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Abstract. In this paper, we prove a general uniqueness theorem which is useful for prov-

ing the uniqueness of the relevant additive mapping, quadratic mapping, cubic mapping,

quartic mapping, or the additive-quadratic-cubic-quartic mapping when we investigate the

(generalized) Hyers-Ulam stability.

1. Introduction

From now on, we assume that V and W are vector spaces and a is a fixed real
number larger than 1. If a mapping f : V →W is given, then we set

f1(x) := fo(ax)− a3fo(x),

f2(x) := fe(ax)− a4fe(x),

f3(x) := fo(ax)− afo(x),

f4(x) := fe(ax)− a2fe(x),

Af(x, y) := f(x+ y)− f(x)− f(y),

Q2f(x, y) := f(x+ y) + f(x− y)− 2f(x)− 2f(y),

Cf(x, y) := f(2x+ y)− 3f(x+ y) + 3f(y)− f(−x+ y)− 6f(x),
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Q4f(x, y) := f(2x+ y)− 4f(x+ y) + 6f(y)− 4f(−x+ y)

+f(−2x+ y)− 24f(x)

for x, y ∈ V , where fo and fe denote the odd and even part of f , respectively.
If a mapping f : V → W satisfies the equation Af(x, y) = 0, Q2f(x, y) = 0,

Cf(x, y) = 0, or Q4f(x, y) = 0 for all x, y ∈ V , then it is called an additive
mapping, a quadratic mapping, a cubic mapping, or a quartic mapping, respectively.
We notice that the real-valued mappings f(x) = ax, g(x) = ax2, h(x) = ax3,
and k(x) = ax4 are solutions to Af(x, y) = 0, Q2f(x, y) = 0, Cg(x, y) = 0, and
Q4h(x, y) = 0, respectively.

We call a mapping f : V →W an additive-quadratic-cubic-quartic mapping if it
is expressed as the sum of an additive mapping, a quadratic mapping, a cubic map-
ping, and a quartic mapping, and vice versa. An additive-quadratic-cubic-quartic
type functional equation is just the functional equation, each of whose solutions is
an additive-quadratic-cubic-quartic mapping. For example, the real-valued mapping
f(x) = ax4 + bx3 + cx2 + dx defined on R is a solution to the additive-quadratic-
cubic-quartic type functional equation.

Whenever we investigate the stability problems for additive-quadratic-cubic-
quartic type functional equations or others, we encounter some uniqueness problems.
To our best of knowledge, however, no author has succeeded in proving even a
uniqueness theorem for these cases ([1, 2, 7, 12, 14, 15, 17]) except our papers
([8, 9, 10, 11]). The ideas of the present paper are strongly based on the previous
papers [8, 9, 10, 11]. But this paper includes more general results than the previous
three papers.

In this paper, a general uniqueness theorem will be proved which is useful for
proving the uniqueness of the relevant additive mapping, quadratic mapping, cubic
mapping, quartic mapping, or the additive-quadratic-cubic-quartic mapping when
we investigate the (generalized) Hyers-Ulam stability. In Section 3, we make use
of our uniqueness theorem to improve the stability theorems presented in [5, 13],
where the uniqueness of exact solutions have not been proved.

2. Main Result

We assume that V is a real vector space and Y is a real normed space. The
following somewhat surprising theorem states that if for any given mapping f , there
exists a mapping F (near f) with some properties (which are possessed by quadratic,
cubic, quartic, or possessed by additive-quadratic-cubic-quartic mappings), then F
is uniquely determined.

Theorem 2.1. Assume that a > 1 is a fixed real number and Φ : V \{0} → [0,∞)
is a function satisfying one of the following properties

lim
n→∞

1

an
Φ(anx) = 0,(2.1)

lim
n→∞

anΦ

(
x

an

)
= lim

n→∞

1

a2n
Φ(anx) = 0,(2.2)
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lim
n→∞

a2nΦ

(
x

an

)
= lim

n→∞

1

a3n
Φ(anx) = 0,(2.3)

lim
n→∞

a3nΦ

(
x

an

)
= lim

n→∞

1

a4n
Φ(anx) = 0,(2.4)

lim
n→∞

a4nΦ

(
x

an

)
= 0(2.5)

for all x ∈ V \{0}. Suppose f : V → Y is an arbitrary mapping. If a mapping
F : V → Y satisfies the inequality

‖f(x)− F (x)‖ ≤ Φ(x)(2.6)

for all x ∈ V \{0} and if F satisfies each of the following equalities

F1(ax) = aF1(x), F2(ax) = a2F2(x),

F3(ax) = a3F3(x), F4(ax) = a4F4(x)
(2.7)

for all x ∈ V , then F is given as

F (x) =



lim
n→∞

[
1

a4 − a2

(
f4(anx)

a4n
− f2(anx)

a2n

)
+

1

a3 − a

(
f3(anx)

a3n
− f1(anx)

an

)]
in the case of (2.1),

lim
n→∞

[
1

a4 − a2

(
f4(anx)

a4n
− f2(anx)

a2n

)
+

1

a3 − a

(
f3(anx)

a3n
− anf1

(
x

an

))]
in the case of (2.2),

lim
n→∞

[
1

a4 − a2

(
f4(anx)

a4n
− a2nf2

(
x

an

))
+

1

a3 − a

(
f3(anx)

a3n
− anf1

(
x

an

))]
in the case of (2.3),

lim
n→∞

[
1

a4 − a2

(
f4(anx)

a4n
− a2nf2

(
x

an

))
+

1

a3 − a

(
a3nf3

(
x

an

)
− anf1

(
x

an

))]
in the case of (2.4),

lim
n→∞

[
1

a4 − a2

(
a4nf4

(
x

an

)
− a2nf2

(
x

an

))
+

1

a3 − a

(
a3nf3

(
x

an

)
− anf1

(
x

an

))]
in the case of (2.5)

(2.8)

for all x ∈ V \{0}. In other words, F is the unique mapping satisfying (2.6) and
(2.7).
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Proof. Suppose a mapping F satisfies (2.6) and (2.7) for a given f : V → Y .
(i) We consider F1(x) = Fo(ax) − a3Fo(x). When Φ : V \{0} → [0,∞) has the
property (2.1), we make use of (2.7) to get∥∥∥∥F1(x)− 1

an
f1(anx)

∥∥∥∥
=

1

an
‖F1(anx)− f1(anx)‖

≤ 1

an
‖Fo(an+1x)− fo(an+1x)‖+

a3

an
‖fo(anx)− Fo(anx)‖

≤ 1

2an

(
Φ(an+1x) + Φ(−an+1x) + a3Φ(anx) + a3Φ(−anx)

)
→ 0, as n→∞,

for all x ∈ V \{0}. Thus, F1(x) = lim
n→∞

1
an fo(anx) for all x ∈ V \{0} provided Φ has

the property (2.1).
When Φ : V \{0} → [0,∞) has the property (2.2), (2.3), (2.4), or (2.5), then we

use (2.7) to show that∥∥∥∥F1(x)− anf1
(
x

an

)∥∥∥∥
= an

∥∥∥∥F1

(
x

an

)
− f1

(
x

an

)∥∥∥∥
≤ an

∥∥∥∥Fo

(
ax

an

)
− fo

(
ax

an

)∥∥∥∥+ an+3

∥∥∥∥fo( x

an

)
− Fo

(
x

an

)∥∥∥∥
≤ an

2

(
Φ

(
ax

an

)
+ Φ

(
− ax

an

)
+ a3Φ

(
x

an

)
+ a3Φ

(
− x

an

))
→ 0, as n→∞,

for all x ∈ V \{0}. Hence, Fo(x) = lim
n→∞

anf1( x
an ) for all x ∈ V \{0} provided Φ has

the property (2.2), (2.3), (2.4), or (2.5).
(ii) We consider the mapping F2(x) = Fe(ax)−a4Fe(x). When Φ : V \{0} → [0,∞)
has the property (2.1) or (2.2), then we apply (2.7) to verify∥∥∥∥F2(x)− 1

a2n
f2(anx)

∥∥∥∥
=

1

a2n
‖F2(anx)− f2(anx)‖

≤ 1

a2n
‖(Fe − fe)(an+1x)‖+

1

a2n
‖a4(Fe − fe)(anx)‖

≤ 1

2a2n

(
Φ(an+1x) + Φ(−an+1x) + a4Φ(anx) + a4Φ(−anx)

)
→ 0, as n→∞,
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for all x ∈ V \{0}. Then, F2(x) = lim
n→∞

1
a2n f2(anx) is true for all x ∈ V \{0}

provided Φ has the property (2.1) or (2.2).
When Φ : V \{0} → [0,∞) satisfies (2.3), (2.4) or (2.5), we get∥∥∥∥F2(x)− a2nf2

(
x

an

)∥∥∥∥
= a2n

∥∥∥∥F2

(
x

an

)
− f2

(
x

an

)∥∥∥∥
≤ a2n

∥∥∥∥(Fe − fe)
(

x

an−1

)∥∥∥∥+ a2n
∥∥∥∥a4(Fe − fe)

(
x

an

)∥∥∥∥
≤ a2n

2

(
Φ

(
x

an−1

)
+ Φ

(
−x
an−1

)
+ a4Φ

(
x

an

)
+ a4Φ

(
−x
an

))
→ 0, as n→∞,

for all x ∈ V \{0}. Thus, F2(x) = lim
n→∞

a2nf2( x
an ) for all x ∈ V \{0} provided Φ has

the property (2.3), (2.4) or (2.5).
(iii) We now consider F3(x) = Fo(ax)− aFo(x). When Φ : V \{0} → [0,∞) has the
property (2.1), (2.2) or (2.3), then we make use of (2.7) to see∥∥∥∥F3(x)− 1

a3n
f3(anx)

∥∥∥∥
=

1

a3n
‖F3(anx)− f3(anx)‖

≤ 1

a3n
‖(Fo − fo)(an+1x)‖+

1

a3n
‖a(Fo − fo)(anx)‖

≤ 1

2a3n

(
Φ(an+1x) + Φ(−an+1x) + aΦ(anx) + aΦ(−anx)

)
→ 0, as n→∞,

for all x ∈ V \{0}. Hence, F3(x) = lim
n→∞

1
a3n f3(anx) holds for all x ∈ V \{0} provided

Φ has the property (2.1), (2.2), or (2.3).
When Φ : V \{0} → [0,∞) has the property (2.4) or (2.5), we then obtain∥∥∥∥F3(x)− a3nf3

(
x

an

)∥∥∥∥
= a3n

∥∥∥∥F3

(
x

an

)
− f3

(
x

an

)∥∥∥∥
≤ a3n

∥∥∥∥(Fo − fo)

(
x

an−1

)∥∥∥∥+ a2n
∥∥∥∥a(Fo − fo)

(
x

an

)∥∥∥∥
≤ a3n

2

(
Φ

(
x

an−1

)
+ Φ

(
−x
an−1

)
+ aΦ

(
x

an

)
+ aΦ

(
−x
an

))
→ 0, as n→∞,
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for all x ∈ V \{0}. Therefore, we have F3(x) = lim
n→∞

a3nf3( x
an ) for all x ∈ V \{0}

provided Φ satisfies (2.4) or (2.5).
(iv) Finally, we consider F4(x) = Fe(ax)− a2Fe(x). If Φ : V \{0} → [0,∞) has the
property (2.1), (2.2), (2.3) or (2.4), then it follows from (2.7) that∥∥∥∥F4(x)− 1

a4n
f4(anx)

∥∥∥∥
=

1

a4n
‖F4(anx)− f4(anx)‖

≤ 1

a4n
‖(Fe − fe)(an+1x)‖+

1

a4n
‖a2(fe − Fe)(a

nx)‖

≤ 1

2a4n

(
Φ(an+1x) + Φ(−an+1x) + a2Φ(anx) + a2Φ(−anx)

)
→ 0, as n→∞,

for all x ∈ V \{0} provided Φ has the property (2.1), (2.2), (2.3), or (2.4). That is,
F4(x) = lim

n→∞
1

a4n f4(anx) holds for all x ∈ V \{0}.
Now, we deal with the case when Φ : V \{0} → [0,∞) satisfies (2.5). It holds

that ∥∥∥∥F4(x)− a4nf4
(
x

an

)∥∥∥∥
= a4n

∥∥∥∥F4

(
x

an

)
− f4

(
x

an

)∥∥∥∥
≤ a4n

∥∥∥∥(Fe − fe)
(

x

an−1

)∥∥∥∥+ a4n
∥∥∥∥a2(fe − Fe)

(
x

an

)∥∥∥∥
≤ a4n

2

(
Φ

(
x

an−1

)
+ Φ

(
−x
an−1

)
+ a2Φ

(
x

an

)
+ a2Φ

(
−x
an

))
→ 0, as n→∞,

for all x ∈ V \{0}. Thus, it holds that F4(x) = lim
n→∞

a4nf4( x
an ) for all x ∈ V \{0}

provided Φ satisfies (2.5).

Consequently, since F (x) = F4(x)−F2(x)
a4−a2 + F3(x)−F1(x)

a3−a , F is expresses as one of
equalities in (2.8) and F is uniquely determined in each case. 2

3. Applications

Theorem 2.1 seems to be impractical for applications in general cases. Thus, it is
necessary to introduce some corollaries which are easily applicable to the uniqueness
problems for the generalized Hyers-Ulam stability. For the exact definition of the
generalized Hyers-Ulam stability, we refer the reader to [3, 6].

Corollary 3.1. Assume that a > 1 is a fixed real number and φ : V \{0} → [0,∞)
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satisfies either

Φ(x) :=

∞∑
i=0

1

ai
φ(aix) <∞ for all x ∈ V \{0}(3.1)

or

Φ(x) :=

∞∑
i=0

a4iφ

(
x

ai

)
<∞ for all x ∈ V \{0}.(3.2)

Suppose f : V → Y is an arbitrary mapping. If a mapping F : V → Y satisfies
(2.6) for all x ∈ V \{0} and (2.7) for all x ∈ V , then F is uniquely determined.

Proof. When φ satisfies (3.1), it is obvious that

lim
n→∞

1

an
Φ(anx) = lim

n→∞

∞∑
i=0

1

an+i
φ(an+ix) = lim

n→∞

∞∑
i=n

1

ai
φ(aix) = 0,

i.e., Φ has the property (2.1) for all x ∈ V \{0}. For the case of (3.2), it is clear
that

lim
n→∞

a4nΦ

(
x

an

)
= lim

n→∞

∞∑
i=0

a4n+4iφ

(
x

an+i

)
= lim

n→∞

∞∑
i=n

a4iφ

(
x

ai

)
= 0,

i.e., Φ has the property (2.5) for all x ∈ V \{0}. Hence, our assertion is true in view
of Theorem 2.1. 2

Corollary 3.2. Assume that a > 1 is a fixed real number and the functions φ, ψ :
V \{0} → [0,∞) satisfy each of the following conditions

∞∑
i=0

aiψ

(
x

ai

)
<∞,

∞∑
i=0

1

a2i
φ(aix) <∞,

Φ̃(x) :=

∞∑
i=0

aiφ

(
x

ai

)
<∞, Ψ̃(x) :=

∞∑
i=0

1

a2i
ψ(aix) <∞

(3.3)

for all x ∈ V \{0}. Suppose f : V → Y is an arbitrary mapping. If a mapping
F : V → Y satisfies the inequality

‖f(x)− F (x)‖ ≤ Φ̃(x) + Ψ̃(x)(3.4)

for all x ∈ V \{0} and if F satisfies each condition of (2.7) for all x ∈ V , then F is
uniquely determined.

Proof. We set Φ(x) := Φ̃(x) + Ψ̃(x) and then use (3.3) to obtain

1

a4n
Φ(a2nx) =

∞∑
i=0

1

a4n−i
φ(a2n−ix) +

∞∑
i=0

1

a4n+2i
ψ(a2n+ix)
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for all x ∈ V \{0}. We make change of the summation indices in the preceding
equality with j = i− 2n and k = 2n+ i to get

1

a4n
Φ(a2nx)

=
1

a2n

∞∑
j=−2n

ajφ

(
x

aj

)
+

∞∑
k=2n

1

a2k
ψ(akx)

=
1

a2n

2n∑
i=1

1

ai
φ(aix) +

1

a2n

∞∑
i=0

aiφ

(
x

ai

)
+

∞∑
i=2n

1

a2i
ψ(aix)

=
1

an

n−1∑
i=1

ai

an
1

a2i
φ(aix) +

2n∑
i=n

ai

a2n
1

a2i
φ(aix) +

1

a2n
Φ̃(x) +

∞∑
i=2n

1

a2i
ψ(aix)

≤ 1

an

∞∑
i=1

1

a2i
φ(aix) +

∞∑
i=n

1

a2i
φ(aix) +

1

a2n
Φ̃(x) +

∞∑
i=2n

1

a2i
ψ(aix)

for any x ∈ V \{0}. Hence, we obtain

lim
n→∞

1

a4n
Φ(a2nx) = 0

for all x ∈ V \{0}.
On the other hand, we make use of the above equality to prove

lim
n→∞

1

a4n+2
Φ(a2n+1x) =

1

a2
lim

n→∞

1

a4n
Φ(a2nax) = 0

for all x ∈ V \{0}. Using the two equalities above, we get

lim
n→∞

1

a2n
Φ(anx) = 0

for all x ∈ V \{0}.
Similarly, it holds that

a2nΦ

(
x

a2n

)
=

∞∑
i=0

a2n+iφ

(
x

a2n+i

)
+

∞∑
i=0

1

a2i−2n
ψ(ai−2nx)

for all x ∈ V \{0}. If we make change of the summation indices in the last equality
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with j = i+ 2n and k = i− 2n, then we get

a2nΦ

(
x

a2n

)
=

∞∑
j=2n

ajφ

(
x

aj

)
+

1

a2n

∞∑
k=−2n

1

a2k
ψ(akx)

=

∞∑
i=2n

aiφ

(
x

ai

)
+

1

a2n

2n∑
i=1

a2iψ

(
x

ai

)
+

1

a2n

∞∑
i=0

1

a2i
ψ(aix)

=

∞∑
i=2n

aiφ

(
x

ai

)
+

1

an

n−1∑
i=1

ai

an
aiψ

(
x

ai

)
+

2n∑
i=n

ai

a2n
aiψ

(
x

ai

)
+

1

a2n
Ψ̃(x)

≤
∞∑

i=2n

aiφ

(
x

ai

)
+

1

an

∞∑
i=1

aiψ

(
x

ai

)
+

∞∑
i=n

aiψ

(
x

ai

)
+

1

a2n
Ψ̃(x)

for any x ∈ V \{0}. Thus, we obtain

lim
n→∞

a2nΦ

(
x

a2n

)
= 0,

lim
n→∞

a2n+1Φ

(
x

a2n+1

)
= a lim

n→∞
a2nΦ

(
1

a2n
x

a

)
= 0

for any x ∈ V \{0}. Hence, it holds that

lim
n→∞

anΦ

(
x

an

)
= 0

for x ∈ V \{0}.
Theorem 2.1 implies that our conclusion for this corollary is true. 2

Corollary 3.3. Assume that a > 1 is a fixed real number and the functions φ, ψ :
V \{0} → [0,∞) satisfy each of the following conditions

∞∑
i=0

a2iψ

(
x

ai

)
<∞,

∞∑
i=0

1

a3i
φ(aix) <∞,

Φ̃(x) :=

∞∑
i=0

a2iφ

(
x

ai

)
<∞, Ψ̃(x) :=

∞∑
i=0

1

a3i
ψ(aix) <∞

(3.5)

for all x ∈ V \{0}. Suppose f : V → Y is an arbitrary mapping. If a mapping
F : V → Y satisfies the inequality

‖f(x)− F (x)‖ ≤ Φ̃(x) + Ψ̃(x)(3.6)
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for all x ∈ V \{0} and each of the conditions in (2.7) for all x ∈ V , then F is
uniquely determined.

Proof. We set Φ(x) := Φ̃(x) + Ψ̃(x) and then use (3.5) to show

1

a6n
Φ(a2nx) =

∞∑
i=0

1

a6n−2i
φ(a2n−ix) +

∞∑
i=0

1

a6n+3i
ψ(a2n+ix)

for all x ∈ V \{0}. We change the summation indices in the preceding equality with
j = i− 2n and k = 2n+ i to get

1

a6n
Φ(a2nx)

=
1

a2n

∞∑
j=−2n

a2jφ

(
x

aj

)
+

∞∑
k=2n

1

a3k
ψ(akx)

=
1

a2n

2n∑
i=1

1

a2i
φ(aix) +

1

a2n

∞∑
i=0

a2iφ

(
x

ai

)
+

∞∑
i=2n

1

a3i
ψ(aix)

=
1

an

n−1∑
i=1

1

a2i+n
φ(aix) +

2n∑
i=n

1

a2n+2i
φ(aix) +

1

a2n
Φ̃(x) +

∞∑
i=2n

1

a3i
ψ(aix)

≤ 1

an

∞∑
i=1

1

a3i
φ(aix) +

∞∑
i=n

1

a3i
φ(aix) +

1

a2n
Φ̃(x) +

∞∑
i=2n

1

a3i
ψ(aix)

for any x ∈ V \{0}. Hence, we get

lim
n→∞

1

a6n
Φ(a2nx) = 0

for all x ∈ V \{0}.
On the other hand, it follows from the above equality that

lim
n→∞

1

a6n+3
Φ(a2n+1x) =

1

a3
lim

n→∞

1

a6n
Φ(a2nax) = 0

for each x ∈ V \{0}. By two equalities above, it holds that

lim
n→∞

1

a3n
Φ(anx) = 0

for all x ∈ V \{0}.
Similarly, we have

a4nΦ

(
x

a2n

)
=

∞∑
i=0

a4n+2iφ

(
x

a2n+i

)
+

∞∑
i=0

1

a3i−4n
ψ(ai−2nx)
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for all x ∈ V \{0}. If we change the summation indices in the last equality with
j = i+ 2n and k = i− 2n, then we get

a4nΦ

(
x

a2n

)
=

∞∑
j=2n

a2jφ

(
x

aj

)
+

1

a2n

∞∑
k=−2n

1

a3k
ψ(akx)

=

∞∑
i=2n

a2iφ

(
x

ai

)
+

1

a2n

2n∑
i=1

a3iψ

(
x

ai

)
+

1

a2n

∞∑
i=0

1

a3i
ψ(aix)

=

∞∑
i=2n

a2iφ

(
x

ai

)
+

1

an

n−1∑
i=1

ai

an
a2iψ

(
x

ai

)
+

2n∑
i=n

ai

a2n
a2iψ

(
x

ai

)
+

1

a2n
Ψ̃(x)

≤
∞∑

i=2n

a2iφ

(
x

ai

)
+

1

an

∞∑
i=1

a2iψ

(
x

ai

)
+

∞∑
i=n

a2iψ

(
x

ai

)
+

1

a2n
Ψ̃(x)

for any x ∈ V \{0}. Thus, we obtain

lim
n→∞

a4nΦ

(
x

a2n

)
= 0,

lim
n→∞

a4n+2Φ

(
x

a2n+1

)
= a2 lim

n→∞
a4nΦ

(
1

a2n
x

a

)
= 0

for every x ∈ V \{0}. Hence, we have

lim
n→∞

a2nΦ

(
x

an

)
= 0

for each x ∈ V \{0}. Theorem 2.1 implies that our assertion is true. 2

Corollary 3.4. Assume that a > 1 is a fixed real number and the functions φ, ψ :
V \{0} → [0,∞) satisfy each of the following conditions

∞∑
i=0

a3iψ

(
x

ai

)
<∞,

∞∑
i=0

1

a4i
φ(aix) <∞,

Φ̃(x) :=

∞∑
i=0

a3iφ

(
x

ai

)
<∞, Ψ̃(x) :=

∞∑
i=0

1

a4i
ψ(aix) <∞

(3.7)

for all x ∈ V \{0}. Suppose f : V → Y is an arbitrary mapping. If a mapping
F : V → Y satisfies the inequality

‖f(x)− F (x)‖ ≤ Φ̃(x) + Ψ̃(x)(3.8)
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for all x ∈ V \{0} as well as the conditions in (2.7) for all x ∈ V , then F is uniquely
determined.

Proof. Let us set Φ(x) := Φ̃(x) + Ψ̃(x) and use (3.7) to get

1

a4n
Φ(anx) =

∞∑
i=0

1

a4n−3i
φ(an−ix) +

∞∑
i=0

1

a4n+4i
ψ(an+ix)

for all x ∈ V \{0}. We make change of the summation indices in the preceding
equality with j = i− n and k = n+ i to get

1

a4n
Φ(anx) =

1

a4n

∞∑
j=−n

a3jφ

(
x

aj

)
+

∞∑
k=n

1

a4k
ψ(akx)

=
1

a4n

n∑
i=1

1

a3i
φ(aix) +

1

a4n

∞∑
i=0

a3iφ

(
x

ai

)
+

∞∑
i=n

1

a4i
ψ(aix)

=
1

a3n

n∑
i=1

ai

an
1

a4i
φ(aix) +

1

a4n
Φ̃(x) +

∞∑
i=n

1

a4i
ψ(aix)

≤ 1

a3n

∞∑
i=1

1

a4i
φ(aix) +

1

a4n
Φ̃(x) +

∞∑
i=n

1

a4i
ψ(aix)

for any x ∈ V \{0}. Hence, we get

lim
n→∞

1

a4n
Φ(anx) = 0

for all x ∈ V \{0}.
Similarly, we obtain

a3nΦ

(
x

an

)
=

∞∑
i=0

a3n+3iφ

(
x

an+i

)
+

∞∑
i=0

1

a4i−3n
ψ(ai−nx)

for all x ∈ V \{0}. If we change the summation indices in the last equality with
j = i+ n and k = i− n, then we get

a3nΦ

(
x

an

)
=

∞∑
j=n

a3jφ

(
x

aj

)
+

1

a3n

∞∑
k=−n

1

a4k
ψ(akx)

=

∞∑
i=n

a3iφ

(
x

ai

)
+

1

a3n

n∑
i=1

a4iψ

(
x

ai

)
+

1

a3n

∞∑
i=0

1

a4i
ψ(aix)

=

∞∑
i=n

a3iφ

(
x

ai

)
+

1

a2n

n∑
i=1

ai

an
a3iψ

(
x

ai

)
+

1

a3n
Ψ̃(x)

≤
∞∑
i=n

a3iφ

(
x

ai

)
+

1

a2n

∞∑
i=1

a3iψ

(
x

ai

)
+

1

a3n
Ψ̃(x)
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for any x ∈ V \{0}. Thus, we get

lim
n→∞

a3nΦ

(
x

an

)
= 0

for each x ∈ V \{0}. Theorem 2.1 implies that our conclusion is true. 2

The following corollary states that if, for any given mapping f , there exists an
additive, a quadratic, a cubic, a quartic, or an additive-quadratic-quartic mapping
F near f , then F is uniquely determined.

Corollary 3.5. Assume that a > 1 is a fixed rational number and a function
φ : V \{0} → [0,∞) satisfies the condition (3.1) or (3.2). Suppose f : V → Y is an
arbitrary mapping. If an additive, a quadratic, a cubic, a quartic, or an additive-
quadratic-cubic-quartic mapping F : V → Y satisfies the inequality (2.6), then F is
uniquely determined.

The following corollaries are immediate consequences of Corollaries 3.2, 3.3, and
3.4, respectively, because each of additive, quadratic, cubic, quartic, and additive-
quadratic-cubic-quartic mapping satisfies the conditions in (2.7) for any given ra-
tional number a > 1.

Corollary 3.6. Assume that a > 1 is a fixed rational number and φ, ψ : V \{0} →
[0,∞) satisfy each of the conditions in (3.3). Suppose f : V → Y is an arbitrary
mapping. If an additive, a quadratic, a cubic, a quartic, or an additive-quadratic-
cubic-quartic mapping F : V → Y satisfies (3.4), then F is uniquely determined.

Corollary 3.7. Assume that a > 1 is a fixed rational number and φ, ψ : V \{0} →
[0,∞) satisfy each of the conditions in (3.5). Suppose f : V → Y is an arbitrary
mapping. If an additive, a quadratic, a cubic, a quartic, or an additive-quadratic-
cubic-quartic mapping F : V → Y satisfies (3.6), then F is uniquely determined.

Corollary 3.8. Assume that a > 1 is a fixed rational number and φ, ψ : V \{0} →
[0,∞) satisfy each of the conditions in (3.7). Suppose f : V → Y is an arbitrary
mapping. If an additive, a quadratic, a cubic, a quartic, or an additive-quadratic-
cubic-quartic mapping F : V → Y satisfies (3.8), then F is uniquely determined.

If we set Φ(x) := θ‖x‖p for some constants p ∈ R\{1, 2, 3, 4} and θ > 0, then

Φ has the property



(2.1) for p < 1,

(2.2) for 1 < p < 2,

(2.3) for 2 < p < 3,

(2.4) for 3 < p < 4,

(2.5) for p > 4.
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Hence, by Theorem 2.1, we have the following corollary concerning the Hyers-Ulam-
Rassias stability. (For the exact definition of the Hyers-Ulam-Rassias stability, we
refer to [4, 16, 18].)

Corollary 3.9. Let p 6∈ {1, 2, 3, 4} and θ > 0 be real constants, let X and Y be
real normed spaces, and let f : X → Y be an arbitrary mapping. If a mapping
F : X → Y satisfies the inequality

‖f(x)− F (x)‖ ≤ θ‖x‖p

for all x ∈ X\{0} as well as (2.7) for all x ∈ X, then F is uniquely determined.

Since each of additive, quadratic, cubic, quartic, or additive-quadratic-cubic-
quartic mappings satisfies the conditions in (2.7), using Corollary 3.9, we can easily
prove the following corollary.

Corollary 3.10. Let p 6∈ {1, 2, 3, 4} and θ > 0 be real constants, let X and Y be
real normed spaces, and let f : X → Y be an arbitrary mapping. If an additive,
a quadratic, a cubic, a quartic, or an additive-quadratic-cubic-quartic mapping F :
X → Y satisfies the inequality

‖f(x)− F (x)‖ ≤ θ‖x‖p

for all x ∈ X\{0}, then F is uniquely determined.

Acknowledgements. Soon-Mo Jung was supported by Basic Science Research
Program through the National Research Foundation of Korea (NRF) funded by the
Ministry of Education (No. 2016R1D1A1B03931061).

References

[1] S. Abbaszadeh, Intuitionistic fuzzy stability of a quadraric and quartic functional
equation, Int. J. Nonlinear Anal. Appl., 1(2010), 100–124.

[2] M. Eshaghi and H. Khodaei, Solution and stability of generalized mixed type cubic,
quadratic and additive functional equation in quasi-Banach spaces, Nonlinear Anal.,
71(2009), 5629–5643.
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