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ABSTRACT. Cofinite graphs and cofinite groupoids are defined in a unified way extending
the notion of cofinite group introduced by Hartley. These objects have in common an
underlying structure of a directed graph endowed with a certain type of uniform struc-
ture, called a cofinite uniformity. Much of the theory of cofinite directed graphs turns out
to be completely analogous to that of cofinite groups. For instance, the completion of a
directed graph I' with respect to a cofinite uniformity is a profinite directed graph and the
cofinite structures on I' determine and distinguish all the profinite directed graphs that
contain I' as a dense sub-directed graph. The completion of the underlying directed graph
of a cofinite graph or cofinite groupoid is observed to often admit a natural structure of a
profinite graph or profinite groupoid, respectively.

1. Introduction

Embedding an algebraic object, such as a group, ring, or module, into a projec-
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tive limit of well-behaved objects is a frequently used tactic in algebra and number
theory. For example, in commutative algebra, polynomial rings are embedded in
rings of formal power series. Or more generally, if R is any commutative ring and
I is an ideal, then the I-adic completion of R is the projective limit of the inverse
system of quotient rings R/I™, n > 0. The case of R = Z and I = (p), where p
is a prime, yields the p-adic integers. These rings are of particular importance in
number theory.

This idea is also used for constructing compactifications of (discrete) graphs and
directed graphs. For example, the ends of a finitely generated group are the ”bound-
ary points ” of the so called end compactification of the Cayley (directed) graph of
the group. The end compactification can be constructed as a certain completion of
the (directed) graph which is a projective limit of finite (directed) graphs, and thus
is a profinite (directed) graph (see Example 1.2). Similarly fundamental profinite
groupoids are constructed using certain completions of fundamental groupoids (see
6.5).

There is a topological approach to producing such projective limits known as
completion. The rough idea is to impose a suitable topology on the object making
it into a topological group (or ring, or module, etc.) so that Cauchy sequences (or
more generally, Cauchy nets) can be defined and used to construct the completion.
By choosing different such topologies, various completions are formed. In the case
of a residually finite group, Hartley [2] introduced the terminology of cofinite groups
for the topological group structures that can be imposed such that the completion
is a profinite group. Namely, a cofinite group is a topological group G whose open
normal subgroups of finite indexeses form a neighborhood base for the identity.
Our purpose in this paper is to investigate to what extent the technique of profinite
completion can be extended to more general structures that may only have at most
a partial multiplication; for instance, we consider graphs (in the sense of Serre [5])
and groupoids.

One feature that all the objects that will concern us here have in common is
an underlying directed graph structure. (It may be quite simple, as in the case of
a group, which we view as a directed graph whose vertex set consists of only the
identity element.) Thus, we begin by exploring embeddings of directed graphs as
dense sub-directed graphs of profinite directed graphs with the goal of developing a
general theory that can be applied widely in many situations. Initially we note that,
without some modification, the topological approach used in the classical situations
to construct and distinguish various completions breaks down for directed graphs
in general. The following easy example illustrates this point.

Example 1.1. Let I' be the directed graph obtained by subdividing the real line at
the integer points, so V(I') = Z, and directing each edge in the increasing direction.
Incidentally, I is the Cayley directed graph of the additive group Z with respect to
the generating set {1}. We view I as a topological directed graph with the discrete
topology. (Our terminology and notation for directed graphs is fully explained in
the next section.)
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For each integer n > 0, let [—n,n| denote the connected sub-directed graph of
I' with vertex set {0,£1,...,£n}. Thus [-n,n| is a combinatorial arc of length
2n. There is a unique retraction 6,,: I' — [—n,n|; it is the simplicial map defined
on vertices by (i) = i for —n < i < n, 6(i) = n for i > n, and 6(i) = —n for
i < —n. Also form the quotient directed graph T',, = [-n,n]/(—n =n) obtained
by identifying the vertex —n with the vertex n, and let g,: [-n,n] — T, denote
the natural quotient map. Thus I', is a combinatorial circle of length 2n. Let
Gn = Gnbn: T — I, denote the composite map of directed graphs.

For integers 0 < m < n, let 0,,,: [-n,n] — [-m,m] be the restriction of
the retraction 6,,: I' — [—-m,m], and note that 6,,,6, = 0,,. Also note that
0 determines a map of directed graphs ¢,y : I';, — I'y, on the quotient directed
graphs, and ¢,ndn = ¢, holds. We have constructed two inverse systems of
finite directed graphs and maps of directed graphs indexed by the directed set of
non-negative integers: ([—n,n], 0my) and (T'y, ¢my). Denote their inverse limits by
T, = WmT', and T, = lim[—n, n]. Endow each of the finite graphs [—n,n] and I',
with the discrete topology so that fl and fg are compact Hausdorff topological
directed graphs.

Embed I' in I'; via the canonical map of directed graphs determined by the
compatible family of maps ¢,,: I' = I';,. Then it is easy to see that I'1 = I' U {oo}
and its underlying topological space is the one-point compactification of the discrete
underlying topological space of I'. Similarly, I' embeds in I'; as a dense discrete
sub-directed graph and T's = I' U {—00, 00} is a two-point compactification of T.
Thus fl and fz are non-isomorphic topological directed graphs, each containing I"
as a dense sub-directed topological directed graph.

Thus endowing a directed graph I' with a topological directed graph structure
is not enough to uniquely determine a completion of I'; and so something more is
needed to define a suitable notion of a cofinite directed graph. Although, in the
previous example, the relative topology that I' inherits from each I'; is the same,
namely the discrete topology, the uniform structures they induce on I' are different.

A profinite directed graph, like any compact Hausdorff space, has a unique uni-
formity that induces its topology. We explore this uniform structure on a profinite
directed graph in Section 3, and characterize it in terms of what we call cofinite en-
tourages (Theorem 3.4). Then by analyzing the relative uniform structure induced
on a sub-directed graph of a profinite directed graph, a natural notion of cofinite
directed graph is discovered (Definition 4.1). As justification for our definition, in
Section 5 we show that every cofinite graph I' has a unique completion T' (Theo-
rem 5.6), and it is a profinite directed graph (Theorem 5.10). Moreover, profinite
directed graphs are precisely the compact cofinite directed graphs.

In Section 6 we conclude that the paper has some applications that we are
interested in for future reference. Specifically we consider graphs (in the sense of
Serre [5]) and groupoids. These objects are directed graphs with an additional
structure. We require that the cofinite directed graph structures on them also
respect the additional structure. In the case of a graph, it turns out that in general
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the completion of a cofinite graph is a profinite graph. However for a cofinite
groupoid, we need to impose a mild restriction to ensure that the completion is a
groupoid. This condition automatically holds for groupoids with only finitely many
identities (such as a group, which has a unique identity), and thus the completion
of a cofinite groupoid with a finite vertex set is a profinite groupoid (Theorem 6.15).

We conclude the introduction by the following motivational example: The end
compactification of a directed graph.

Example 1.2. Let I' be a connected, locally finite directed graph (see [6]). For
each finite sub-directed graph > of I', let Ry be the equivalence relation on T’
whose equivalence classes are the singleton subsets of E(X) and the components
of '\ E(X). That is, (x,y) € Ry if and only if x = y or  and y belong to the
same component of I'\ F(X). Observe that Ry is compatible with the directed
graph structure and has finite index (since I" is connected). Let I be the non-empty
directed set of all finite sub-directed graphs of T', partially ordered by inclusion. We
have the following properties:

1. If El, Yo € I and X1 C X5, then R22 C Rzl.
2. For every x € T', there exists ¥ € I such that Ry(x) = {z}.

3. Nyes Rs = dr.

Hence the set {Rx, | ¥ € I} is a base for a (cofinite) uniformity on I". The completion
of T' (endowed with this cofinite structure) is given by [ =1imDs, and is called the
end compactification of I'. In particular, the end compactification of I' is a profinite
directed graph and I is a discrete open sub-directed graph of T'.

2. Preliminaries

2.1. Co-discrete Equivalence Relations

We do not distinguish between a binary relation and its graph. Thus, by a
binary relation on a set X we mean simply a subset R C X x X. Given a binary
relation R on a set X and a € X, we write R[a] = {x € X | (a,z) € R}. More
generally, for any subset A of X, we put R[A] = J{R[a] | a € A}.

The composition of two binary relations R and S on a set X, is the binary
relation SR C X x X defined by: (z,z) € SR if and only if there exists y € X such
that (z,y) € R and (y,2) € S. Note that composition is an associative operation
on the set of binary relations on a set X.

The following lemma identifies certain equivalence relations on topological spaces
that are useful in describing the uniform structure of profinite spaces. Recall that
the index of an equivalence relation R on a set X is the cardinality of the set X/R
of equivalence classes of X with respect to R.

Lemma 2.1. Let R be an equivalence relation on a topological space X. Then the
following conditions are equivalent:
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(1) The equivalence relation R is an open subset of the product space X x X.
(2) Every equivalence class Rla] is an open subset of X.
(3) The quotient space X/R is a discrete space.

Additionally when X is compact, such an equivalence relation R has finite index
and is a clopen subset of X x X.

Proof. By the corollary to Proposition 4 of [1, Section 1.4.2], (1) = (2). Being an

equivalence relation,
R= | (Rla] x Rla])
aeX

which makes it clear that (2) = (1). Note also that (2) < (3) since points are
open in X/R if and only if equivalence classes are open in X. To show the last
part, assume now that X is compact and that R is an equivalence relation on
X satisfying the equivalent conditions (1)—(3). Then the quotient space X/R is
compact and discrete, and thus a finite space. Consequently R is of finite indexes
and it is closed in X x X since it is the finite union of the closed sets R[a] X Rlal,
for a € X. g

The inverse of R is the binary relation R~! on X consisting of all pairs (y,z) €
X x X such that (z,y) € R. Note that the following properties hold for any binary
relations R;, Ro, and R3 on X:

1. (RlRQ)Rg = Rl(R2R3)§

2. (RiRy)~' = Ry 'Ry,

3. if A is any subset of X, then (R Ry)[A] = Ry (R2([A])).

2.2. Directed Graphs

A directed graph is a set T' with a distinguished subset V(T') and two functions
s,t: T' = V(T) satisfying s(xz) = t(z) = « for all x € V(T'). Each element of V(T")
is called a vertex. We denote the complement of V(I') by E(I') = T'\ V(I') and
each e € E(T") is called an edge with source s(e) and target t(e). Observe that the
vertex set V' (I') is determined by the source map s, and by the target map ¢: it is
precisely the set of fixed points of each of these maps.

Sub-directed graphs

A subset ¥ of a directed graph T is called a sub-directed graph if it contains the
source and target of each of its members. Under the restrictions of the source and
target maps on I', a sub-directed graph ¥ is itself a directed graph. Note that
VE)=VI)nX.

Products of directed graphs
Let (T;)icr be a family of directed graphs. We make the Cartesian product I' =
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[I;c; i into a directed graph in the following way. The vertex set of I' is the set
V(I') = II,e; V(I') of the underlying sets. The source and target maps are defined
coordinate-wise: if x = (x;) € T, then s(z) = (s(x;)) and ¢(x) = (¢(z;)). The set T’
with this directed graph structure is called a product directed graph.

Maps of directed graphs

A map of directed graphs is a function f: T' — A between directed graphs that
preserves sources and targets. Note that if f: I' — A is a map of directed graphs,
then f(V(I')) C V(A). For if x € V(T'), then f(z) = f(s(z)) = s(f(z)) and hence
f(z) € V(A). However f does not necessarily map edges to edges. Compositions of
maps of directed graphs are maps of directed graphs. Also note that if f: T' — A
is a map of directed graphs and ¥ is a sub-directed graph of T, then f(X) is a
sub-directed graph of A.

Compatible equivalence relations on directed graphs

An equivalence relation R on the underlying set I" is compatible equivalence relation
on T if (s(x),s(y)) € R and (t(x),t(y)) € R whenever (z,y) € R. In other words,
an equivalence relation R on I' is compatible with the directed graph structure if
and only if R is a sub-directed graph of the product directed graph I x T'.

If f: T'— A is a map of directed graphs, then its kernel

ker f = {(z,y) e D xT'| f(z) = f(y)}

is clearly a compatible equivalence relation on I'.

On the other hand, if R is any compatible equivalence relation on a directed
graph I', then the set of equivalence classes I'/ R has a unique directed graph struc-
ture such that the natural map v: I' — I'/R is a map of directed graphs. Its
source and target maps are given by s(R[z]) = R[s(z)] and t(R[x]) = R[t(x)], and
V(T'/R) = v(V(T')). Note that in this case kerv = R, and hence, every compatible
equivalence relation on a directed graph I' is the kernel of some map of directed
graphs with domain T'.

Moreover, we have this first isomorphism theorem for directed graphs: Let
f: T — A be a map of directed graphs and let K = ker f. Then K is a compatible
equivalence relation on I' and there is an injective map of directed graphs f/: T'/K —
A given by K[z] — f(x), which is an isomorphism when f is surjective.

r —— A
-
/
/
/
14
//f/
7/
7/
T/K

The intersection of a non-empty family of compatible equivalence relations on
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a directed graph I' is again a compatible equivalence relation on I'. Thus, given
any subset 7' C I' x I, the intersection of all compatible equivalence relations on I"
containing 7T is the unique smallest such equivalence relation on I'. It is denoted by
T* and called the compatible equivalence relation onT' generated by T. Alternatively,
T* can be constructed as follows. Let (T) = T U (s x s)[T] U (t x t)[T], the smallest
sub-directed graph of I' x ' containing 7. Then T% = (T)*, the reflexive and
transitive closure of (T).

3. The Uniform Structure of a Profinite Directed Graph

A topological directed graph is a directed graph I' endowed with a topology
such that the source and target functions s,t: T' — V(T") are continuous maps onto
the subspace V(I'). We form the category of topological directed graphs by taking
the class of objects to consist of all topological directed graphs and taking the
morphisms to be all continuous maps of directed graphs. (That is, a morphism
is both continuous and a map of directed graphs.) It is clear that a morphism
f: T — Ais an isomorphism of topological directed graphs (i.e., an isomorphism in
the category of topological directed graphs) if and only if f is both a bijective map
of directed graphs and a homeomorphism.

Every sub-directed graph of a topological directed graph will be regarded as a
topological directed graph with the subspace topology. Likewise, if K is a com-
patible equivalence relation on a topological directed graph I', then the quotient
directed graph I'/K will always be endowed with the quotient topology making it
a topological directed graph. Also given any family of topological directed graphs
(T's):e1, we make the product of the underlying topological spaces I' = [[,.; I'; into
a topological directed graph with source and target maps given by s(z;) = (s(x;))
and t(z;) = (t(x;)). Then the projection maps ¢;: I' — T'; are continuous maps
of directed graphs and it is clear that I' is the product in the category of topolog-
ical graphs. Likewise the inverse limit of an inverse system of topological directed
graphs and continuous maps of directed graphs exists in the category of topologi-
cal directed graphs and its underlying topological space is the inverse limit of the
corresponding inverse system of underlying spaces. (It can also be constructed as a
sub-directed graph of a product of directed graphs in the usual way.)

A profinite directed graph is a compact, Hausdorff, totally disconnected directed
graph. Equivalently, a profinite directed graph is a projective limit of finite discrete
directed graphs; see, for instance, [4] or the remarks following the proof of Theo-
rem 3.4. It is easy to see that any closed sub-directed graph of a profinite directed
graph is a profinite directed graph and that products and inverse limits of profinite
directed graphs are profinite directed graphs. Note that the vertex set V(T') of a
profinite directed graph I' is closed, since it is the fixed point set of a continuous
map of a Hausdorff space to itself. On the other hand, the edge set E(I') = '\ V()
need not be closed.

Recall that every compact Hausdorff space X has a unique uniformity that
induces its topology. This uniformity consists of all neighborhoods of the diagonal

405
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dx in X x X; see, for instance, [1, I1.4.1, Theorem 1]. Therefore, as we may, we
regard every compact Hausdorff space as a uniform space endowed with the unique
uniformity inducing its topology. Our goal in this section is to characterize profinite
directed graphs in terms of their unique uniform structures.

For this purpose, we make use of the following observation.

Lemma 3.1. Let X be a compact, Hausdorff, totally disconnected space and let
W be an entourage of X. Then there exists an equivalence relation R on X such
that R is open in X X X and R C W. In particular, R has finite index and is an
entourage of X.

Proof. Let I be the non-empty set of all equivalence relations R on X such that
R is a clopen subset of X x X. Let x,y € X with z # y. Since X is Hausdorff
and the clopen subsets of X form a base for its topology (see, for example, |7,
Lemma 0.1.1(c)]), there is a clopen subset C of X with # € C and y ¢ C. The
equivalence relation R that partitions X into the two equivalence classes C' and
C’' = X\ C, namely

R=(CxC)u(C"xC"),

is a clopen subset of X x X and (z,y) ¢ R. It follows that the intersection of the
family I is equal to the diagonal dx in X x X.

By replacing W with its interior in X x X, we may assume that W is an open
neighborhood of 0x in X x X. So for each R € I, the set R\ W is closed in X x X

and
(N R\WC [ R\éx =0.
Rel Rel
However X x X is compact, so there exist Ry, ..., R, € I for some positive integer

n such that (R \W)N---N (R, \W) =0. Let R=R; N---NR,. Then R
is an equivalence relation on X which is a clopen subset of X x X and R C W.
Furthermore, R is a neighborhood of §x in X x X, and so R is an entourage of X.
O

To describe the uniform structure of profinite directed graphs and their sub-
directed graphs, it is convenient to make the following definition.

Definition 3.2.(Cofinite entourage) Let I' be a directed graph endowed with a
uniformity. A cofinite entourage of T" is a compatible equivalence relation of finite
indexes on I' which is also an entourage of T'.

It should be noted that a directed graph I' endowed with a uniformity always
has at least one cofinite entourage, namely R = I' x I". Here is a list of some
fundamental properties of cofinite entourages that the reader can easily verify.

Lemma 3.3. Let I' and A be directed graphs endowed with uniformities. Then
their cofinite entourages have the following properties.

(1) If R is a cofinite entourage of T' and x € T, then R|x] is a clopen neighborhood
of x in T.



Cofinite Graphs and Grupoids

(2) Ewvery cofinite entourage of T is a clopen subset of T' x T.

(3) If Ry and Rs are cofinite entourages of T', then Ry N Ry is also a cofinite
entourage of T.

(4) If R is a compatible equivalence relation on T that contains a cofinite en-
tourage of T, then R is itself a cofinite entourage.

(5) If f: T — A is a uniformly continuous map of directed graphs and S is a
cofinite entourage of A, then (f x f)~1[S] is a cofinite entourage of T.

(6) If X is a sub-directed graph of T' and R is a cofinite entourage of T', then the
restriction RN (X x X) is a cofinite entourage on 3.

We are now ready to give our characterization of profinite directed graphs in
terms of their uniform structures.

Theorem 3.4. Let ' be a directed graph endowed with a compact Hausdorff topol-
ogy. Then T is a profinite directed graph if and only if the set of cofinite entourages
of T is a base for the uniformity on T.

Proof. Suppose first that I" is a profinite directed graph and let W be an entourage
of I'. By Lemma 3.1, there exists an equivalence relation R on I' such that R is
openin X x X and R C W. Let

S=RnN(sxs) '[RN(txt) R]

Then S is an equivalence relation on I' and it is open in X x X. We claim that S is
also a subgraph of I' x I'; and thus is a compatible equivalence relation on I'. For
if (z,y) € S, then

(i) s(z,y) = (s(x),s(y)) € R since (z,y) € (s x s)"'[R],
(i) s(x,y) € (s x s)71[R] since s(s(x), s(y)) = (s(x), s(y)) € R, and
(iii) s(z,y) € (t x t)~[R] since t(s(z), s(y)) = (s(z),s(y)) € R.

Hence s(z,y) € S. Similarly t(z,y) € S, and therefore S is compatible. Further-
more, it is of finite indexes by Lemma 2.1. Hence S is a cofinite entourage of I' such
that S C W. It follows that the set of all cofinite entourages of I is a base for the
uniformity on I'.

Conversely, assume now that the non-empty set, say I, of all cofinite entourages
of T is a base for the uniformity on I'. For each R € I, the quotient ' = T'/R
is compact and discrete, and thus a (finite) profinite directed graph. Denote the
quotient map I' = I'gr by 2 +— xr. The map I' = [[zc; I'r given by x — (zr) is a
continuous map of directed graphs which is injective (as its kernel is (., R = or
since I is a non-empty base for the uniformity on I' and T' is Hausdorff). Being
an injective continuous map of a compact space to a Hausdorff space, this map is
also a topological embedding. Thus I' is isomorphic to a closed sub-directed graph

407
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of the profinite directed graph [].; 'r and therefore is itself a profinite directed
graph. O

We observe now that Theorem 3.4 provides a canonical realization of a profinite
directed graph I' as a projective limit of finite directed graphs. Let I be the set of all
cofinite entourages of I'; partially ordered by reverse inclusion: R; < Rs if and only
if Ry O Rs. Since the intersection of two cofinite entourages is a cofinite entourage,
it follows that I is a directed set. For each R € I, the quotient I'r = I'/ R is compact
and discrete, and thus a finite directed graph. Denote the natural quotient map by
¢r: I' = T'p. Note that for all R < S in I, there exists a unique map of directed
graphs ¢ps: I's — I'g such that ¢prsps = dr.

I's
o
r :¢Rs
b Y
Ir

Moreover, (I'r, ¢rs)r<ser is an inverse system of finite discrete directed graphs.
We claim that (I, ¢r) ger is its inverse limit. By the commutative diagrams above,
(¢pr: T' = T'/R)Rges is a compatible family of morphisms and so determines a mor-
phism ¢: I' = imT'g. Since each ¢ is surjective, the image ¢(I') is a dense subset
of imI's. But I' is compact and limI'g is Hausdorff, and so () is closed. Tt
follows that ¢ is surjective. Furthermore, I is a base for the uniformity on I" (by
Theorem 3.4) and I" is Hausdorff, so

ker¢ = (| kergp = (| R =dr.

Rel Rel

Therefore ¢ is also injective, and hence an isomorphism of topological directed
graphs. This establishes our claim.

4. Cofinite Directed Graphs

Let I" be a profinite directed graph and let ¥ be a sub-directed graph endowed
with the induced uniformity. Then ¥ is Hausdorff and the family of all RN (X x X)
as R runs through all cofinite entourages of I', is a fundamental system of entourages
of 3. Since each RN (X x X) is a cofinite entourage of the uniform sub-directed
graph ¥, it follows that every uniform sub-directed graph ¥ of a profinite directed
graph I' has a fundamental system of entourages consisting of cofinite entourages
of X. In light of this observation, we make the following definition.

Definition 4.1.(Cofinite directed graph) A cofinite directed graph is a directed
graph A endowed with a Hausdroff uniformity that has a base consisting of cofinite
entourages of A.
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Note that by virtue of Theorem 3.4, profinite directed graphs are precisely the
compact cofinite directed graphs. Also note that the definition of cofinite directed
graphs does not assume that the source and target maps are uniformly continuous,
or even continuous. However, we next observe that this is automatically true.

Theorem 4.2. Let T be a cofinite directed graph. Then the source and target maps
s,t: T'—= V(T') are uniformly continuous maps onto the uniform subspace V(I'). In
particular, T is a Hausdorff topological graph and V(T') is a closed subset of T.

Proof. Let R be a cofinite entourage of I'. Then
(sx8)[R]CRN[V() x V(I)] and (¢t x t)[R] C RN [V(T) x V()]

and thus s, t are uniformly continuous since the sets RN [V(T') x V(T')], as R runs
through all cofinite entourages of I, form a base for the relative uniformity on V(T').
The last part follows since uniformly continuous maps are continuous and the vertex
set of a Hausdorff topological directed graph is closed. g

We always endow a cofinite directed graph with the topology induced by its
uniformity, and as we just observed, this makes it into a Hausdorff topological
directed graph. This topology can be characterized as follows.

Let ' be a cofinite directed graph and let I be a non-empty set of cofinite
entourages of I' forming a base for the uniformity on I'. We denote the closure of a
subset A of ' (in its uniform topology) by A, and note that it is given by

A=) RIA

Rel

and each R[A] is a clopen neighborhood of A in T'; see, for instance, Proposi-
tion I1.1.2.2 and its corollary of [1]. Similarly, if W C T x T, then its closure W in
the product space I' x T" is given by

W= )RxR[W]=()]RWR
Rel Rel

and each RWR is a clopen neighborhood of W in T x T'. See [1, Chapter II] or [3,
Chapter 6] for more on the basic properties of uniform topologies.

As we noted above, every sub-directed graph of a profinite directed graph is
a cofinite directed graph when it is endowed with its relative uniformity. On the
other hand, cofinite directed graphs can be constructed from scratch as follows.

Let T be any abstract directed graph and let I be a filter base of compatible
equivalence relations of finite indexes on I". (That is, I is a non-empty set with the
property: if Ry, Ry € I, then there exists R3 € I such that R3 C Ry N Ry.)

Then [ is a base for a uniformity on I'; see for instance [3, Theorem 6.2].
Thus I" endowed with this uniformity is a cofinite directed graph provided that the
induced topology is Hausdorff. Moreover, it is obvious that all of the various cofinite
structures that can be put on I' arise in this way.
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Amongst all uniform structures of this type that can be put on I', there is a
unique maximal one, namely that in which I consists of all compatible equivalence
relations of finite indexes on I'. We next observe that I' endowed with the finest
uniformity is Hausdorff, and hence is a cofinite directed graph.

Proposition 4.3. Let I' be an abstract directed graph endowed with the unique
finest uniformity having a base consisting of compatible equivalence relations of finite
indezes on I'. Then T is a discrete cofinite directed graph.

Proof. Let y € V(I'). Denote by A the finite (abstract) directed graph with
V(A) = {a,b} and E(A) = {e, f,9.5}, where s(€) = t(¢) = a, s(f) = t(f) = b
s(g) = a, t(g) = b, s(g) = b and t(g) = a. There is a unique map of directed
graphs ¢: I' — A such that ¢(y) = a and ¢(x) = b for all vertices x # y. The
kernel R = ker ¢ is a compatible equivalence relation of finite indexes on I' such
that R[y] = {y}.

Now let y € E(T") and let A = {a, e} be the finite directed graph with V(A) =
{a}. Define a map of directed graphs ¢: I' — A by ¢(y) = e and ¢(z) = a for
all x # y. Then the kernel R = ker ¢ is a compatible equivalence relation of finite
indexes on I' such that R[y] = {y}.

We see that every singleton subset {y} of I is open in the topology induced
by the uniformity on I', and hence this topology is discrete. In particular, I" is
Hausdorff, and so a cofinite directed graph. O

It would be interesting to know which other filter bases I of compatible equiv-
alence relations of finite indexeses on an abstract directed graph I', besides the
largest one, make I' into a cofinite directed graph. The following result helps with
this.

Proposition 4.4. If T' is an abstract directed graph and I is a non-empty filter
base of compatible equivalence relations of finite indexes on I', then the following
conditions on I' endowed with the uniformity generated by I are equivalent:

(1) T is Hausdorff, and so T' is a cofinite directed graph;
(2) T is totally disconnected;
(3) Nger B = dr, the diagonal in T' x T'.

Proof. (1) = (2): Let « € T" and let C be the component of I containing z. For
all R € I, note that C' C RJx] since R[z] is a clopen set containing z. Furthermore,
when I' is Hausdorff, (| R[z] = {z}, and thus C = {z} and I is totally disconnected.

(2) = (3): Let z,y € T with z # y. When T is totally disconnected, there
exists an open set U of ' with € U and y ¢ U since otherwise the subset {z,y}
would be connected. Since U is open, there exists R € I such that R[z] C U. Then
y ¢ R[x] so that (z,y) ¢ R, and it follows that (| R = or.

(3) = (1): We have that ér = (YROorR = (R since ér C R and R? = R as
each R € I is an equivalence relation. Thus, when (3) holds, ér is closed in T x T’
and thus I' is Hausdorft. O
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Consequently, we see that every cofinite directed graph I' is totally disconnected
and that the intersection of all of its cofinite entourages is equal to the diagonal dr
of ' x T.

5. Completions of Cofinite Directed Graphs

In this section we define completions of cofinite directed graphs analogously to
the way that completions of cofinite groups are defined in [2]. We show that every
cofinite directed graph I' has a completion T’ (using a standard construction), and
that it is unique up to a unique isomorphism extending the identity map on T'. It
turns out to be precisely the Hausdorff completion of its underlying uniform space
(Corollary 5.7). Further generalizing the situation for cofinite groups [2], we observe
that the completion T is a profinite directed graph and that its cofinite entourages
are precisely the closures R in T’ x ' of the cofinite entourages R of I'. We begin
with an analogue of [2, Theorem 2.1].

Theorem 5.1. Let T' be a cofinite directed graph which is embedded as a dense
uniform sub-directed graph of a compact Hausdorff topological directed graph T. If
A is any compact Hausdorff topological directed graph and f: T'— A is a uniformly
continuous map of directed graphs, then there exists a unique continuous map of
directed graphs f: T — A extending f.

Proof. Being compact and Hausdorff, A is a complete uniform space. So there
exists a unique uniformly continuous map f: I' — A such that f|r = f; see, for
example, [1, I1.3.6, Theorem 2]. It remains to verify that f is a map of directed
graphs. Let B ={z € T'| f(s(z)) = s(f(z))}. Then B is closed in T since fos and
so f are continuous maps from I' to A and A is Hausdorff. However, I' C B and
I' is dense in T. Thus B =T and hence f preserves sources. Similarly, f preserves
targets and thus is a map of directed graphs. O

Corollary 5.2. In the situation of the theorem, f(T') = f(T).

Proof. Since f is continuous, f(T') C f(I') = f(T'). On the other hand, f(I') € f(T)
and f(T') is closed, since it is a compact subset of the Hausdorff space A. Thus

f(T) € f(T). -

Based on the theorem above, we make the following definition.

Definition 5.3.(Completion) Let I' be a cofinite directed graph. Then any compact
Hausdorff topological directed graph I' that contains I' as a dense uniform sub-
directed graph is called a completion of T'.

As an immediate consequence of Theorem 5.1, we have the following result on
uniqueness of completions.

Corollary 5.4. If Ty and Ty are completions of a cofinite directed graph T', then
there is an unique isomorphism of topological directed graphs i: I'y — L'y extending
the identity map on T.
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We turn now to the question of existence of completions. Let I' be a cofinite
directed graph and let I be any cofinal set of cofinite entourages of I'. Note that
(I, <), where < = D is the reverse of inclusion, is a directed set. Indeed < is a
partial order on I, and since I is cofinal, if R, S € I, then there exists T € I such
that TC RNS,andsoT >Rand T > S.

For each R € I, put I'r = T'/R (a finite discrete topological graph) and denote
the quotient map I' — I'g by z — xg. For R, S € I with R < S, observe that the
identity map on I' determines a map of directed graphs ¢rs: I's — I'r given by
ors(xs) = xg; it is well defined since S C R and continuous since I'g is discrete.
These maps have the properties:

(i) ¢rr =idr, for all R € I; and
(11) ¢RS¢ST = ¢RT for all R S S S T in I.

Hence we have an inverse system of (finite discrete) topological directed graphs and
(surjective) continuous maps of directed graphs (I'r, ¢rs)r<ser, indexed by the
directed set I.

Let T' = @FR be the inverse limit of this inverse system (in the category

of topological directed graphs) and denote the projection maps by ¢g: T — I'g.
Then T is a topological directed graph and there is a_canonical map of directed
graphs i: ' — T given by i(z) = (xg)rer. Moreover, I' is compact and Hausdorff
since its underlying space is an inverse limit of compact Hausdorff spaces. Thus, as
usual, we regard I" as a uniform space with the unique uniformity compatible with
its topology. It should be noted that the pre-images under the projection maps
¢r: ' = I'g of basis entourages of I'g form a base for the uniformity on I' (see, for
instance, [1]). However, being finite and discrete, {dr, } is a base for the uniformity
on I'g; and (¢r x ¢r)~'[dr,] = ker ¢r. Hence, the set of all ker ¢, as R runs
through I, is a base for the uniformity on T.
With this setup, we make the following observation.

Lemma 5.5. If T' is a cofinite directed graph, then T = yLHFR s a compact

Hausdorff topological directed graph and the canonical map i: I' — Tisa uniform
embedding whose image i(T') is a dense sub-directed graph of T.

Proof. For each R € I, note that (i x i)~ ![ker ¢»] = R and R is an entourage of I'.
Since the family of all ker ¢r, where R ranges over I, is a base for the uniformity
on I', we see that 4 is uniformly continuous.

Since I is Hausdorff, keri = (., R = dr by Proposition 4.4. Thus i is injective.
Further observe that (i x ¢)[R] = ker¢g N [i(T") x i(T")] for all R € I (a base for
the uniformity on I'). Hence 7 is a uniform isomorphism from I' onto the uniform
subspace i(T') of . That is, i is a uniform embedding.

Finally, note that for each R € I, the image ¢g(i(T")) = I'g. Therefore, since
the underlying space of T is the inverse limit of the underlying spaces of the I'g, it
follows that #(T") is dense in T'. O
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Combining these observations we obtain the following result.

Theorem 5.6.(Existence and uniqueness of completions) Fvery cofinite directed
graph T' has a completion, and it is unique up to an unique isomorphism of topo-
logical directed graphs extending the identity map on I.

Corollary 5.7. If T' is a cofinite directed graph, then its completion T' is equal to
the Hausdorff completion of the underlying uniform space of T'.

Proof. Since a compact Hausdorff space (endowed with its unique compatible uni-
formity) is complete, this follows from [1, I1.3.6, Theorem 2]. O

In the definition of the completion of a cofinite directed graph I', we did not
require that T is a cofinite directed graph. However, it turns out that this is auto-
matically true. In proving this and other things, we modify our notation as follows.

From now on, if A is a subset of a cofinite directed graph I, then A will denote
the closure of A in the completion I'. Thus the closure of A in T is given by ANT.
Likewise, if W C I' x I, then W will denote the closure of W in the product space
T x T; and thus W N (T' x T') is its closure in I' x T'. (That is, a bar over a set
will mean its closure in the largest available space.) Note that this convention is
consistent with denoting the completion of T' by T since I' is dense in T'. It is also
consistent with denoting the unique extension given by Theorem 5.1 of a uniformly
continuous map f from I' to a compact Hausdorff topological directed graph A by
f: T — A since f is the closure in T x A of the subset f C T x A.

We first prove a couple of lemmas.

Lemma 5.8. If T is a cofinite directed graph and 3 is a sub-directed graph of T',
then X is a sub-directed graph of T' and V(X)) = V(X). In particular, V(I') = V(T').

Proof. Since s(X) C ¥ and the source map is continuous, it follows that s(X) C 3.
Similarly, ¢(X) C %, and so X is a subgraph of T. Its vertex set V(X) =X N V(T)
is a closed set containing V(X), and thus V(X) C V(). On the other hand,
V(E) =5(%) Cs(X) = V(). Hence V() = V(). O

It follows from this lemma that if I' is a cofinite directed graph and ¥ is a
sub-directed graph (endowed with the relative uniformity), then ¥ (endowed with
the relative unifrormity) is the completion of 3.

Lemma 5.9. Let I' be a cofinite directed graph and let T be its completion. If R is
a cofinite entourage of I', then its closure R in I' x I' is a cofinite entourage of I'
and RN(I'xT)=R.

Proof. The natural map v: I' — I'/R is a uniformly continuous map of directed
graphs, and so by Theorem 5.1, it extends to a uniformly continuous map of directed
graphs 7: I' — I'/R. Note that ker 7 is a cofinite entourage of I since I'/ R is discrete.
Also note that ker7 N (I' x I') = kerv = R. To complete the proof, it suffices to
show that ker7 = R.

First note that R = kerv C ker v and kerv is closed in T x I. Thus R C ker 7.
Conversely, let (z,y) € ker7 and let W be an open neighborhood of (z,y) in T x T.
Then
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WNR=Wnkerv=WnkervN(IT xT)#0

since W Nker? is a non empty open subset of T'xT and I' x I' is dense in T xT.
So (z,y) € R, and thus the opposite inclusion ker 7 C R also holds. O

Theorem 5.10. Let I' be a cofinite directed graph. Then its completion T is a
profinite directed graph and the cofinite entourages of I' are precisely all the R,
where R runs through all cofinite entourages of T.

Proof. Let U be an entourage of I'. Choose a closed entourage W such that W C U;
see, for example, [1, I1.1.2, Corollary 2]. Since W N (I' x I') is an entourage of T,
there exists a cofinite entourage R of I such that R C W N (I' xI'). By Lemma 5.9,
R is a cofinite entourage of I and R C W C U since W is closed. It follows that the
cofinite entourages of I' form a fundamental system of entourages of I. Therefore
T is a profinite directed graph by Theorem 3.4.

Now let S be any cofinite entourage of I and put R = SN (I' x I'). Then R is
a cofinite entourage of I' and it is dense in S, since S is a non-empty open subset
of T xT and I' x I'is dense in T’ x I'. Thus, S = RN S = R since S is also closed.
Conversely, if R is a cofinite entourage of I', then R is a cofinite entourage of T’ by
Lemma 5.9. O

Corollary 5.11. If T is a cofinite directed graph and R is a cofinite entourage of
T, then the inclusion map T' < T induces an isomorphism of topological directed
graphs T/R — T/R.

Proof. Let f: T' — T'/R be the map of directed graphs given by f(z) = R[], i.e., the
map induced by the inclusion map I" < I'. Note that f is onto since I' is dense in T,
and ker f = RN(I'xT') = R by Lemma 5.9. Thus, by the first isomorphism theorem
for directed graphs, there is an isomorphism of directed graphs f’: I'/R — T'/R such
that the following diagram commutes:

f

r —J TR

I'/R
and f’ is also a homeomorphism since I'/R and T'/R are discrete. O

Example 5.12. Let I" be a topological directed graph. Suppose that I' is completely
regular so that it is embedded in its Stone-Cech compactification B(T); we will
regard I' C S(I'). We claim that S(I') has a unique topological directed graph
structure such that I' is a sub-directed graph. By the universal property of Stone—
Cech compactifications, the source and target maps on I' extend to continuous
maps s,t: S(I') — B(T') and the extensions are unique. Note that s(s(z)) = s(z)
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and t(t(x)) = t(z) for all z € B(T') since these equations hold for all = in the dense
subspace I'. It is also easy to check that the fixed point sets of s and ¢ in G(I") are
both equal to V(T') (the closure of V(T') in B(T")). Thus S(I") equipped with the
unique continuous extensions of the source and target maps of I' is a topological
directed graph with V(8(T")) = V(T'), and our claim follows.

Theorem 5.13. Let T" be a directed graph endowed with its maximal cofinite uni-
formity. Then B(T') is the completion of T.

Proof. By Proposition 4.3, I" is discrete. So S(I') is a totally disconnected, compact
Hausdorff space containing I' as a subspace. (It is well known that the Stone-Cech
compactification of a discrete space is totally disconnected.) Therefore, equipped
with the unique topological directed graph structure such that I' is a sub-directed
graph (as constructed above), 5(I') is a profinite directed graph.

Applying Theorem 3.4, we see that the set of all cofinite entourages of 5(I")
is a base for its uniformity and given any cofinite entourage S of B(I'), note that
SN (T xT) is a cofinite entourage of T (since I" has the maximal cofinite uniformity).
Thus the inclusion map T' < S(T') is uniformly continuous.

On the other hand, suppose that R is any cofinite entourage of ' (i.e., any
compatible equivalence relation of finite indexes on I'). Then I'/R is a finite discrete
directed graph (and thus a compact Hausdorff space), so the quotient map ¢r: I' —
I'/R extends to a continuous map ¢z: S(I') — I'/R which is a map of directed
graphs (since the restriction to the dense sub-directed graph T is a map of directed
graphs). Observe that ker ¢/, is a cofinite entourage of §(I") and ker ¢,N(I'xT") = R.
It follows that I' is uniformly embedded in ('), and hence B(I') is a compact
Hausdorff topological directed graph that contains I" as a dense uniform sub-directed
graph. Consequently §(T") is the completion of T O

6. Applications

6.1. Cofinite Spaces

A cofinite space is a cofinite directed graph X with V(X) = X. In this case, the
source and target maps are equal to the identity map on X, and so are irrelevant.
The completion X of a cofinite space X is also a cofinite space since V(X) =
V(X) = X (by Lemma 5.8), and it is compact. Thus X is a profinite space (i.e., a
compact Hausdorff totally disconnected space).

6.2. Cofinite Graphs

By a graph we mean a graph in the sense of Serre [5] and Stallings [6]. Thus
a graph is a set T' equipped with a source map s: I' — T' and an inversion map
~1: T — T such that for all z € T,

s(s(z)) =s(x), (z7H =2, and s(z) =z & 27! = 2.

The common fixed point set of these two maps is called the vertexr set of I' and is

415
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denoted by V(I') = {x € T | s(x) = 2} = {z € T | 27! = 2}. For x € T, the
vertex s(z) is called the source of z and we define the target of = to be the vertex
t(x) = s(z=1). We call 27! the inverse of . The set E(I') = T'\ V(I') is called the
edge set of I'. In other words, a graph is directed graph equipped with an involution
that interchanges sources and targets and whose fixed point set is the vertex set.

A map of graphs is a function f: I' — A between graphs that preserves sources
and inverses. It then follows that targets are also preserved, and thus f is also a
map of directed graphs.

Let R be an equivalence relation on a graph I'. We say that R is a graph
equivalence relation if T'/R admits a structure of a graph such that the natural map
v:T'—= T'/R is a map of graphs. In this case, it is clear that the graph structure on
I'/R is unique and given by: s(R[z]) = R[s(z)], t(R[z]) = R[t(z)], R[z]* = R[z7!],
and V(I'/R) = v(V(I')). It is also easy to see that R is a graph equivalence relation
if and only if these two conditions hold:

(1) if (z,y) € R, then (s(z),s(y)) € R and (z71,y~!) € R; and
(2) (x,s(z)) € R if and only if (z,27 ') € R.

Definition 6.1.(Cofinite graph) Let I' be a graph endowed with a uniformity. A
cofinite graph entourage of I' is a graph equivalence relation R of finite indexes on I"
which is also an entourage of I'. We say that I" is a cofinite graph if it is Hausdorff
and its uniformity has a base consisting of cofinite graph entourages of T'.

In particular, a cofinite graph I' is a cofinite directed graph. So by Lemma
4.2, the source and target maps of a cofinite graph I' are uniformly continuous,
and by a similar argument, its involution is also uniformly continuous. Thus I is
a Hausdorff topological graph (i.e., a graph endowed with a topology such that the
source, target, and inversion maps are all continuous). Furthermore, by Theorem
5.10, its completion I as a cofinite directed graph is a profinite directed graph. We
show next that there is a unique involution on I' making it into a cofinite graph
such that I is a subgraph (i.e., a sub-directed graph closed under the involution).

Theorem 6.2. If T is a cofinite graph, then its completion T has a unique in-
volution making it into a cofinite graph such that T is a subgraph. Moreover, the
cofinite graph entourages of T are precisely the closures R in T x T of all cofinite
graph entourages R of T'.

Proof. Let T be the topological directed graph with the same underlying topo-
logical space as I' but with source and target maps interchanged. Then the map
I — fReverse given by = — z~! is a map of directed graphs. Applying Theorem
5.1, we see thgt this map has a unique continuous extension to a map of directed

—=heverse

graphs T — T . We denote this extension, regarded as a map from T to itself

. . . . . =R = .
(i.e., by composing with the identity map T’ vene ), also by z — 271 It is

clearly the unique continuous extension to I' of the involution on I' and satisfies the
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property: (r71)~! = x for all 2 € T (since this property holds on the dense subset
r).

It remains to show that the fixed set A = {z € T | 2 = 27!} of this involution
is equal to V(T'). Note first that A is a closed subset of I' containing V/(I'), and
thus V(T') = V(I') C A (using Lemma 5.8). To see the opposite inclusion, let z € A
and let R be a cofinite graph entourage of I". Then the natural map v: I' — I'/R
is a map of graphs, and in particular is involution-preserving. Since I" is dense in
T, it is clear that the unique continuous extension 7: I' — I'/R is also involution-
preserving. Thus 7(z) = ¥(z~1) = v(x)~1. However I'/R is a graph, and so ¥(x) is
a vertex of I'/R. Since R = ker (by the proof of Lemma 5.9) and the vertex set
of I'/R is v(V(I')), it follows that € R[V(T)]. However the set of closures R of all
cofinite graph entourages R of I" form a base for the uniformity on I'. Consequently
z € V(T), and so z € V(T') by Lemma 5.8.

To establish the second part, it suffices (by Theorem 5.10) to show that for
each cofinite entourage R of I', R is a graph equivalence relation on I' if and only
if its closure R is a graph equivalence relation on I'. However, this is an immediate
consequence of Corollary 5.11 since it is clear that the induced isomorphism of
directed graphs I'/R — T'/R is also involution-preserving. Thus v: I' — I'/R is a
map of graphs if and only if 7: T — I'/R is a map of graphs. O

Corollary 6.3. IfT is a cofinite graph, then its completion T is a compact, Haus-
dorff, totally disconnected topological graph.

Proof. By Theorem 6.2, T is a cofinite graph, and thus a topological graph. More-
over, it is compact, Hausdorff, and totally disconnected by Theorem 5.10. O

Remark. It is easy to see that a cofinite graph I' is compact if and only if it is
isomorphic to the inverse limit of an inverse system of finite discrete topological
graphs and continuous maps of graphs. Such cofinite graphs are called profinite
graphs. A somewhat more complicated fact is that profinite graphs are the same
thing as compact, Hausdorff, totally disconnected topological graphs.

6.3. Cofinite Groupoids

Above we saw that the completions of cofinite spaces and cofinite graphs are
profinite spaces and and profinite graphs, respectively. We will see that the situation
for cofinite groupoids is more complicated in general.

To begin with, we review some basic groupoid theory. Recall that a groupoid is
a small category in which every arrow is invertible. To be more precise, a groupoid
is a directed graph G equipped with a partial binary operation (denoted by juxta-
position) satisfying these conditions: for all g,h, k € G,

1. gh is defined if and only if t(g) = s(h), and in this case s(gh) = s(g) and
t(gh) = t(h);
2. if t(g) = s(h) and t(h) = s(k), then (gh)k = g(hk);

3. s(g)g = g and gt(g) = g;
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4. there exists g~ € G such that s(g71) = t(g), t(g~1) = s(g) and gg—* = s(g),
979 =1tg).

Customarily the set of composable pairs in a groupoid G is denoted
G® = {(g.h) € Gx G| t(g) = s(h)}.

Then the partial binary operation on G is a function G?) — G, denoted by (g, h) —
gh. Likewise, we write G®) for the set of composable triples in G. Then the
associativity property (Axiom 2) can be stated as: if (g,h, k) € G®), then (gh)k =
g(hk). Also note that there is an identity at each vertex v in a groupoid which we
are taking to be v itself; by a standard argument, it is unique. Similarly, the inverse
g~ ! of an element g satisfying Axiom 4 is unique.

A groupoid G with a single vertex is nothing other than a group, and in this
case, V(G) = {1} and G® = G x G.

Given any groupoid G and vertices z,y € V(G), we denote by G(z,y) the
(possibly empty) set of all arrows from « to y in G. Note in particular that when
x =y, the set G(z,x) is a subgroupoid of G with a single vertex, and hence is
a group. The groups G(z,z), for x € V(G), are called the vertex groups or local
groups of G.

If G and H are groupoids, a homomorphism ¢: G — H is a function with the
property: if (g1,92) € G, then (¢(g1),¢(g2)) € H® and ¢(g192) = d(g1)$(g2)-
In this situation, it is easy to check that ¢ is also a map of directed graphs.

A subset H of a groupoid G is a subgroupoid of G if:

(1) H is a sub-directed graph of G;
(2) if hy,hy € H and (hy, he) € GP), then hihy € H; and
(3) h~! € H whenever h € H.

In this case, H is itself a groupoid under the restrictions of the operations on
G.

The product groupoid of groupoids G; and Gs is the directed graph Gp x
Gy with partial binary operation (Gj x Gg)@) — G171 X Go defined as follows.
If (gl,gg),(hl,hg) S Gl X GQ and t(gl,gz) = S(hl,hg), then (gl,gg)(hl,hg) =
(g1h1, g2hsa). The product of an arbitrary family of groupoids is defined similarly.

An equivalence relation p on a groupoid G is called a congruence if it is also
a subgroupoid of the product groupoid G x G. That is, a congruence on G is an
equivalence relation p on G with the properties:

(1) if (g,h) € p, then (s(g),s(h)) € p and (t(g),t(R)) € p;
(2) if (g1, 92), (h1,ha) € p and t(g1,92) = s(h1, ha), then (g1h1, gahso) € p; and

(3) if (g,h) € p, then (g7, h™1) € p.
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However, in this situation, the quotient of the underlying directed graph G/p need
not admit a structure of a groupoid such that the natural map v: G — G/p is a
homomorphism. For instance, suppose G has distinct vertices z,¥, z, w such that
G(z,y) and G(z,w) are non-empty but G(z,w) = 0. Let p be the congruence on G
that identifies y to z. Then G/p has arrows from v(z) to v(y) = v(z) and arrows
from v(y) = v(z) to v(w), but no arrows from v(z) to v(w). Hence G/p does not
admit any structure of a groupoid at all.

To avoid this difficulty, we restrict our attention to a certain type of congruences
that behave better. To describe these, we make use of the following notation. If I'
is any directed graph (for example, a groupoid) and n is a positive integer, let T'(")
denote the set of consecutive n-tuples (z1,...,xz,) of elements of T' (i.e., t(x;) =
s(xi41) for all 1 < i < n—1). Given any map of directed graphs f: ' — A, we
use the same symbol to denote the induced map on the sets of consecutive n-tuples
f: T — AM given by f(x1,...,2,) = (f(21),..., f(xn)). Let G denote the
category whose class of objects consists of all directed graphs and whose morphisms
are all maps of directed graphs f: I' — A such that f(I'®)) = A®). We call these
morphisms G-maps. Note that if f: ' — A is a G-map, then f is surjective and
also f(I'®) = A®), Finally, we say that a homomorphism of groupoids f: G — H
is a G-homomorphism if its underlying map of directed graphs is a G-map.

By a G-congruence on a groupoid GG, we mean a congruence p on GG whose
natural homomorphism v: G — G/p is a G-map. In this situation, the quotient
G/ p of the underlying directed graph of G admits a unique groupoid structure such
that v is a G-homomorphism. The inversion map and partial product on G/p are
given by v(g)~! = v(g~") and v(g1)v(g2) = v(g1g2) for all g € G and (g1, g2) € G2,
which are well-defined since p is a congruence and v(G(?)) = (G/p)?). Associativity
of this partial product on G/p carries over from G since v(G®) = (G/p)®).

Definition 6.4. Let G be a groupoid endowed with a uniformity. A cofinite
congruence on G is a G-congruence p of finite indexes on G such that p is also an
entourage of G. We say that G is a cofinite groupoid if it is Hausdorff and the set
of cofinite congruences on G is a base for its uniformity.

Note that a cofinite groupoid has an underlying cofinite directed graph struc-
ture, and thus has uniformly continuous source and target maps by Lemma 4.2. We
observe next that the same goes for the involution and partial product maps.

Lemma 6.5. Let G be a cofinite groupoid. Then the involution map G — G,
g — g~', and the partial product G — G, (g, h) — gh, are uniformly continuous

maps.

Proof. Since the cofinite congruences p on G form a base for its uniformity, and
(971, h™1) € p whenever (g,h) € p, it follows that the involution map g + g=! is
uniformly continuous. Also given any cofinite congruence p on G, (p x p) N G?
is an entourage of G(? such that: for all (gi,h1), (g2, h2) € G, if (g1,92) € p
and (hy,hy) € p, then (g1h1,gohs) € p. Thus the partial product G — G is a
uniformly continuous map. O
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In particular, it follows from Lemma 6.5 that a cofinite groupoid is a Hausdorff
topological groupoid. Recall that a topological groupoid is a groupoid G endowed
with a topology such that the maps G — G, g +— g~ and G — G, (g,h) — gh,
are continuous (where G(? is endowed with the subspace topology of the prod-
uct space G X G). Note that in this situation, the source and target maps are
also continuous since s(g) = gg~! and t(g) = g~'g. Hence a topological groupoid
has an underlying topological directed graph structure. The category of topolog-
ical groupoids is the category whose objects are topological groupoids and whose
morphisms are continuous homomorphisms of groupoids.

Every subgroupoid H of a topological groupoid G is given the subspace topol-
ogy and thus becomes a topological groupoid. The product of a family (G;);cs of
topological groupoids exists in the category of topological groupoids and can be
constructed by taking the product [[G; of the underlying topological spaces and
giving it the groupoid structure described above. Similarly, the inverse limit of an
inverse system of topological groupoids and continuous homomorphisms exists in
the category of topological groupoids, and its underlying topological space is the
inverse limit of the corresponding inverse system of underlying spaces.

It is clear that each vertex group of a topological groupoid is a topological group.
For cofinite groupoids we can say even more.

Proposition 6.6. If G is a cofinite groupoid and x € V(G), then the vertex group
G(z,x) is a cofinite group.

Proof. Since G is Hausdorff, G(z, ) is also Hausdorff.

The set {p[x] N G(x,x) | p is a cofinite congruence on G} is a base of open neigh-
borhoods for the identity x in G(z,z). However, if p is a cofinite congruence on G,
then p N [G(x, ) x G(x,z)] is a congruence of finite indexes on the group G(z, z)
and plx] N G(z,z) is the congruence class of the identity. It follows that each
plx] N G(x, ) is a normal subgroup of finite indexes in G(x,x). Hence the identity
in G(x,x) has a neighborhood base consisting of open normal subgroups of finite
indexes in G(z,x), and hence is a cofinite group. |

Note that every cofinite groupoid G has an underlying cofinite directed graph
structure. We let G denote the completion of the underlying cofinite directed graph
of G. We make use of the following lemma below.

Lemma 6.7. Let G be any cofinite groupoid. Then G? s dense in @(2) (as
subspaces of the product space G x G).

Proof. Let p be a cofinite congruence on I' and let v: G — G/p be the natural map.
Let 7: G — G/p be the unique continuous extension of v. Since p is a G-congruence,
7(G?) = (G/p)@ and thus 7[G"] = (G/5) also holds (by Corollary 5.11). Since
p = kerv (by the proof of Lemma 5.9), it follows that % ¢ (P x p)[G?] =
Ug.nyec (plg] x plh]). Let I be the non-empty set of all cofinite congruence on
I'. Then using Theorem 5.10, we see that the set {5 x p | p € I'} is a base for the
product uniformity on G x G. Thus a® € Nyer(@ xp) [GP)] = G@). Tt follows
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that G@ is dense in 6(2). O

Theorem 6.8. Let G is a cofinite groupoid. Then G admits a unique topological
groupoid structure such that G is a uniform subgroupoid. Moreover, equipped with
this structure, G is a profinite groupoid.

Proof. Construct G using the standard construction of Lemma 5.5 with I equal to
the set of all cofinite congruences p on G. Since [ is a base for the uniformity on
G, it is a cofinal set of cofinite entourages of the underlying cofinite graph of G.

Thus G = Tglpe ! G/p is the completion of the underlying cofinite directed graph

of G. For each p € I, equip G/p with its unique groupoid structure such that the
natural map G — G/p is a homomorphism. Then each G/p is a discrete toplological
groupoid. Moreover, by the definition of the operations on G/p, it is clear that if
p,o € I with p < o, then ¢,,: G/o — G/p is a homomorphism of groupoids. Now
G is a profinite groupoid and the canonical map G' < G is a uniform embedding and
a homomorphism. Uniqueness of this topological groupoid structure on G follows

from G being dense in G and G(?) being dense in G? (by Lemma 6.7). O

The following corollaries of Theorem 6.8 are worth noting. The first is an
immediate consequence.

Corollary 6.9. If G is a compact cofinite groupoid, then G is a profinite groupoid.

Corollary 6.10. Let G be a cofinite groupoid and equip G with its unique topolog-
ical groupoid structure such that G is a uniform subgroupoid. If p is any cofinite
congruence on G, then 7 is a cofinite congruence on G. Moreover, all cofinite con-
gruences on G are of this form.

Proof. By the proof of Theorem 5.9, p = ker, where 7: G — G/p is the unique
continuous extension of the natural map v: G — G/p. Endow G/p with the unique
groupoid structure such that v is a homomorphism. Then applying Lemma 6.7, we
see that 7 is also a homomorphism. Therefore p = ker 7 is a congruence on G. Let
n: G — G/p be the natural map. Since v is a G-map, it follows from Corollary 5.11
that 7 is also a G-map and thus p is a G-congruence. However p is also an entourage
of G by Lemma 5.9, so it is cofinite congruence on G.
Conversely, let o be any cofinite congruence on G. Then the restriction p =
o N (G x Q) is a cofinite congruence on G, and as in the proof of Lemma 5.9, p = o.
O

Corollary 6.11. Let G be a cofinite groupoid and equip G with its unique topo-
logical groupoid structure such that G is a uniform subgroupoid. If H is a compact
Hausdorff topological groupoid and ¢: G — H is a uniformly continuous homomor-
phism, then the unique continuous map ¢: G — H extending ¢ is a homomorphism
of groupoids.

Proof. The set C' = {(g,h) € G | ¢(gh) = #(g)p(h)} is a closed subset of a?
containing G(?). So, by Lemma 6.7, C' = 6(2) and hence ¢ is a homomorphism. [J
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6.4. Cofinite Groupoids with Finite Vertex Sets

We will see that cofinite groupoids with only finitely many vertices behave very
much like cofinite groups in many regards. To start with, we make a convenient
definition.

We say that a congruence p on a groupoid G is rigid if its restriction to V(G) is
trivial; i.e., p N [V(G) x V(G)] = dy (). In this case, if (g,h) € p, then s(g) = s(h)
and t(g) = t(h). In particular, when p is rigid, the natural map v: G — G/p has
the property that v[(G®)] = (G/p)®), and so (as in the proof of Theorem 6.8) G/p
has a unique groupoid structure such that v: G — G/p is a homomorphism (and it
is bijective on the vertex sets).

There is an equivalent alternative approach to rigid congruences using normal
subgroups. Notice that if p is a rigid congruence on a groupoid G, then for each
x € V(G), the congruence class plx] is a normal subgroup of the vertex group
G(z,r) and this family (p[z])zev () is coherent in the following sense: if g € G, then
pls(9))? = plt(g)] (where p[s(9)]9 = g~'p[s(g)]g). Conversely, if (N;)zev () is any
coherent family of normal subgroups of G, then there is a unique rigid congruence
p on G such that p[z] = N, for all x € V(G); it is defined by (g, h) € p if and only
if s(g) = s(h), t(g) = t(h), and gh™' € Ny(4) (or equivalently, g~*h € Ny(g)).

In order for a groupoid to have rigid congruences of finite indexes, its vertex set
must be finite. And in this case, we make the following very useful observation.

Lemma 6.12. Let G be a cofinite groupoid with a finite vertex set. Then the set
of rigid cofinite congruences on G is a base for its uniformity.

Proof. We are assuming that G is non-empty as the assertion is trivial in the case
where G is empty. Since G is Hausdorff, its finite vertex set V(G) is a discrete
subset of G. So for each x € V(G), there exists a cofinite congruence p, on G such
that p.[z] NV (G) = {z}. Then the finite intersection o = Nycy (¢)p2 is a cofinite
congruence on G and it is rigid. Consequently, the set of all p N o, where p runs
through all cofinite congruences on G, is a base for the uniformity on G consisting
of rigid cofinite congruences. O

Extending a property of cofinite groups, we next observe that every cofinite
groupoid with only finitely many vertices is completely determined by its topological
groupoid structure.

Proposition 6.13. Let G be a topological groupoid with a finite vertex set. Then
G has a uniformity making it into a cofinite groupoid and inducing its topology if
and only if each G(x,y) is an open subset of G and each vertex group G(x,x) is a
cofinite group, for x,y € V(G). Moreover, in this case, such a uniformity on G is
unique.

Proof. Suppose that the G(z,y) are open and that the G(z, x) are cofinite groups.
By taking one component at a time, we may assume that the underlying directed
graph of G is connected; i.e., that G(z,y) is non-empty for all z,y € V(G). Fix
z € V(G). Then for each open normal subgroup N of G(z,x), we claim that
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there is a unique rigid congruence of finite indexes py on G such that py[z] = N.
We construct py by forming a coherent family of normal subgroups N, < G(y,y),
y € V(G). For each y € V(G), choose g € G(z,y) and put N, = N9. Note that N,
does not depend on the choice of g since N is a normal subgroup of G(z,x). Let
pn be the corresponding rigid congruence on G with p[y] = N, for each vertex y.
In particular, p[z] = N, = N and it is clear that py is the unique such congruence
on G. Furthermore, py has finite index. Indeed, if we make a choice of g, €
G(z,y) for each y € V(G), then every congruence class is of the form py [gy_lggz] =
9y 'pnlglg: = g; ' (gN)g. for some y,z € V(G) and g € G(z,x). Thus, if G has n
vertices, then the index of py is n? times the index of N in G(z, ). For later use,
also note that each congruence class of py is an open subset of G since the cosets
gN are open in G(z,z) and we are assuming that each G(z,y) is open in G.

Note that B = {py | N is an open normal subgroup of G(z,z)} is a base for
a uniformity on G. Indeed, if N7 and Ns are open normal subgroups of G(z,z),
then so is Ny N N and pn, AN, = pn, N pPN,- We claim that this uniformity induces
the topology on G. Let U be an open subset of G and let g € U. Put y = s(g)
and z = t(g) so that g € G(y,z). Choose g, € G(z,y) and g, € G(z,z). Then
94995 " € G(z,z). Since we are assuming that G(y, z) is open in G, we may assume
that U C G(y,z) and so g,Ug; ' is an open subset of G(z,x) containing g,gg; .
However G(x,x) is a cofinite group, and so there exists an open normal subgroup
N such that g,g99;'N C g,Ug;'. Since g,997'N = pnlgy99: '] = gypnlgles?, it
follows that pn[g] € U and hence U is open in the uniform topology generated by
our base B. On the other hand, as previously noted, every congruence class py|g],
where N is an open normal subgroup of G(z,z) and g € G, is open in G. Hence
the uniform topology generated by B is equal to the topology on G, as claimed.

We have seen that the topology on G is generated by a uniformity with a base
consisting of congruences of finite indexes on G. It remains to check that G is
Hausdorff. But this follows easily by noting that G is the disjoint union of the open
subsets G(y, 2), y, z € V(G), and each G(y, z) is homeomorphic to G(x, z) which is
Hausdorff (being a cofinite group).

Conversely assume that G has a cofinite groupoid structure. By Proposition 6.6,
each vertex group G(x,z) is a cofinite group. By Lemma 6.12, there exists a rigid
cofinite congruence o on G. Then for all g € G(x,y), we see that o[g] C G(z,y),
and so each G(z,y) is open in G.

For the last part, consider any cofinite groupoid structure on G that induces its
topology. By Lemma 6.12, this uniformity on G has a base, say C, consisting of rigid
congruences of finite indexes on G. Given any p € C and x € V(G), the congruence
class N = p[x] is an open normal subgroup of G(z,z). By the uniqueness of such
a rigid congruence, py = p C p and py € B. On the other hand, given any open
normal subgroup N of G(z,x), there exists p € C such that p[zr] C N (since N is
also open in G and z € N). Now p and px are rigid congruences with p[z] C pn[z],
and thus p C py. It follows that C' and B are bases for the same uniformity on G,
and hence G has a unique cofinite groupoid structure that induces it topology. [
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Viewing groups as groupoids with a single vertex, we obtain the following result
as an immediate corollary.

Proposition 6.14. A Hausdorff topological group G is a cofinite group if and only
if there is a uniformity on G with a base consisting of congruences of finite indexes
on G that induces the topology on G. Moreover, in this case, such a uniformity on
G is unique.

The following is a refinement of Theorem 6.8 for cofinite groupoids with finite
vertex sets.

Theorem 6.15. Let G be a cofinite groupoid with a finite vertex set. Then V(G) =
V(G) and G admits a unique cofinite groupoid structure such that G is a uniform
subgroupoid. Moreover, endowed with this structure, G is a profinite groupoid and
the rigid cofinite congruences on G consist precisely of the closures p of all rigid
cofinite congruences p on G.

Proof. By Lemma 5.8, V(G) = V(G) = V(G) (since a finite subset of a Hausdorff
space is closed). The rest of the result follows from Theorem 6.8 and Corollary 6.10

since when V(G) = V(G), it is clear that a cofinite congruence p on G is rigid if
and only if its closure p is rigid. O

6.5. The Fundamental Profinite Groupoid of a Profinite Graph

We conclude by briefly sketching an application of the theory of completions of
cofinite groupoids which we explore in greater detail in a subsequent paper. Initially,
let T be a finite discrete graph and let 71 (T") be its fundamental groupoid (see, for
instance, [6]). Endow 71 (I") with the uniformity having a base consisting of all rigid
congruences of finite indexes on 71 (I'). Note that for each vertex v of T, the vertex
group based at v is the fundamental group (', v), which is a free group. It is a
well-known fact that free groups are residually finite. So, by the correspondence
between coherent families of normal subgroups of finite indexes of the vertex groups
and rigid congruences on m(T'), it follows that the 71 (T") is Hausdorff (i.e., the
intersection of all congruences of finite indexes is identity congruence on 71 (I))
and thus a cofinite groupoid. (This is clearly the unique maximal cofinite groupoid
structure on 71(I').) We call the completion of 71(I'), endowed with the unique
cofinite groupoid structure such that 71(T") is a uniform subgroupoid, the profinite
fundamental groupoid of I' and denote it by

7?1(1—‘) = 7T1(F).

Although this construction only requires the vertex set of I' to be finite, we will
only be applying it to finite graphs in what follows.

By Theorem 6.15, 71(T") is a profinite groupoid whose vertex set is V(1 (I")) =
V(D).

Next let f: I' — A be a map of finite graphs. We use the same symbol to
denote the induced homomorphism f: m1(I') — 71 (A); see [6] for more details on
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the fundamental groupoid functor. Then, by Corollary 6.11, the unique continuous
extension of f is a homomorphism of groupoids which we denote by

F:7(D) = 71(A).

Moreover, if f: ' =+ A and g: A — Q are maps of finite graphs, then it is clear
that ;} = §f It is also clear that the identity map on I' induces the identity
homomorphism in 71 (I"). Thus we have defined a functor from the category of
finite discrete graphs and maps of graphs to the category of profinite groupoids
and continuous homomorphisms. We extend this functor to the entire category of
profinite graphs and continuous maps of graphs as follows.

Let " be any profinite graph and let I be the set of all cofinite entourages of T'.
By Theorem 3.4, I is a base for the uniformity on I' and it follows that I' = @F R,
the projective limit of the inverse system (I'r, ¢rs) of finite discrete graphs and sur-
jective maps of graphs indexed by the directed set I (partially ordered by reverse
inclusion). Applying our profinite fundamental groupoid functor to this inverse sys-
tem yields an inverse system of profinite groupoids and continuous homomorphisms
(71(TR), ¢rs) indexed by the directed set I. We define the profinite fundamental
groupoid of T' to be the inverse limit (in the category of topological groupoids) of
this system and denote it by

#1(I) = lim 7 (TR).

It should be noted that when I is a finite graph, this latter definition of 7, (I")
agrees with the former one above since in this case the singleton set {dr} is a
cofinal subset of the directed set I, and thus lim 7 (I'z) = 71(I'/dr) and I'/op =T.
Moreover, it easy to see that an inverse limit of profinite groupoids is also a profinite
groupoid. Thus the profinite fundamental groupoid of any profinite graph is in
general a profinite groupoid.

Turning to induced homomorphisms, we sketch a proof of the following result.

Theorem 6.16. Let I', A be profinite graphs and let f: ' — A be a continuous
map of graphs. Then there is a unique continuous map f: T () = 71 (A) such that
for each pair R, S of cofinite graph entourages of T', A respectively with f(R) C S,
the diagram

20— #(A)

¢Rl lws
#1(Tr) —2% 7 (Ag)

is commutative. Moreover, f is a homomorphism of groupoids.

Let I, J be the set of all cofinite graph entourages of I, A respectively. De-
note the canonical projection maps by ¢g: 71(I') = 71 (I'/R) and ¢s: T1(A) —
m1(A/S), for each Re€ I and S € J.
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Step 1. For each S € J, there is a unique map fs: 71 () = w1 (A/S) such that if
R eI and f(R) C S, then fs = fSR¢R Moreover, being the composition of two
continuous homomorphisms, fs is also a continuous homomorphism.

Since f is uniformly continuous, we can choose R € I such that f(R ) - S Thus

it suffices to show that if Ry, Re € I and f(R;) C S, then fSR1 gle fSR2¢R2. To
see this, let R = R; N Ry. Note that R € I with R; < R, and so fsr,¢r, =
fg Ry gb Ry RQS r. However, by the functorial propertles of homomorphlsms induced by

maps of finite graphs, fSR1¢R1R = fsmomp = fsr. Thus fsr,Or, = fsrdn.
Similarly f532 ¢32 fSR(,sz, and step 1 is completed.

Step 2. The family of maps (fS)SEJ is compatible with the inverse system (m1(A/S),
wsl s,) and thus determines a unique continuous homomorphism i I) — m(4A)
such that @Z)gf = fs for all S € J.

 Let Sy < S in J. Choose R € I such that f(R) C Sy N Sy. Then s, s, fs, =
V8,8, fs.r®r (by Step 1 since f(R) C S2). However, by the functorial properties of
homomorphisms induced by maps of finite graphs, 125152 f52 R= 7,/}51/52-%2 R = fgl R-
Thus 125152 fgz = ]/{slequ = fsl (by Step 1 since also f(R) C Sy).

Now by Steps 1 and 2, the homomorphism f: 71 (I') — 71 (A) has the desired

property.
It is now an easy exercise to show that the functorial properties hold in general
for induced homomorphisms:

1. If i: T' — T is the identity map on a profinite graph I', then 7 is the identity
homomorphism on 7 (T).

2. If ', A, and € be profinite graphs and ' T A2 Qare uniformly continuous
maps of graphs, then gf = gf.
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