On the Fekete–Szegö Problem for a Certain Class of Meromorphic Functions Using q–Derivative Operator

Mohamed Kamal Aouf
Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
e-mail: mkaouf127@yahoo.com

Halit Orhan*
Department of Mathematics, Faculty of Science, Ataturk University, Erzurum 25240, Turkey
e-mail: orhanhalit607@gmail.com

Abstract. In this paper, we obtain Fekete-Szegö inequalities for certain class of meromorphic functions $f(z)$ for which

\[-\frac{(1-\alpha)(qzD_qf(z) + \alpha zD_q[zD_qf(z)])}{(1-\alpha)f(z) + \alpha zD_qf(z)} \prec \varphi(z) (\alpha \in \mathbb{C} \setminus (0,1], \ 0 < q < 1).\]

Sharp bounds for the Fekete-Szegö functional $|a_1 - \mu a_0^2|$ are obtained.

1. Introduction

The theory of q–analysis has important role in many areas of mathematics and physics, for example, in the areas of ordinary fractional calculus, optimal control problems, q–difference, q–integral equations and in q–transform analysis (see for instance [1, 6, 8, 9]). The study of q–calculus has gained momentum years mainly due to the pioneer work of M. E. H. Ismail et al. [7] in recent years; it was followed by such works as those by S. Kanas and D. Raducanu [10] and S. Sivasubramanian and M. Govindaraj [19]. Let Σ denote the class of meromorphic functions of the form:

\[(1.1) \quad f(z) = \frac{1}{z} + \sum_{k=0}^{\infty} a_k z^k,\]

* Corresponding Author.
Received October 6, 2017; revised March 27, 2018; accepted March 29, 2018.
2010 Mathematics Subject Classification: 30C45, 30C50.
Key words and phrases: Analytic, meromorphic, q–starlike and convex functions, Fekete-Szegö problem, convolution.

307
which are analytic in the open punctured unit disc
\[U^* = \{ z : z \in \mathbb{C} \text{ and } 0 < |z| < 1 \} = \mathbb{U}\setminus\{0\}. \]

A function \(f \in \Sigma \) is meromorphic starlike of order \(\beta \), denoted by \(\Sigma^*(\beta) \), if
\[
-\Re \left\{ \frac{zf'(z)}{f(z)} \right\} > \beta \quad (0 \leq \beta < 1; \: z \in U).
\]

The class \(\Sigma^*(\beta) \) was introduced and studied by Pommerenke [16] (see also Miller [14]). Let \(\varphi(z) \) be an analytic function with positive real part on \(U \) satisfies \(\varphi(0) = 1 \) and \(\varphi'(0) > 0 \) which maps \(U \) onto a region starlike with respect to 1 and symmetric with respect to the real axis. Let \(\Sigma^*(\varphi) \) be the class of functions \(f(z) \in \Sigma \) for which
\[
-\frac{zf'(z)}{f(z)} < \varphi(z) \quad (z \in U).
\]

The class \(\Sigma^*(\varphi) \) was introduced and studied by Silverman et al. [18]. The class \(\Sigma^*(\beta) \) is the special case of \(\Sigma^*(\varphi) \) when \(\varphi(z) = \frac{1 + (1 - 2\beta)z}{1 - z} \) \((0 \leq \beta < 1) \). Let \(\mathcal{A} \) denote the class of functions \(f(z) \) of the form
\[
f(z) = z + \sum_{k=2}^{\infty} a_k z^k,
\]
which are analytic in the open unit disc \(\mathbb{U} \) and let \(\mathcal{S} \) be the subclass of \(\mathcal{A} \) consisting of functions which are analytic and univalent in \(U \). Ma and Minda [13] introduced and studied the class \(\mathcal{S}^*(\varphi) \) which consists of functions \(f(z) \in \mathcal{S} \) for which
\[
\frac{zf'(z)}{f(z)} < \varphi(z) \quad (z \in \mathbb{U}),
\]
and the class \(\mathcal{C}(\varphi) \) consists of functions \(f(z) \in \mathcal{S} \) for which
\[
1 + \frac{zf''(z)}{f'(z)} < \varphi(z) \quad (z \in \mathbb{U}).
\]

Following Ma and Minda [13], Shanmugam and Sivasubramanian [17] defined a more general class \(\mathcal{M}_\alpha(\varphi) \) consists of functions \(f(z) \in \mathcal{S} \) for which
\[
\frac{zf'(z) + \alpha z^2 f''(z)}{(1 - \alpha)f(z) + \alpha z f'(z)} < \varphi(z) \quad (\alpha \geq 0).
\]

Analogous to the class \(\mathcal{M}_\alpha(\varphi) \), Aouf et al. [4] defined the class \(\mathcal{T}_\alpha^*(\varphi) \) as follows: For \(\alpha \in \mathbb{C}\setminus\{0, 1\} \), let \(\mathcal{T}_\alpha^*(\varphi) \) be the subclass of \(\Sigma \) consisting of functions \(f(z) \) of the form (1.1) and satisfying the analytic criterion:
\[
\frac{zf'(z) + \alpha z^2 f''(z)}{(1 - \alpha)f(z) + \alpha z f'(z)} < \varphi(z).
\]
For a function \(f(z) \in \Sigma \) given by (1.1) and \(0 < q < 1 \), the \(-q\)-derivative of a function \(f(z) \) is defined by (see Gasper and Rahman [6])

\[
D_q f(z) = \frac{f(qz) - f(z)}{(q - 1)z} \quad \text{if } z \in U^*.
\]

From (1.2), we deduce that \(D_q f(z) \) for a function \(f(z) \) of the form (1.1) is given by

\[
D_q f(z) = -\frac{1}{qz^2} + \sum_{k=0}^{\infty} [k]_q a_k z^{k-1} (z \neq 0),
\]

where

\[
[i]_q = \frac{1 - q^i}{1 - q}.
\]

As \(q \to 1^- \), \([k]_q \to k\), we have

\[
\lim_{q \to 1^-} D_q f(z) = f'(z).
\]

Making use of the \(-q\)-derivative \(D_q \), we introduce the subclass \(F^*_{q,\alpha}(\varphi) \) as follows:

For \(\alpha \in \mathbb{C} \setminus (0,1] \), \(0 < q < 1 \), a function \(f(z) \in \Sigma \) is said to be in the class \(F^*_{q,\alpha}(\varphi) \), if and only if

\[
-(1 - \frac{2}{q})q z D_q f(z) + \alpha q z D_q [z D_q f(z)] (1 - \frac{2}{q}) f(z) + \alpha z D_q f(z) \prec \varphi(z) (z \in U).
\]

We note that:

(i) \(\lim_{q \to 1^-} F^*_{q,\alpha}(\varphi) = F^*_\alpha(\varphi) \) (see Aouf et al. [4]);

(ii) \(\lim_{q \to 1^-} F^*_{q,0}(\varphi) = \Sigma^*(\varphi) \) (see Silverman et al. [18] and Ali and Ravichandran [2]);

(iii) \(\lim_{q \to 1^-} F^*_{q,0} \left(\frac{1 + z}{1 - z} \right) = F^*(1) = F^* \) (see Aouf [3, with \(b = 1 \)]);

(iv) \(\lim_{q \to 1^-} F^*_{q,0} \left(\frac{1 + (1 - 2\beta)z}{1 - z} \right) = \Sigma^*(\beta) (0 \leq \beta < 1) \) (see Pommerenke [16]);

(v) \(\lim_{q \to 1^-} F^*_{q,0} \left(\frac{1 + \beta(1 - 2\gamma)z}{1 + \beta(1 - 2\gamma)z} \right) = \Sigma(\eta, \beta, \gamma) (0 \leq \eta < 1, 0 < \beta \leq 1, \frac{1}{2} \leq \gamma \leq 1) \) (see Kulkarni and Joshi [12]);

(vi) \(\lim_{q \to 1^-} F^*_{q,0} \left(\frac{1 + Az}{1 + Bz} \right) = K_1(A, B) (0 \leq B < 1, -B < A < B) \) (see Karunakaran [11]).
2. Fekete-Szegő Problem

To prove our results, we need the following lemmas.

Lemma 1. ([13]) If \(p(z) = 1 + c_1 z + c_2 z^2 + \cdots \) is a function with positive real part in \(\mathbb{U} \) and \(\mu \) is a complex number, then

\[
|c_2 - \mu c_1^2| \leq 2 \max\{1; |2\mu - 1|\}.
\]

The result is sharp for the functions given by

\[
p(z) = \frac{1 + z^2}{1 - z^2} \quad \text{and} \quad p(z) = \frac{1 + z}{1 - z}.
\]

Lemma 2. ([13]) If \(p_1(z) = 1 + c_1 z + c_2 z^2 + \cdots \) is a function with positive real part in \(\mathbb{U} \), then

\[
|c_2 - \nu c_1^2| \leq \begin{cases}
-4\nu + 2 & \text{if } \nu \leq 0, \\
2 & \text{if } 0 \leq \nu \leq 1, \\
4\nu - 2 & \text{if } \nu \geq 1.
\end{cases}
\]

When \(\nu < 0 \) or \(\nu > 1 \), the equality holds if and only if \(p_1(z) = \frac{1 + z}{1 - z} \) or one of its rotations. If \(0 < \nu < 1 \), then the equality holds if and only if \(p_1(z) = \frac{1 + z^2}{1 - z^2} \) or one of its rotations. If \(\nu = 0 \), the equality holds if and only if

\[
p_1(z) = \left(\frac{1}{2} + \frac{\lambda}{2} \right) \frac{1 + z}{1 - z} + \left(\frac{1}{2} - \frac{\lambda}{2} \right) \frac{1 - z}{1 + z} \quad (0 \leq \lambda \leq 1),
\]

or one of its rotations. If \(\nu = 1 \), the equality holds if and only if

\[
\frac{1}{p_1(z)} = \left(\frac{1}{2} + \frac{\lambda}{2} \right) \frac{1 + z}{1 - z} + \left(\frac{1}{2} - \frac{\lambda}{2} \right) \frac{1 - z}{1 + z} \quad (0 \leq \lambda \leq 1),
\]

or one of its rotations. Also the above upper bound is sharp and it can be improved as follows when \(0 < \nu < 1 \):

\[
|c_2 - \nu c_1^2| + \nu |c_1|^2 \leq 2 \left(0 < \nu \leq \frac{1}{2} \right),
\]

and

\[
|c_2 - \nu c_1^2| + (1 - \nu) |c_1|^2 \leq 2 \left(\frac{1}{2} < \nu < 1 \right).
\]

Unless otherwise mentioned, we assume throughout this paper that \(\alpha \in \mathbb{C} \setminus (0, 1) \) and \(0 < q < 1 \).
Theorem 1. Let \(\varphi(z) = 1 + B_1 z + B_2 z^2 + \ldots \). If \(f(z) \) given by (1.1) belongs to the class \(\mathcal{F}_{q, \alpha}^* (\varphi) \) and \(\mu \) is a complex number, then

(2.1) (i) \[|a_1 - \mu a_0^2| \leq \frac{1}{1 + q} \left| \frac{(q - 2\alpha) B_1}{(q - \alpha + \alpha q)} \right| \times \max \left\{ 1, \left| \frac{B_2}{B_1} - \left[1 - \mu \left(\frac{q - 2\alpha}{q - \alpha + \alpha q} \right) \frac{(q - \alpha + \alpha q) (q + 1)}{(q - \alpha)^2} \right] B_1 \right| \right\} \quad (B_1 \neq 0), \]

and

(2.2) (ii) \[|a_1| \leq \frac{1}{1 + q} \left| \frac{(q - 2\alpha) B_2}{(q - \alpha + \alpha q)} \right| \quad (B_1 = 0). \]

The result is sharp.

Proof. If \(f(z) \in \mathcal{F}_{q, \alpha}^* (\varphi) \), then there is a Schwarz function \(w(z) \) in \(U \) with \(w(0) = 0 \) and \(|w(z)| < 1 \) in \(U \) and such that

(2.3) \[- \frac{(1 - \frac{q}{2}) q z D_q f(z) + \alpha q z D_q [z D_q f(z)]}{(1 - \frac{q}{2}) f(z) + \alpha z D_q f(z)} = \varphi(w(z)). \]

Define the function \(p_1(z) \) by

(2.4) \[p_1(z) = \frac{1 + w(z)}{1 - w(z)} = 1 + c_1 z + c_2 z^2 + \ldots. \]

Since \(w(z) \) is a Schwarz function, we see that \(\Re \{ p_1(z) \} > 0 \) and \(p_1(0) = 1 \). Define

(2.5) \[p(z) = - \frac{(1 - \frac{q}{2}) q z D_q f(z) + \alpha q z D_q [z D_q f(z)]}{(1 - \frac{q}{2}) f(z) + \alpha z D_q f(z)} = 1 + b_1 z + b_2 z^2 + \ldots. \]

In view of (2.3), (2.4) and (2.5), we have

(2.6) \[p(z) = \varphi \left(\frac{p_1(z) - 1}{p_1(z) + 1} \right). \]

Since

\[\frac{p_1(z) - 1}{p_1(z) + 1} = \frac{1}{2} \left[c_1 z + \left(c_2 - \frac{c_1^2}{2} \right) z^2 + \left(c_3 + \frac{c_1^3}{4} - c_1 c_2 \right) z^3 + \ldots \right]. \]

Therefore, we have

\[\varphi \left(\frac{p_1(z) - 1}{p_1(z) + 1} \right) = 1 + \frac{1}{2} B_1 c_1 z + \left[\frac{1}{2} B_1 \left(c_2 - \frac{c_1^2}{2} \right) + \frac{1}{4} B_2 c_1^2 \right] z^2 + \ldots, \]

and from this equation and (2.6), we obtain

\[b_1 = \frac{1}{2} B_1 c_1. \]
and
\[b_2 = \frac{1}{2} B_1 \left(c_2 - \frac{c_1^2}{2} \right) + \frac{1}{4} B_2 c_1^2. \]

Then, from (2.5) and (1.1), we see that
\[b_1 = -\left(\frac{q - \alpha}{q - 2\alpha} \right) a_0, \]
and
\[b_2 = \left(\frac{q - \alpha}{q - 2\alpha} \right)^2 a_0^2 - \frac{(q + 1)(q - \alpha + \alpha q)}{q - 2\alpha} a_1, \]
or, equivalently, we have
\[(2.7) \quad a_0 = -\left(\frac{q - 2\alpha}{q - \alpha} \right), \]
and
\[(2.8) \quad a_1 = -\frac{(q - 2\alpha) B_1}{2(1 + q)(q - \alpha + \alpha q)} \left[c_2 - \frac{c_1^2}{2} \left(1 - \frac{B_2}{B_1} + B_1 \right) \right]. \]
Therefore
\[a_1 - \mu a_0^2 = -\frac{(q - 2\alpha) B_1}{2(1 + q)(q - \alpha + \alpha q)} \left\{ c_2 - \nu c_1^2 \right\}, \]
where
\[(2.9) \quad \nu = \frac{1}{2} \left[1 - \frac{B_2}{B_1} + B_1 - \mu \frac{(q - 2\alpha)(q - \alpha + \alpha q)(q + 1) B_1}{(q - \alpha)^2} \right]. \]

Now, the result (2.1) follows by an application of Lemma 1. Also, if \(B_1 = 0 \), then
\[a_0 = 0 \quad \text{and} \quad a_1 = -\frac{(q - 2\alpha) B_2 c_1^2}{4(1 + q)(q - \alpha + \alpha q)}. \]
Since \(p(z) \) has positive real part, \(|c_1| \leq 2 \) (see Nehari [15]), so that
\[|a_1| \leq \frac{1}{1 + q} \left| \frac{(q - 2\alpha) B_2}{(q - \alpha + \alpha q)} \right|, \]
this proving (2.2). The result is sharp for the functions
\[-\frac{(1 - \frac{q}{q}) q z D_0 f(z) + \alpha q z D_0 [D_0 f(z)]}{(1 - \frac{q}{q}) f(z) + \alpha D_0 f(z)} = \varphi(z^2), \]
and
\[-\frac{(1 - \frac{q}{q}) q z D_0 f(z) + \alpha q z D_0 [D_0 f(z)]}{(1 - \frac{q}{q}) f(z) + \alpha D_0 f(z)} = \varphi(z). \]

This completes the proof of Theorem 1.
Remark 1.

(i) For \(q \to 1^- \) in Theorem 1, we obtain the result obtained by Aouf et al. [4, Theorem 2.1];

(ii) For \(q \to 1^- \) and \(\alpha = 0 \) in Theorem 1, we obtain the result obtained by Silverman et al. [18, Theorem 2.1].

By using Lemma 2, we can obtain the following theorem.

Theorem 2. Let \(\varphi(z) = 1 + B_1z + B_2z^2 + \ldots \) \((B_i > 0, \ i \in \{1, 2\}, \ 0 < \alpha < \frac{q}{1 + q}) \).

If \(f(z) \) given by (1.1) belongs to the class \(S_{q, \alpha}^*(\varphi) \), then

\[
|a_1 - \mu a_0^2| \leq \begin{cases}
\frac{(q-2\alpha)B_2^2}{(1+q)(q-\alpha+aq)} \left\{ -B_2 + \left[1 - \mu \frac{[q - \alpha(1+q)][(1+q)(q-2\alpha)]}{q(1-\alpha)^2} \right] B_1^2 \right\} & \text{if } \mu \leq \sigma_1, \\
\frac{(q-2\alpha)B_1}{(1+q)(q-\alpha+aq)} \left\{ B_2 - \left[1 - \mu \frac{[q - \alpha(1+q)][(1+q)(q-2\alpha)]}{q(1-\alpha)^2} \right] B_1^2 \right\} & \text{if } \sigma_1 \leq \mu \leq \sigma_2, \\
\frac{(q-2\alpha)B_1^2}{(1+q)(q-\alpha+aq)} \left\{ B_2 + \left[1 - \mu \frac{[q - \alpha(1+q)][(1+q)(q-2\alpha)]}{q(1-\alpha)^2} \right] B_1^2 \right\} & \text{if } \mu \geq \sigma_2,
\end{cases}
\]

where

\[
\sigma_1 = \frac{(q-\alpha)^2 \left[-B_1 - B_2 + B_1^2 \right]}{(q-2\alpha)(q-\alpha+aq)(1+q)B_1^2} \quad \text{and} \quad \sigma_2 = \frac{(q-\alpha)^2 \left(B_1 - B_2 + B_1^2 \right)}{(q-2\alpha)(q-\alpha+aq)(1+q)B_1^2}.
\]

The result is sharp. Further, let

\[
\sigma_3 = \frac{(q-\alpha)^2 \left[-B_2 + B_1^2 \right]}{(q-2\alpha)(q-\alpha+aq)(1+q)B_1^2}.
\]

(i) If \(\sigma_1 \leq \mu \leq \sigma_3 \), then

\[
|a_1 - \mu a_0^2| + \frac{(q-\alpha)^2}{(q-2\alpha)(q-\alpha+aq)(1+q)B_1^2} \times \left\{ (B_1 + B_2) + \left[\mu \frac{(1+q)(q-2\alpha)(q-\alpha+aq)}{q(1-\alpha)^2} - 1 \right] B_1^2 \right\} |a_0|^2 \leq \frac{(q-2\alpha)B_1}{(1+q)(q-\alpha+aq)}.\]

(ii) If \(\sigma_3 \leq \mu \leq \sigma_2 \), then

\[
|a_1 - \mu a_0^2| + \frac{(q-\alpha)^2}{(q-2\alpha)(q-\alpha+aq)(1+q)B_1^2} \times \left\{ (B_1 - B_2) + \left[1 - \mu \frac{(1+q)(q-2\alpha)(q-\alpha+aq)}{q(1-\alpha)^2} \right] B_1^2 \right\} |a_0|^2 \leq \frac{(q-2\alpha)B_1}{(1+q)(q-\alpha+aq)}.\]
Proof. First, let $\mu \leq \sigma_1$. Then

$$|a_1 - \mu a_0^2| \leq \frac{(q - 2\alpha) B_1}{(1 + q)(q - \alpha + \alpha q)} \left\{ \frac{B_2}{B_1} + \left[1 - \mu \frac{[q - \alpha(1 + q)]}{q(1 - \alpha)^2} \right] B_1 \right\} \leq \frac{(q - 2\alpha) B_1}{(1 + q)(q - \alpha + \alpha q)} \left\{ -B_2 + \left[1 - \mu \frac{[q - \alpha(1 + q)]}{q(1 - \alpha)^2} \right] B_1 \right\}.$$

Let, now $\sigma_1 \leq \mu \leq \sigma_2$. Then, using the above calculations, we obtain

$$|a_1 - \mu a_0^2| \leq \frac{(q - 2\alpha) B_1}{(1 + q)(q - \alpha + \alpha q)}.$$

Finally, if $\mu \geq \sigma_2$, then

$$|a_1 - \mu a_0^2| \leq \frac{(q - 2\alpha) B_1}{(1 + q)(q - \alpha + \alpha q)} \left\{ \frac{B_2}{B_1} - \left[1 - \mu \frac{[q - \alpha(1 + q)]}{q(1 - \alpha)^2} \right] B_1 \right\} \leq \frac{(q - 2\alpha) B_1}{(1 + q)(q - \alpha + \alpha q)} \left\{ B_2 - \left[1 - \mu \frac{[q - \alpha(1 + q)]}{q(1 - \alpha)^2} \right] B_1 \right\}.$$

To show that the bounds are sharp, we define the functions $K_{\varphi n} (n \geq 2)$ by

$$- \frac{(1 - \frac{2}{q}) qzD_q K_{\varphi n}(z) + \alpha qzD_q[zD_q K_{\varphi n}(z)]}{(1 - \frac{2}{q}) K_{\varphi n}(z) + \alpha qzD_q K_{\varphi n}(z)} = \varphi(z^{n-1}),$$

$$z^2 K_{\varphi n}(z) \mid_{z=0} = 0 = -z^2 K'_{\varphi n}(z) \mid_{z=0} - 1,$$

and the functions F_γ and $G_\gamma (0 \leq \gamma \leq 1)$ by

$$- \frac{(1 - \frac{2}{q}) qzD_q F_\gamma(z) + \alpha qzD_q[zD_q F_\gamma(z)]}{(1 - \frac{2}{q}) F_\gamma(z) + \alpha qzD_q F_\gamma(z)} = \varphi \left(\frac{z(\gamma + 1)}{1 + \gamma z} \right),$$

$$z^2 F_\gamma(z) \mid_{z=0} = 0 = -z^2 F'_\gamma(z) \mid_{z=0} - 1,$$

and

$$- \frac{(1 - \frac{2}{q}) qzD_q G_\gamma(z) + \alpha qzD_q[zD_q G_\gamma(z)]}{(1 - \frac{2}{q}) G_\gamma(z) + \alpha qzD_q G_\gamma(z)} = \varphi \left(\frac{z(\gamma + 1)}{1 + \gamma z} \right),$$

$$z^2 G_\gamma(z) \mid_{z=0} = 0 = -z^2 G'_\gamma(z) \mid_{z=0} - 1.$$

Clari the functions $K_{\varphi n}$, F_γ and $G_\gamma \in F^\varphi q,\alpha (\varphi)$. Also we write $K_\varphi = K_{\varphi 2}$. If $\mu < \sigma_1$ or $\mu > \sigma_2$, then the equality holds if and only if $f(z)$ is K_φ or one of its rotations. When $\sigma_1 < \mu < \sigma_2$, then the equality holds if $f(z)$ is $K_{\varphi 3}$ or one of its rotations. If $\mu = \sigma_1$, then the equality holds if and only if $f(z)$ is F_γ or one of its rotations. If $\mu = \sigma_2$, then the equality holds if and only if $f(z)$ is G_γ or one of its rotations. This completes the proof of Theorem 2. \hfill \Box

Remark 2.

(i) For $q \to 1^-$ in Theorem 2, we obtain the result obtained by Aouf et al. [4, Theorem 2];
On the Fekete–Szegö Problem

(ii) Putting $q \to 1^-$ and $\alpha = 0$ in Theorem 2, we obtain the result obtained by Ali and Ravichandran [2, Theorem 5.1].

3. Applications to Functions Defined by q–Bessel Function

We recall some definitions of q–calculus which we will be used in our paper. For any complex number α, the q–shifted factorials are defined by

\[(\alpha; q)_0 = 1; \quad (\alpha; q)_n = \prod_{k=0}^{n-1} (1 - \alpha q^k) \quad (n \in \mathbb{N} = \{1, 2, \ldots\}). \]

If $|q| < 1$, the definition (3.1) remains meaningful for $n = \infty$ as a convergent infinite product

\[(\alpha; q)_\infty = \prod_{j=0}^{\infty} (1 - \alpha q^j). \]

In terms of the analogue of the gamma function

\[(q^\alpha; q)_n = \frac{\Gamma_q(\alpha + n)(1 - q)^n}{\Gamma_q(\alpha)} \quad (n > 0), \]

where the q–gamma function is defined by

\[\Gamma_q(x) = \frac{(q; q)_\infty(1 - q)^{1-x}}{(q^x; q)_\infty} \quad (0 < q < 1). \]

We note that

\[\lim_{q \to 1^-} (\alpha; q)_n = (\alpha)_n, \]

where

\[(\alpha)_n = \begin{cases} 1 & \text{if } n = 0, \\ \alpha(\alpha + 1)(\alpha + 2)\ldots(\alpha + n - 1) & \text{if } n \in \mathbb{N}. \end{cases} \]

Now, consider the q–analogue of Bessel function defined by (Jackson [8])

\[J_v^{(1)}(z; q) = \frac{(q^{v+1}; q)_\infty}{(q; q)_\infty} \sum_{k=0}^{\infty} \frac{(-1)^k}{(q; q)_k(q^{v+1}; q)_k} (\frac{z^2}{2})^{2k+v} (0 < q < 1). \]

Also, let us define

\[\mathcal{L}_v(z; q) = \frac{2^v(q; q)_\infty}{(q^{v+1}; q)_\infty(1 - q)^{v/2 + 1/2}} J_v^{(1)} \left(z^{1/2}(1 - q); q \right) \]

\[= \frac{1}{z} + \sum_{k=0}^{\infty} \frac{(-1)^{k+1}(1 - q)^{2(k+1)}}{4^{k+1} (q; q)_{k+1}(q^{v+1}; q)_{k+1}} z^k \quad (z \in \mathbb{U}). \]
By using the Hadamard product (or convolution), we define the linear operator \(\mathcal{L}_{q,\nu} : \Sigma \to \Sigma \), as follows:

\[
(\mathcal{L}_{q,\nu}f)(z) = \mathcal{L}_{\nu}(z; q) \ast f(z) = \frac{1}{z} + \sum_{k=0}^{\infty} \frac{(-1)^{k+1}(1 - q)^{2(k+1)}}{4^{(k+1)}_{q} q_{k+1}(q^{v+1}; q)_{k+1}} a_{k+1} z^{k}.
\]

As \(q \to 1^{-} \), the linear operator \(\mathcal{L}_{q,\nu} \) reduces to the operator \(\mathcal{L}_{\nu} \), introduced and studied by Aouf et al. [5]. For \(0 < q < 1 \) and \(\alpha \in \mathbb{C} \setminus (0, 1] \), let \(\mathcal{F}_{q,\alpha,\nu}(\varphi) \) be the subclass of \(\Sigma \) consisting of functions \(f(z) \) of the form (1.1) and satisfies the analytic criterion:

\[
\frac{(1 - \frac{\alpha}{q}) q z D_{q}(\mathcal{L}_{q,\nu}f) + \alpha q z D_{q}[D_{q}(\mathcal{L}_{q,\nu}f)]}{(1 - \frac{\alpha}{q}) (\mathcal{L}_{q,\nu}f) + \alpha z D_{q}(\mathcal{L}_{q,\nu}f)} \prec \varphi(z) \quad (z \in \mathbb{U}).
\]

Using similar arguments to those in the proof of the above theorems, we obtain the following theorems.

Theorem 3. Let \(\varphi(z) = 1 + B_{1} z + B_{2} z^{2} + \cdots \). If \(f(z) \) given by (1.1) belongs to the class \(\mathcal{F}_{q,\alpha,\nu}(\varphi) \) and \(\mu \) is a complex number, then

(i) \(|a_{1} - \mu a_{0}^{2}| \leq \frac{4^{2} (1 - q^{v+1})(1 - q^{v+2})}{(1 - q)^{2}} \left| B_{1} \frac{(q - 2\alpha)}{q + \alpha q - \alpha} \right| \times \max \left\{ 1, \left| \frac{B_{2}}{B_{1}} - \left[1 - \mu \frac{(q - 2\alpha)(1 - q^{v+1})(q - \alpha + \alpha q)}{(1 - q^{v+2})(q - \alpha)^{2}} \right] B_{1} \right| \right\} \quad (B_{1} \neq 0), \)

(ii) \(|a_{1}| \leq \frac{4^{2} (1 - q^{v+1})(1 - q^{v+2})}{(1 - q)^{2}} \left| \frac{B_{2} (q - 2\alpha)}{q + \alpha q - \alpha} \right| \quad (B_{1} = 0). \)

The result is sharp.

Theorem 4. Let \(\varphi(z) = 1 + B_{1} z + B_{2} z^{2} + \ldots, (B_{i} > 0, \ i \in \{1, 2\}, \ \alpha > 0) \). If \(f(z) \) given by (1.1) belongs to the class \(\mathcal{F}_{q,\alpha,\nu}(\varphi) \), then

\[
|a_{1} - \mu a_{0}^{2}| \leq \begin{cases}
\frac{4^{2} (1 - q^{v+1})(1 - q^{v+2})}{(1 - q)^{2}} (q - 2\alpha) B_{1}^{2} \times \left\{ -B_{2} + \left[1 - \mu \frac{(q - 2\alpha)(1 - q^{v+1})(q - \alpha + \alpha q)}{(1 - q^{v+2})(q - \alpha)^{2}} \right] B_{1} \right\} & \text{if } \mu \leq \sigma_{1}^{*}, \ \frac{4^{2} (1 - q^{v+1})(1 - q^{v+2})}{(1 - q)^{2}} (q - \alpha(q + 1)) B_{1} \times \left\{ B_{2} - \left[1 - \mu \frac{(q - 2\alpha)(1 - q^{v+1})(q - \alpha + \alpha q)}{(1 - q^{v+2})(q - \alpha)^{2}} \right] B_{1} \right\} & \text{if } \sigma_{1}^{*} \leq \mu \leq \sigma_{2}^{*}, \ \frac{4^{2} (1 - q^{v+1})(1 - q^{v+2})}{(1 - q)^{2}} (q - \alpha(q + 1)) \times \left\{ B_{2} - \left[1 - \mu \frac{(q - 2\alpha)(1 - q^{v+1})(q - \alpha + \alpha q)}{(1 - q^{v+2})(q - \alpha)^{2}} \right] B_{1} \right\} & \text{if } \mu \geq \sigma_{2}^{*}, \end{cases}
\]
where
\[\sigma_1^* = \frac{(q - \alpha)^2(1 - q^{v+2})}{(q - 2\alpha)(q - \alpha + \alpha q)(1 - q^{v+1})B_1^2} \left[-B_1 - B_2 + B_1^2 \right], \]
and
\[\sigma_2^* = \frac{(q - \alpha)^2(1 - q^{v+2})}{(q - 2\alpha)(q - \alpha + \alpha q)(1 - q^{v+1})B_1^2} \left[B_1 - B_2 + B_1^2 \right]. \]
The result is sharp. Further, let
\[\sigma_3^* = \frac{(q - \alpha)^2(1 - q^{v+2})}{(q - 2\alpha)(q - \alpha + \alpha q)(1 - q^{v+1})B_1^2} \left[B_2 - B_1 + B_1^2 \right]. \]

(i) If \(\sigma_1^* \leq \mu \leq \sigma_3^* \), then
\[
\left| a_1 - \mu a_0 \right|^2 + \frac{(1 - q^{v+2})(q - \alpha)^2}{(q - 2\alpha)(q - \alpha + \alpha q)(1 - q^{v+1})B_1^2} \times \left\{ (B_1 + B_2) + \left[\frac{\mu (q - 2\alpha)(1 - q^{v+1})(1 - q^{v+2})(q - \alpha + \alpha q)}{(1 - q^{v+2})(q - \alpha)^2} - 1 \right] B_1^2 \right\} \left| a_0 \right|^2 \\
\leq \frac{4^2 (q - 2\alpha)(1 - q^{v+1})(1 - q^{v+2})B_1}{(1 - q)^2(q - \alpha + \alpha q)}.
\]

(ii) If \(\sigma_3^* \leq \mu \leq \sigma_2^* \), then
\[
\left| a_1 - \mu a_0 \right|^2 + \frac{(1 - q^{v+2})(q - \alpha)^2}{(q - 2\alpha)(q - \alpha + \alpha q)(1 - q^{v+1})B_1^2} \times \left\{ (B_1 - B_2) + \left[1 - \mu \frac{\left(q - 2\alpha \right)(1 - q^{v+1})(1 - q^{v+2})(q - \alpha + \alpha q)}{(1 - q^{v+2})(q - \alpha)^2} \right] B_1^2 \right\} \left| a_0 \right|^2 \\
\leq \frac{4^2 (q - 2\alpha)(1 - q^{v+1})(1 - q^{v+2})B_1}{(1 - q)^2(q - \alpha + \alpha q)}.
\]

References

