 and l ≥ 1,
xk0 − xk−1,0 , l = 0 and k ≥ 1,

xk−1,l−1 − xk−1,l

−xk,l−1 + xkl
, k, l ≥ 1

(1.2)



274 H. Çapan and F. Başar

for all k, l ∈ N. Additionally, a direct calculation gives the inverse ∆−1 = S =
(smnkl) of the matrix ∆ as follows:

smnkl :=

{
1 , 0 ≤ k ≤ m and 0 ≤ l ≤ n,
0 , otherwise

for all k, l,m, n ∈ N. Here, we can redefine the relation between the double sequences
x = (xkl) and y = (ykl) by summation matrix S as follows:

xkl = (Sy)kl =

k,l∑
i,j=0

yij(1.3)

for all k, l ∈ N.

It is worth mentioning here that Altay and Başar [2] have defined the spaces BS

and CSϑ by using summation matrix S and also Demiriz and Duyar [14] recently
defined the spaces Mu(∆) and Cϑ(∆) by using backward difference matrix ∆, as
folllows:

BS :=

{
x = (xkl) ∈ Ω : sup

k,l∈N
|(Sx)kl| <∞

}
,

CSϑ :=
{
x = (xkl) ∈ Ω : Sx = {(Sx)kl}k,l∈N ∈ Cϑ

}
,

Mu(∆) :=

{
x = (xkl) ∈ Ω : sup

k,l∈N
|(∆x)kl| <∞

}
,

Cϑ(∆) :=
{
x = (xkl) ∈ Ω : ∆x = {(∆x)kl}k,l∈N ∈ Cϑ

}
.

In this study, we introduce the spaces BVq and LSq of all double sequences
whose ∆-transforms and S-transforms are absolutely q-summable, that is,

BVq :=

x = (xkl) ∈ Ω :
∑
k,l

|(∆x)kl|q <∞

 ,

LSq :=

x = (xij) ∈ Ω :
∑
k,l

|(Sx)kl|q <∞

 .

One can easily observe that the sets BVq and LSq are the domain of the backward
difference matrix ∆ and summation matrix S in the space Lq which are q-normed
spaces with

‖x‖̂BVq
=
∑
k,l

|(∆x)kl|q and ‖x‖̂LSq
=
∑
k,l

|(Sx)kl|q
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for 0 < q ≤ 1, and normed spaces with

‖x‖BVq
=

∑
k,l

|(∆x)kl|q
1/q

and ‖x‖LSq
=

∑
k,l

|(Sx)kl|q
1/q

for 1 < q < ∞, respectively . In the special case q = 1, we obtain the space
BV = (Lu)∆, defined by Altay and Başar in [2], and the space LS = (Lu)S .

2. New Sequence Spaces

In the present section, we examine some topological properties of the spaces
BVq and LSq, and also give important inclusion theorems related to them.

Theorem 2.1. The spaces BVq and LSq are linearly isomorphic to the space Lq,
where 0 < q <∞.

Proof. We will only show BVq ∼= Lq with 0 < q <∞.
Let 0 < q <∞. With the notation of (1.2), consider the transformation T from

BVq to Lq defined by x 7→ Tx = ∆x. Then, clearly T is linear and injective. Let
y ∈ Lq and define the sequence x = Sy as in (1.3). Then, we have ∆x = ∆(Sy) = y

which gives ‖x‖̂BVq
= ‖y‖̂Lq

with 0 < q ≤ 1 and ‖x‖BVq
= ‖y‖Lq

with 1 < q <∞,
i.e., x ∈ BVq. Hence, T is surjective and is norm preserving.

This completes the proof. 2

Since BVq ∼= Lq and LSq ∼= Lq, we can give following theorem without proof.

Theorem 2.2. The sets BVq and LSq are linear spaces with the coordinatewise
addition and scalar multiplication, and the following statements hold:

(i) Let 0 < q < 1. Then, BVq and LSq are complete q-normed spaces with ‖·‖̂BVq

and ‖ · ‖̂LSq
, respectively.

(ii) Let 1 ≤ q < ∞. Then, BVq and LSq are Banach spaces with ‖ · ‖BVq
and

‖ · ‖LSq
, respectively.

Now, we define the double sequences bkl =
(
bkl
ij

)
and dkl =

(
dkl
ij

)
by

bkl
ij :=

{
1 , i ≥ k and j ≥ l,
0 , otherwise,

dkl
ij :=

 1 , (i, j) = (k, l), (k + 1, l + 1),
−1 , (i, j) = (k + 1, l), (k, l + 1),

0 , otherwise

for all i, j, k, l ∈ N. Then it is obvious that the sets
{
e, ekl,bkl,dkl; k, l ∈ N

}
⊂ BVq

and
{
dkl; k, l ∈ N

}
⊂ LSq. These double sequences will be used in the rest of the

study.
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Definition 2.3.([18, p. 225]) A double sequence space λ is said to be monotone if
xu = (xklukl) ∈ λ (coordinatwise product) for every x = (xkl) ∈ λ and u = (ukl) ∈
{0, 1}N×N, where {0, 1}N×N denotes the set of all double sequences consisting of 0’s
and 1’s.

If λ is monotone, then λα = λβ(ϑ), but the converse is not true in general.

Theorem 2.4. The spaces BVq and LSq are not monotone, where 0 < q <∞.

Proof. Let λ be a double sequence space. To show λ is not monotone, we must
find a sequence u = (ukl) ∈ {0, 1}N×N such that xu = (xklukl) /∈ λ for a sequence
x = (xkl) ∈ λ.

Let us define the double sequence u = (ukl) by

ukl :=

{
0 , k or l odd,
1 , otherwise

for all k, l ∈ N. Then e ∈ BVq, but eu = u /∈ BVq. Hence, the space BVq is not
monotone.

To show LSq is not monotone take u = ekl. Then, dkl ∈ LSq, but dklekl =
ekl /∈ LSq. 2

Theorem 2.5. Let 0 < q <∞. Then, the inclusion Lq ⊂ BVq is strict.

Proof. Let x = (xkl) ∈ Lq. Then, by neglecting negative indexed terms of x, we
obtain

‖x‖̂BVq
=

∑
k,l

|xk−1,l−1 − xk−1,l − xk,l−1 + xkl|q

≤ 4
∑
k,l

|xkl|q = 4‖x‖̂Lq

for 0 < q ≤ 1 and by using Minkowski’s inequality

‖x‖BVq
=

∑
k,l

|xk−1,l−1 − xk−1,l − xk,l−1 + xkl|q
1/q

≤ 4

∑
k,l

|xkl|q
1/q

= 4‖x‖Lq

for 1 < q <∞, that is, x ∈ BVq for 0 < q <∞. Also, by e ∈ BVq \Lq, the inclusion
Lq ⊂ BVq is strict. 2

Since backward difference matrix ∆ and summation matrix S are opposite work-
ing matrices we can give the following inclusion theorem without proof.
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Theorem 2.6. Let 0 < q <∞. Then, the inclusion LSq ⊂ Lq is strict.

Theorem 2.7. Let 1 < q < ∞. Then, the sets Lq and BV do not contain each
other.

Proof. It is immediate that e ∈ BV \Lq and ekl ∈ BV∩Lq. Consider the sequence
x = (xkl) defined by

xkl :=
(−1)k+l

(k + 1)(l + 1)

for all k, l ∈ N. Since q > 1, the series∑
k,l

|xkl|q =
∑
k,l

1

[(k + 1)(l + 1)]q

is convergent, that is, x ∈ Lq. Nevertheless, we get from

(∆x)kl =



1 , k, l = 0,

(−1)l
2l + 1

l(l + 1)
, k = 0 and l ≥ 1,

(−1)k
2k + 1

k(k + 1)
, l = 0 and k ≥ 1,

(−1)k+l (k + 1)(l + 1) + (k + 1)l + k(l + 1) + kl

kl(k + 1)(l + 1)
, k, l ≥ 1

(2.1)

that the series∑
k,l

|(∆x)kl| = 1 +

∞∑
l=1

2l + 1

l(l + 1)
+

∞∑
k=1

2k + 1

k(k + 1)

+

∞∑
k,l=1

(k + 1)(l + 1) + (k + 1)l + k(l + 1) + kl

kl(k + 1)(l + 1)

≥ 1 +

∞∑
l=1

l + 1

l(l + 1)
+

∞∑
k=1

k + 1

k(k + 1)
+

∞∑
k,l=1

(k + 1(l + 1)

kl(k + 1)(l + 1)

= 1 +

∞∑
l=1

1

l
+

∞∑
k=1

1

k
+

∞∑
k,l=1

1

kl

diverges which gives the fact that x /∈ BV. Therefore, x ∈ Lq \BV. 2
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Theorem 2.8. Let 1 < q < ∞. Then, the sets Lu and LSq do not contain each
other.

Proof. One can easily see that ekl ∈ Lu \ LSq and dkl ∈ Lu ∩ LSq. Consider the
sequence ∆x = {(∆x)kl} as in (2.1) for all k, l ∈ N. Then, we obtain

∑
k,l

|{S(∆x)}kl|q =
∑
k,l

|xkl|q =
∑
k,l

1

[(k + 1)(l + 1)]q
<∞,

i.e., ∆x ∈ LSq, but ∆x /∈ Lu by Theorem 2.7. 2

Theorem 2.9. Let 0 < q < 1. Then, the sets Lu and BVq do not contain each
other.

Proof. It is clear that e ∈ BVq \ Lu and ekl ∈ BVq ∩ Lu. Define x = (xkl) by

xkl :=
(−1)k+l

[(k + 1)(l + 1)]1/q

for all k, l ∈ N. Since 1/q > 1, the series

∑
k,l

|xkl| =
∑
k,l

1

[(k + 1)(l + 1)]1/q

is convergent. On the other hand, we see from

(2.2)

(∆x)kl =



1 , k, l = 0,

(−1)l
l1/q + (l + 1)1/q

[l(l + 1)]1/q
, k = 0 and l ≥ 1,

(−1)k
k1/q + (k + 1)1/q

[k(k + 1)]1/q
, l = 0 and k ≥ 1,

(−1)k+l [(k + 1)(l + 1)]1/q + [(k + 1)l]1/q

[kl(k + 1)(l + 1)]1/q

+(−1)k+l [k(l + 1)]1/q + (kl)1/q

[kl(k + 1)(l + 1)]1/q

, k, l ≥ 1
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that the series∑
k,l

|(∆x)kl|q

= 1 +

∞∑
l=1

∣∣∣∣ l1/q + (l + 1)1/q

[l(l + 1)]1/q

∣∣∣∣q +

∞∑
k=1

∣∣∣∣k1/q + (k + 1)1/q

[k(k + 1)]1/q

∣∣∣∣q

+

∞∑
k,l=1

∣∣∣∣ [(k + 1)(l + 1)]1/q + [(k + 1)l]1/q + [k(l + 1)]1/q + (kl)1/q

[kl(k + 1)(l + 1)]1/q

∣∣∣∣q

≥ 1 +

∞∑
l=1

∣∣∣∣ (l + 1)1/q

[l(l + 1)]1/q

∣∣∣∣q +

∞∑
k=1

∣∣∣∣ (k + 1)1/q

[k(k + 1)]1/q

∣∣∣∣q +

∞∑
k,l=1

∣∣∣∣ [(k + 1)(l + 1)]1/q

[kl(k + 1)(l + 1)]1/q

∣∣∣∣q

= 1 +

∞∑
l=1

1

l
+

∞∑
k=1

1

k
+

∞∑
k,l=1

1

kl

is divergent. Hence, x ∈ Lu \BVq. 2

Theorem 2.10. Let 0 < q < 1. Then, the sets Lq and LS do not contain each
other.

Proof. It is easy to see that ekl ∈ Lq \ LS and dkl ∈ Lq ∩ LS. If we consider the
sequence x in (2.2), then it is immediate that x ∈ LS \ Lq. 2

Let 0 < q < s < ∞. It is known that the inclusions Lq ⊂ Ls ⊂ Mu strictly
hold. By combining this fact with Theorem 2.1, we can give the following theorem
without proof.

Theorem 2.11. Let 0 < q < s < ∞. Then, the inclusions BVq ⊂ BVs ⊂ Mu(∆)
and LSq ⊂ LSs ⊂ BS strictly hold.

Theorem 2.12. Let λ denotes any of the spaces Mu or Cϑ and 1 < q <∞. Then,
neither of the spaces BVq and λ includes the other one.

Proof. It is clear that e ∈ BVq ∩ λ. Define x = (xkl) and y = (ykl) by

xkl :=

k,l∑
i,j=0

1

(i+ 1)(j + 1)
and ykl :=

{
1 , k = 0 and l even,
0 , otherwise

for all k, l ∈ N. Then, since

(∆x)kl :=
1

(k + 1)(l + 1)
and (∆y)kl :=

{
(−1)k+l , k = 0, 1 and l ∈ N,

0 , otherwise

one can conclude that x ∈ BVq \ λ and y ∈ λ \BVq. Hence, the spaces BVq and λ
are overlap but neither contains the other. 2
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3. Dual Spaces

In this section, we give the α- and β(bp)-duals of the spaces BVq and LSq in
the case 0 < q ≤ 1. It is worth mentioning that although the alpha dual of a
double sequence space is unique its beta dual may be more than one with respect to

ϑ-convergence rule. By λnζ , we mean that
{
λ(n−1)ζ

}ζ
for a double sequence space

λ and n ∈ N1, the set of positive integers. It is well-known that Lαu = Mu and
Mα
u = Lu.

Theorem 3.1. Let 0 < q ≤ 1. Then, the followings hold for all k ∈ N1:

BVnαq :=

{
Lu , n = 2k − 1,
Mu , n = 2k,

(3.1)

LSnαq :=

{
Mu , n = 2k − 1,
Lu , n = 2k.

Proof. Let 0 < q ≤ 1.
(i) BVαq = Lu.
Lu ⊂ BVαq : Let us consider a = (akl) ∈ Lu and x = (xkl) ∈ BVq. Then, we have
by relation (1.3) that y ∈ Lq ⊂ Lu which gives

∑
k,l

|aklxkl| ≤
∑
k,l

|akl|
k,l∑
i,j=0

|yij | ≤ ‖a‖Lu‖y‖Lu ,

that is, ax ∈ Lu. Hence, a ∈ BVαq .
BVαq ⊂ Lu: Suppose that a ∈ BVαq \ Lu. Then, we have ax ∈ Lu for x ∈ BVq

but a /∈ Lu. If we consider e ∈ BVq, then we obtain ae = a /∈ Lu, that is, a /∈ BVαq ,
a contradiction. Hence, a must be in Lu.
(ii) LSαq = Mu.
Mu ⊂ LSαq : Take a ∈Mu and x ∈ LSq ⊂ Lu. Then, we get by

‖ax‖Lu ≤ ‖a‖∞‖x‖Lu

that a ∈ LSαq .
LSαq ⊂Mu: Consider a ∈ LSαq \Mu. Since a /∈Mu, there exist the subsequences

of natural numbers {k(i)} and {l(i)}, at least one of them is strictly increasing, such
that

ak(i),l(i) > (i+ 1)2/q

for all i ∈ N. If we define the sequence x by using the double sequence dkl as

x =
∑
i

(i+ 1)−2/qdk(i),l(i),
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then we obtain that

k,l∑
i,j=0

xij :=

{
(i+ 1)−2/q , k = k(i) and l = l(i),

0 , k 6= k(i) and l 6= l(i)

which leads us to the fact that

∑
k,l

∣∣∣∣∣∣
k,l∑
i,j=0

xij

∣∣∣∣∣∣
q

=
∑
i

1

(i+ 1)2
<∞,

i.e., x ∈ LSq. Nevertheless, by choosing k(i) + 1 < k(i+ 1) or l(i) + 1 < l(i+ 1) we
get ∑

k,l

|aklxkl| >
∑
i

|ak(i),l(i)xk(i),l(i)|

>
∑
i

(i+ 1)2/q|xk(i),l(i)|

=
∑
i

1 =∞,

i.e., a /∈ LSαq , a contradiction. Hence, a ∈Mu.
Now, by using the facts Lαu = Mu and Mα

u = Lu, one can easily show that (3.1)
holds with mathematical induction. 2

We give the following lemma which is needed in proving the β(ϑ)-dual of the
spaces BVq and LSq.

Lemma 3.2.([17]) Let 0 < q ≤ 1. Then, a four-dimensional matrix A = (amnkl) ∈
(Lq : Cϑ) if and only if the following conditions hold:

sup
m,n,k,l∈N

|amnkl| <∞,(3.2)

∃αkl ∈ C 3 ϑ− lim
m,n→∞

amnkl = αkl for each k, l ∈ N.(3.3)

Now, we may give the beta-duals of the new spaces with respect to the ϑ-
convergence rule using the technique in [4] and [5] for the spaces of single sequences.

Let us define the sets BS(u) and CSϑ(u) via the double sequence u, as follows:

BS(u) := {a = (aij) ∈ Ω : au = (aijuij)i,j∈N ∈ BS} ,
CSϑ(u) := {a = (aij) ∈ Ω : au = (aijuij)i,j∈N ∈ CSϑ} .

Theorem 3.3. Let 0 < q ≤ 1. Then, the β(ϑ)-dual of the space BVq is CSbp(b
kl).



282 H. Çapan and F. Başar

Proof. We will determine the necessary and sufficient conditions in order to the
sequence t = (tmn) defined by

tmn :=

m,n∑
i,j=0

aijxij ; x = (xij) ∈ BVq

for all m,n ∈ N to be ϑ-convergent for a sequence a = (aij) ∈ Ω.
Let us define the sequence x = (xij) ∈ BVq by the relation (1.3) which gives

y = (ykl) ∈ Lq. Then, we can write t = (tmn) in the matrix form, as follows:

tmn =

m,n∑
i,j=0

xijaij =

m,n∑
i,j=0

 i,j∑
k,l=0

ykl

 aij

=

m,n∑
k,l=0

 m,n∑
i,j=k,l

aij

 ykl

=

m,n∑
k,l=0

bmnklykl = (By)mn,

where the four-dimensional matrix B = (bmnkl) is defined by

bmnkl :=

{ ∑m,n
i,j=k,l aij , 0 ≤ k ≤ m and 0 ≤ l ≤ n,

0 , otherwise
(3.4)

for all k, l,m, n ∈ N. Now, it is easy to see that ax = (aijxij) ∈ CSϑ whenever
x = (xij) ∈ BVq if and only if t = (tmn) ∈ Cϑ whenever y = (ykl) ∈ Lq which leads
us to the fact that B ∈ (Lq : Cϑ). Therefore, by using the conditions (3.2) and (3.3)
of Lemma 3.2, we obtain the conditions

sup
m,n,k,l∈N

|bmnkl| = sup
m,n,k,l∈N

∣∣∣∣∣∣
m,n∑
i,j=k,l

aij

∣∣∣∣∣∣ = sup
m,n,k,l∈N

∣∣∣∣∣∣
m,n∑
i,j=0

aijb
kl
ij

∣∣∣∣∣∣ <∞,(3.5)

ϑ− lim
m,n→∞

bmnkl = ϑ− lim
m,n→∞

m,n∑
i,j=0

aijb
kl
ij exists(3.6)

for all k, l ∈ N. By means of (3.5) and (3.6), we can say that abkl =
(
aijb

kl
ij

)
∈

{BS,CSϑ}, in other words, a ∈ BS(bkl) ∩ CSϑ(bkl) = CSbp(b
kl).

This completes the proof. 2

Theorem 3.4. Let 0 < q ≤ 1. Then, the β(ϑ)-dual of the space LSq is the set Mu.

Proof. We prove the theorem it by the similar way used in the proof of Theorem
3.3.
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Consider y = (ykl) ∈ LSq by (1.2). Then, x = (xkl) ∈ Lq. Therefore, we obtain
by applying Abel’s generalized transformation for double sequences that

tmn =

m,n∑
k,l=0

aklykl

=

m−1,n−1∑
k,l=0

(∆11akl)xkl +

m−1∑
k=0

(∆10akn)xkn +

n−1∑
l=0

(∆01aml)xml + amnxmn

=

m,n∑
k,l=0

cmnklxkl = (Cx)mn,

where the four-dimensional matrix C = (cmnkl) is defined by

cmnkl :=


∆11akl , 0 ≤ k ≤ m− 1 and 0 ≤ l ≤ n− 1,
∆10akn , 0 ≤ k ≤ m− 1 and l = n,
∆01aml , 0 ≤ l ≤ n− 1 and k = m,
amn , k = m and l = n,

0 , otherwise

for all k, l,m, n ∈ N. By using similar approach in Theorem 3.3, C ∈ (Lq : Cϑ).
Therefore, we get by Lemma 3.2 that

ϑ− lim
m,n→∞

cmnkl = ∆11akl,

i.e., ϑ− limm,n→∞ cmnkl always exists for each k, l ∈ N. Also, from the condition

sup
m,n,k,l∈N

|cmnkl| <∞

we have (amn) ∈ Mu, (∆01aml) ∈ Mu, (∆10akn) ∈ Mu and (∆11akl) ∈ Mu for all
k, l,m, n ∈ N. It is easy to show that the condition a = (amn) ∈Mu is sufficient for
the matrix C = (cmnkl) to be bounded for all k, l,m, n ∈ N.

This completes the proof. 2

4. Matrix Transformations

In the present section, we characterize the classes (Lq : Lq1), (BVq : Lq1),
(LSq : Lq1), (BVq : Cbp) and (LSq : Cbp) together with a corollary characteriz-
ing some classes of four-dimensional matrices without proof; where 0 < q ≤ 1 and
0 < q1 <∞.

Theorem 4.1. Let 0 < q ≤ 1 and 0 < q1 <∞. Then, A = (amnkl) ∈ (Lq : Lq1) if
and only if the following condition holds:

sup
k,l∈N

∑
m,n

|amnkl|q1 <∞.(4.1)
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Proof. Let us consider A = (amnkl) ∈ (Lq : Lq1) with 0 < q ≤ 1 and 0 < q1 < ∞.
Then, Ax exists and belongs to Lq1 for all x ∈ Lq. Since ekl ∈ Lq, we obtain

∑
m,n

∣∣∣∣∣∣
∑
i,j

amnije
kl
ij

∣∣∣∣∣∣
q1

=
∑
m,n

|amnkl|q1 <∞

for all k, l ∈ N. Hence, (4.1) is necessary.

Conversely, suppose that the condition (4.1) holds and x = (xkl) ∈ Lq. Since
Lq ⊂ Lu for 0 < q ≤ 1, x also belongs to Lu. Thus, we have

∑
m,n

∣∣∣∣∣∣
∑
k,l

amnklxkl

∣∣∣∣∣∣
q1

≤
∑
m,n

∑
k,l

|amnkl||xkl|

q1

≤
∑
m,n

|amnk0l0 |∑
k,l

|xkl|

q1

≤ ‖x‖q1Lu

∑
m,n

|amnk0l0 |q1 <∞

for any fixed k0, l0 ∈ N. Therefore, A ∈ (Lq : Lq1).

This completes the proof. 2

Theorem 4.2. Let 0 < q ≤ 1 and 0 < q1 < ∞. Then, A = (amnkl) ∈ (BVq : Lq1)
if and only if the following condition holds:

sup
k,l∈N

∑
m,n

∣∣∣∣∣∣
∞∑

i,j=k,l

amnij

∣∣∣∣∣∣
q1

<∞.(4.2)

Proof. We obtain the necessity of the condition (4.2) by choosing the double se-
quence bkl ∈ BVq.

Let us define x = (xij) ∈ BVq by (1.3) which gives y = (ykl) ∈ Lq. Then, we
derive by the s, t-th rectangular partial sum of the series

∑
i,j amnijxij that

(Ax)[s,t]
mn =

s,t∑
i,j=0

 i,j∑
k,l=0

ykl

 amnij

=

s,t∑
k,l=0

 s,t∑
i,j=k,l

amnij

 ykl
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for all m,n, s, t ∈ N. Therefore, we see by letting s, t→∞ that

(Ax)mn =
∑
k,l

 ∞∑
i,j=k,l

amnij

 ykl

for all m,n ∈ N. Thus, we get the desired result by the same way used in proving
Theorem 4.1. 2

Theorem 4.3. Let 0 < q ≤ 1 and 0 < q1 < ∞. Then, A = (amnkl) ∈ (LSq : Lq1)
if and only if the following conditions hold:

sup
k,l∈N

∑
m,n

∣∣∆kl
11amnkl

∣∣q1 <∞,(4.3)

sup
k,l∈N

∑
m,n

∣∣∆kl
10amnkl

∣∣q1 <∞,(4.4)

sup
k,l∈N

∑
m,n

∣∣∆kl
01amnkl

∣∣q1 <∞,(4.5)

sup
k,l∈N

∑
m,n

|amnkl|q1 <∞.(4.6)

Proof. Take x = (xkl) ∈ LSq by the relation x = ∆y which gives y = (ykl) ∈ Lq.
Let us define the four-dimensional matrix Ast = (astmnkl) by

astmnkl :=

{
amnkl , 0 ≤ k ≤ s and 0 ≤ l ≤ t,

0 , k > s or l > t

for each s, t ∈ N and all m,n, k, l ∈ N. By using generalized Abel transformation
for double series, we obtain the equalities

(
Astx

)
mn

=

s,t∑
k,l=0

amnklxkl

=

s−1,t−1∑
k,l=0

(
∆kl

11amnkl
)
ykl +

s−1∑
k=0

(
∆kl

10amnkt
)
ykt

+

t−1∑
l=0

(
∆kl

01amnsl
)
ysl + amnstyst

=
(
Dsty

)
mn

which gives that Ast ∈ (LSq : Lq1) if and only if Dst ∈ (Lq : Lq1), where the
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four-dimensional matrix Dst = (dstmnkl) defined by

dstmnkl :=


∆kl

11amnkl , 0 ≤ k ≤ s− 1 and 0 ≤ l ≤ t− 1,
∆kl

10amnkl , 0 ≤ k ≤ s− 1 and l = t,
∆kl

01amnkl , 0 ≤ l ≤ t− 1 and k = s,
amnkl , k = s and l = t,

0 , k > s or l > t

for each s, t ∈ N and all m,n, k, l ∈ N. Now, one can easily derive the conditions
(4.3)-(4.6) for all s, t ∈ N. 2

By using Theorem 4.2 and Theorem 4.3, we can give the following two theorems
without proof.

Theorem 4.4. Let 0 < q ≤ 1. Then, A = (amnkl) ∈ (BVq : Cϑ) if and only if the
following conditions hold:

sup
m,n,k,l∈N

∣∣∣∣∣∣
∞∑

i,j=k,l

amnij

∣∣∣∣∣∣ <∞,(4.7)

ϑ− lim
m,n→∞

∞∑
i,j=k,l

amnij exists for all k, l ∈ N.(4.8)

Theorem 4.5. Let 0 < q ≤ 1. Then, A = (amnkl) ∈ (LSq : Cϑ) if and only if the
conditions (3.2) and (3.3) hold.

Theorem 4.6. Suppose that the elements of the four-dimensional infinite matrices
E = (emnkl) and F = (fmnkl) are connected with the relation

eklij =

k,l∑
m,n=0

fmnij(4.9)

for all i, j, k, l,m, n ∈ N and λ, µ be any given two double sequence spaces. Then,
E ∈ (λ : µ∆) if and only if F ∈ (λ : µ) and also F ∈ (λ : µS) if and only if
E ∈ (λ : µ).

Proof. Let x = (xij) ∈ λ. By using (4.9), we derive that

s,t∑
i,j=0

eklijxij =

k,l∑
m,n=0

s,t∑
i,j=0

fmnijxij

for all k, l,m, n, s, t ∈ N and by letting s, t→∞ that

∑
i,j

eklijxij =

k,l∑
m,n=0

∑
i,j

fmnijxij
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which lead us to the fact

(Ex)kl =

k,l∑
m,n=0

(Fx)mn(4.10)

for all k, l ∈ N. Then, it is easy to see by (4.10) that Ex ∈ µ∆ whenever x ∈ λ if
and only if Fx ∈ µ whenever x ∈ λ and similarly, Fx ∈ µS whenever x ∈ λ if and
only if Ex ∈ µ whenever x ∈ λ.

This completes the proof. 2

As a consequence of Theorem 4.6, we can give the following corollary.

Corollary 4.7. Let 0 < q ≤ 1, 0 < q1 < ∞ and the elements of the four-
dimensional matrices E = (emnkl) and F = (fmnkl) are connected with the relation
(4.9). Then, the following statements hold:

(i) E = (emnkl) ∈ (Lq : Cϑ(∆)) if and only if the conditions (3.2) and (3.3) hold
with fmnkl instead of amnkl.

(ii) F = (emnkl) ∈ (Lq : CSϑ) if and only if the conditions (3.2) and (3.3) hold
with emnkl instead of amnkl.

(iii) E = (emnkl) ∈ (Lq : BVq1) if and only if the condition (4.1) holds with fmnkl
instead of amnkl.

(iv) F = (emnkl) ∈ (Lq : LSq1) if and only if the condition (4.1) holds with emnkl
instead of amnkl.

(v) E = (emnkl) ∈ (BVq : BVq1) if and only if the condition (4.2) holds with
fmnkl instead of amnkl.

(vi) F = (emnkl) ∈ (BVq : LSq1) if and only if the condition (4.2) holds with emnkl
instead of amnkl.

(vii) E = (emnkl) ∈ (LSq : BVq1) if and only if the conditions (4.3)-(4.6) hold with
fmnkl instead of amnkl.

(viii) F = (emnkl) ∈ (LSq : LSq1) if and only if the conditions (4.3)-(4.6) hold with
emnkl instead of amnkl.

(ix) E = (emnkl) ∈ (BVq : Cϑ(∆)) if and only if the conditions (4.7) and (4.8)
hold with fmnkl instead of amnkl.

(x) F = (emnkl) ∈ (BVq : CSϑ) if and only if the conditions (4.7) and (4.8) hold
with emnkl instead of amnkl.

(xi) E = (emnkl) ∈ (LSq : Cϑ(∆)) if and only if the conditions (3.2) and (3.3)
hold with fmnkl instead of amnkl.

(xii) F = (emnkl) ∈ (LSq : CSϑ) if and only if the conditions (3.2) and (3.3) hold
with emnkl instead of amnkl.
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5. Conclusion

As the domain of backward difference matrix in the space `p of absolutely p-
summable sequences, the space bvp of p-bounded variation single sequences were
studied in the case 1 < p ≤ ∞ by Başar and Altay [5], and in the case 0 < p ≤ 1

by Altay and Başar [3]. Later, by introducing the space ̂̀p as the domain of double
band matrix B(r, s) in the space `p Kirişçi and Başar [15] generalized the space bvp.
Besides this, the space bvp was extended to the paranormed space bv(u, p) of single
sequences by Başar et al. [6].

Recently, the space Lq of absolutely q-summable double sequences with q > 1
was introduced by Başar and Sever [9], and some complementary results related to
the space Lq have been recently given by Yeşilkayagil and Başar [17]. We introduce
the space LSq as the domain of four dimensional summation matrix S in the space
Lq with 0 < q < ∞. It is natural to expect the extension of the space LSq to the

paranormed space LSq(t) as a generalization of the space `(p) derived by Choudhary
and Misra [12] as the domain of the two dimensional summation matrix in the
paranormed space `(p) of single sequences. Our main goal is to investigate the
space BVq of q-bounded variation double sequences and is to extend to the results
obtained for the space bvq. Of course, it is worth mentioning here that the domain
of the backward difference matrix ∆ in the paranormed space `(p) and also the
investigation of the results for double sequences corresponding to Başar et al. [6]
remains open.

Additionally, one can generalize the main results of the present paper related
to the space BVq by using the four dimensional triangle matrix B(r, s, t, u) =
{bmnkl(r, s, t, u)} instead of the four dimensional backward difference matrix ∆,
where r, s, t, u ∈ R with r, t 6= 0 and

bmnkl(r, s, t, u) :=


rt , (k, l) = (m,n),
st , (k, l) = (m− 1, n),
ru , (k, l) = (m,n− 1),
su , (k, l) = (m− 1, n− 1),
0 , otherwise

for all m,n, k, l ∈ N. Furthermore, following Başar and Çapan [7, 8] and Çapan and
Başar [10, 11], one can also extend the main results of this paper to the paranormed
case.
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