Commun. Korean Math. Soc. 33 (2018), No. 3, pp. 705-710

 $\begin{array}{l} {\rm https://doi.org/10.4134/CKMS.c170254} \\ {\rm pISSN:~1225\text{-}1763~/~eISSN:~2234\text{-}3024} \end{array}$

REMARKS ON ISOMORPHISMS OF TRANSFORMATION SEMIGROUPS RESTRICTED BY AN EQUIVALENCE RELATION

CHAIWAT NAMNAK AND NARES SAWATRAKSA

ABSTRACT. Let T(X) be the full transformation semigroup on a set X and σ be an equivalence relation on X. Denote

$$E(X, \sigma) = \{ \alpha \in T(X) : \forall x, y \in X, (x, y) \in \sigma \text{ implies } x\alpha = y\alpha \}.$$

Then $E(X, \sigma)$ is a subsemigroup of T(X). In this paper, we characterize two semigroups of type $E(X, \sigma)$ when they are isomorphic.

1. Introduction and preliminaries

Let X be an arbitrary nonempty set. The semigroup T(X) of all transformations on X consists of the mappings from X into itself with composition as the semigroup operation. In [4], H. Pei studied subsemigroups of T(X) determined by an equivalence relation σ on X, defined by:

$$T(X, \sigma) = \{ \alpha \in T(X) : \forall x, y \in X, (x, y) \in \sigma \text{ implies } (x\alpha, y\alpha) \in \sigma \}.$$

It is clear that if $\sigma \in \{\Delta(X), X \times X\}$, where $\Delta(X)$ is the identity relation on X, then $T(X,\sigma) = T(X)$. He also discussed regularity of elements and Green's relations for $T(X,\sigma)$. Recently, R. P. Sullivan and S. Mendes-Gonçalves introduced a subsemigroup of T(X) defined by

$$E(X, \sigma) = \{ \alpha \in T(X) : \forall x, y \in X, (x, y) \in \sigma \text{ implies } x\alpha = y\alpha \}$$

and called it the semigroup of transformations restricted by the equivalence σ in [3]. Then $E(X,\sigma)$ is a subsemigroup of $T(X,\sigma)$. The authors characterized Green's relations on the largest regular subsemigroup of $E(X,\sigma)$. They also showed that if $|X| \geq 2$ and $\sigma \neq \triangle(X)$, then $E(X,\sigma)$ is not isomorphic to T(Z) for any set Z.

We easily get the following proposition which is a characterization of $E(X, \sigma)$.

Received June 16, 2017; Revised October 17, 2017; Accepted December 28, 2017. 2010 Mathematics Subject Classification. 20M20.

Key words and phrases. transformation semigroup, isomorphism theorem, equivalence. This work was financially supported by Naresuan University Grant number R2560C186.

Proposition 1.1. Let σ be an equivalence relation on a set X. Then the following statements hold.

- (1) $id_X \in E(X,\sigma)$ if and only if $\sigma = \triangle(X)$ where id_X is the identity mapping on X.
- (2) If σ and ρ are equivalence relations on X with $\rho \subseteq \sigma$, then $E(X, \sigma) \subseteq E(X, \rho)$.
- (3) $E(X,\sigma) = T(X,\sigma)$ if and only if $\sigma = \triangle(X)$. If this is the case, then $E(X,\sigma) = T(X)$.
- J. Sanwong and W. Sommanee [6] introduced and studied the subsemigroup

$$T(X,Y) = \{ \alpha \in T(X) : X\alpha \subseteq Y \}$$

of T(X) where $\emptyset \neq Y \subseteq X$. We establish an embedding theorem for the semigroup $E(X, \sigma)$ into the semigroup T(Y, Z).

Proposition 1.2. Let σ be an equivalence relation on a set X. Every semi-group $E(X,\sigma)$ is embeddable in a semigroup T(Y,Z) for some sets Y and Z with $Z \subseteq Y$.

Proof. Let $Y = \sigma$ and $Z = \Delta(X)$. Then $Z \subseteq Y$. For each $\alpha \in E(X, \sigma)$, we define $\beta_{\alpha} \in T(Y)$ by

$$(x,y)\beta_{\alpha} = (x\alpha, y\alpha)$$
 for all $(x,y) \in Y$.

Since $\alpha \in E(X, \sigma)$, it then follows that $Y\beta_{\alpha} \subseteq Z$. Hence $\beta_{\alpha} \in T(Y, Z)$. Define $\phi : E(X, \sigma) \to T(Y, Z)$ by

$$\alpha \phi = \beta_{\alpha}$$
 for all $\alpha \in E(X, \sigma)$.

Let $\alpha_1, \alpha_2 \in E(X, \sigma)$. To show that $\beta_{\alpha_1 \alpha_2} = \beta_{\alpha_1} \beta_{\alpha_2}$, let $(x, y) \in Y$. Then

$$(x,y)\beta_{\alpha_1\alpha_2}=(x\alpha_1\alpha_2,y\alpha_1\alpha_2)=(x\alpha_1,y\alpha_1)\beta_{\alpha_2}=(x,y)\beta_{\alpha_1}\beta_{\alpha_2}.$$

Hence ϕ is a homomorphism. Suppose that $\alpha_1 \phi = \alpha_2 \phi$. Then $\beta_{\alpha_1} = \beta_{\alpha_2}$. If $x \in X$, then $(x, x) \in Y$ and

$$(x\alpha_1, x\alpha_1) = (x, x)\beta_{\alpha_1} = (x, x)\beta_{\alpha_2} = (x\alpha_2, x\alpha_2).$$

Hence $x\alpha_1 = x\alpha_2$ for all $x \in X$ which implies that ϕ is injective. Therefore the theorem is proved.

Over the past, isomorphism theorems for semigroups have been widely considered, see [1,2,5,7]. The purpose of this paper is to find necessary and sufficient conditions for two transformation semigroups restricted by a equivalence in order to be isomorphic.

2. Main results

For the fixed equivalence relation σ on a set X and $a \in X$, we write $a\sigma$ for the set of all elements of X that are equivalent to a, that is, $a\sigma = \{x \in X : (a, x) \in \sigma\}$.

To obtain the main result, the following two lemmas are needed.

Lemma 2.1. Let $\alpha \in E(X, \sigma)$. Then α is a right zero element of $E(X, \sigma)$ if and only if α is constant.

Proof. It is clear that if α is constant, then $\beta \alpha = \alpha$ for all $\beta \in E(X, \sigma)$.

Suppose that α is nonconstant. Then there exist distinct elements $a, b \in X\alpha$. Thus $a'\alpha = a$ and $b'\alpha = b$ for some $a', b' \in X$. Since $\alpha \in E(X, \sigma)$ and $a'\alpha \neq b'\alpha$, we deduce that $(a', b') \notin \sigma$. Define $\beta \in T(X)$ by

$$x\beta = \begin{cases} a', & \text{if } x \in b'\sigma, \\ b', & \text{otherwise} \end{cases}$$

for all $x \in X$. It is clear that $\beta \in E(X, \sigma)$. Since $b'\beta\alpha = a'\alpha = a$ and $b'\alpha = b$, it follows that $\beta\alpha \neq \alpha$. Consequently, α is not a right zero element of $E(X, \sigma)$.

Hence the corollary is an immediate consequence of Lemma 2.1.

Corollary 2.2. $E(X, \sigma)$ is a right zero semigroup if and only if $\sigma = X \times X$.

Proof. Suppose that $\sigma \neq X \times X$. Then there exist $a, b \in X$ such that $(a, b) \notin \sigma$. Thus $a \neq b$. Define $\alpha \in E(X, \sigma)$ by

$$x\alpha = \begin{cases} a, & \text{if } x \in a\sigma, \\ b, & \text{otherwise} \end{cases}$$

for all $x \in X$. Then α is nonconstant in $E(X, \sigma)$. By Lemma 2.1, α is not a right zero element of $E(X, \sigma)$.

Conversely, assume that $\sigma = X \times X$. Then the semigroup $E(X, \sigma)$ consists of all constant mappings in T(X). By Lemma 2.1, $E(X, \sigma)$ is a right zero semigroup.

Lemma 2.3. Let $\alpha_1, \alpha_2 \in E(X, \sigma)$ and $a \in X$. If $a\alpha_1\beta = a\alpha_2\beta$ for all $\beta \in E(X, \sigma)$, then $(a\alpha_1, a\alpha_2) \in \sigma$.

Proof. Suppose that $(a\alpha_1, a\alpha_2) \notin \sigma$. Then $a\alpha_1 \neq a\alpha_2$. Define $\beta \in T(X)$ by

$$x\beta = \begin{cases} a\alpha_1, & \text{if } x \in (a\alpha_1)\sigma, \\ a\alpha_2, & \text{otherwise} \end{cases}$$

for all $x \in X$. It is easy to see that $\beta \in E(X, \sigma)$ and $a\alpha_1\beta \neq a\alpha_2\beta$.

From now on, suppose that σ_1 and σ_2 are equivalence relations on sets X and Y, respectively. In what follows, |A| means the cardinality of the set A.

Theorem 2.4. $E(X, \sigma_1)$ and $E(Y, \sigma_2)$ are isomorphic as semigroups if and only if there exists a bijection $\theta: X \to Y$ such that $(x\sigma_1)\theta = (x\theta)\sigma_2$ for all $x \in X$.

Proof. Assume that $E(X, \sigma_1)$ and $E(Y, \sigma_2)$ are isomorphic. Let $\varphi : E(X, \sigma_1) \to E(Y, \sigma_2)$ be an isomorphism.

For each $a \in X$, we define $\alpha_a \in E(X, \sigma_1)$ by $x\alpha_a = a$ for all $x \in X$. By Lemma 2.1, α_a is a right zero element of $E(X, \sigma_1)$ and hence

$$\alpha_a \varphi = (\beta \alpha_a) \varphi = (\beta \varphi)(\alpha_a \varphi)$$
 for all $\beta \in E(X, \sigma_1)$.

Since φ is a bijection, we deduce that $\alpha_a \varphi$ is a right zero element of $E(Y, \sigma_2)$. Then from Lemma 2.1, there exists a unique $y_a \in Y$ such that $y(\alpha_a \varphi) = y_a$ for all $y \in Y$.

Define $\theta: X \to Y$ by

$$x\theta = y_x$$
 for all $x \in X$.

Clearly, θ is well-defined. Let $x_1, x_2 \in X$ be such that $x_1\theta = x_2\theta$. Then $y_{x_1} = y_{x_2}$ which implies that $\alpha_{x_1}\varphi = \alpha_{x_2}\varphi$. Since φ is injective, it follows that $\alpha_{x_1} = \alpha_{x_2}$ and hence $x_1 = x_2$. This shows that α is injective.

To show that θ is surjective, let $y \in Y$. Then there exists $\beta_y \in E(Y, \sigma_2)$ such that $z\beta_y = y$ for all $z \in Y$. Since φ^{-1} is an isomorphism and β_y is a right zero of $E(Y, \sigma_2)$, it follows that $\beta_y \varphi^{-1}$ is a right zero of $E(X, \sigma_1)$. Then there exists an element $x' \in X$ such that $w(\beta_y \varphi^{-1}) = x' = w\alpha_{x'}$ for all $w \in X$. Since $\alpha_{x'}\varphi = \beta_y \varphi^{-1}\varphi = \beta_y$, we have $y_{x'} = y$. Therefore $x'\theta = y$ and whence θ is surjective.

Finally, we will show that $(x\sigma_1)\theta = (x\theta)\sigma_2$ for all $x \in X$. Let $x \in X$ and $a \in (x\sigma_1)\theta$. Then $a = b\theta$ for some $b \in x\sigma_1$ and thus $(x,b) \in \sigma_1$. It follows that $\alpha_x\beta = \alpha_b\beta$ for all $\beta \in E(X,\sigma_1)$. Since φ is a homomorphism,

$$(\alpha_x \varphi)(\beta \varphi) = (\alpha_x \beta) \varphi = (\alpha_b \beta) \varphi = (\alpha_b \varphi)(\beta \varphi)$$

for all $\beta \in E(X, \sigma_1)$. Since φ is a bijection, it follows that

$$(\alpha_x \varphi)\gamma = (\alpha_b \varphi)\gamma$$
 for all $\gamma \in E(Y, \sigma_2)$.

We note here that if $y \in Y$, then $y(\alpha_x \varphi)\gamma = y(\alpha_b \varphi)\gamma$ for all $\gamma \in E(Y, \sigma_2)$. By Lemma 2.3, we obtain that $(y(\alpha_x \varphi), y(\alpha_b \varphi)) \in \sigma_2$. Since $(y(\alpha_x \varphi), y(\alpha_b \varphi)) = (y_x, y_b) = (x\theta, b\theta) = (x\theta, a)$, we deduce $a \in (x\theta)\sigma_2$. This proves that $(x\sigma_1)\theta \subseteq (x\theta)\sigma_2$. For the reverse inclusion, let $c \in (x\theta)\sigma_2$. Then $(c, x\theta) \in \sigma_2$. Since θ is surjective, $c = d\theta$ for some $d \in X$. It follows that $(\alpha_x \varphi)\beta = (\alpha_d \varphi)\beta$ for all $\beta \in E(Y, \sigma_2)$. Since φ^{-1} is a homomorphism,

$$((\alpha_x \varphi) \varphi^{-1})(\beta \varphi^{-1}) = (\alpha_x \varphi \beta) \varphi^{-1} = (\alpha_d \varphi \beta) \varphi^{-1} = ((\alpha_d \varphi) \varphi^{-1})(\beta \varphi^{-1})$$

for all $\beta \in E(Y, \sigma_2)$. It follows from the bijection of φ^{-1} that

$$d\alpha_x \gamma = d(\alpha_x \varphi) \varphi^{-1} \gamma = d(\alpha_d \varphi) \varphi^{-1} \gamma = d\alpha_d \gamma$$

for all $\gamma \in E(X, \sigma_1)$. By Lemma 2.3, we deduce that $(x, d) = (d\alpha_x, d\alpha_d) \in \sigma_1$, thus $d \in x\sigma_1$. This means that $c = d\theta \in (x\sigma_1)\theta$. Hence $(x\theta)\sigma_2 \subseteq (x\sigma_1)\theta$ and the equality holds.

Conversely, suppose that $\theta: X \to Y$ is a bijection such that $(x\sigma_1)\theta = (x\theta)\sigma_2$ for all $x \in X$. Define $\varphi: E(X, \sigma_1) \to E(Y, \sigma_2)$ by

$$\alpha \varphi = \theta^{-1} \alpha \theta$$
 for all $\alpha \in E(X, \sigma_1)$.

Let $\alpha \in E(X, \sigma_1)$. To show that $\alpha \varphi \in E(Y, \sigma_2)$, let $(x, y) \in \sigma_2$. Since θ is surjective, we have $x'\theta = x$ and $y'\theta = y$ for some $x', y' \in X$. By assumption, we then have $y'\theta \in (x'\theta)\sigma_2 = (x'\sigma_1)\theta$ which implies that $(y', x') \in \sigma_1$. Since $\alpha \in E(X, \sigma_1)$, it follows that $y'\alpha = x'\alpha$. Therefore

$$x\alpha\varphi = x\theta^{-1}\alpha\theta = x'\alpha\theta = y'\alpha\theta = y\theta^{-1}\alpha\theta = y\alpha\varphi.$$

This shows that $\alpha \varphi \in E(Y, \sigma_2)$, whence φ is well-defined. Let $\alpha_1, \alpha_2 \in E(X, \sigma_1)$. We see that

$$(\alpha_1 \alpha_2) \varphi = \theta^{-1} (\alpha_1 \alpha_2) \theta$$
$$= (\theta^{-1} \alpha_1 \theta) (\theta^{-1} \alpha_2 \theta)$$
$$= (\alpha_1 \varphi) (\alpha_2 \varphi).$$

Therefore φ is a homomorphism. It is easy to verify that φ is bijective. The theorem is thereby proven.

Corollary 2.5. For positive integers m and n, let X and Y be sets such that |X| = |Y| = n and $|X/\sigma_1| = |Y/\sigma_2| = m$. If $m \in \{1, n-1, n\}$, then $E(X, \sigma_1) \cong E(Y, \sigma_2)$.

Proof. Suppose that $m \in \{1, n-1, n\}$. Since |X| = |Y|, there exists a bijection $\theta: X \to Y$.

Case 1. m = 1. Then $\sigma_1 = X \times X$ and $\sigma_2 = Y \times Y$. Thus $(x\sigma_1)\theta = X\theta = Y = (x\theta)\sigma_2$ for all $x \in X$.

Case 2. m = n. Then $\sigma_1 = \triangle(X)$ and $\sigma_2 = \triangle(Y)$. Thus $(x\sigma_1)\theta = (x\theta)\sigma_2$ for all $x \in X$.

Case 3. m = n - 1. Then there exists a unique $a_1 \sigma_1 \in X/\sigma_1$ such that $|a_1 \sigma_1| = 2$ for some $a_1 \in X$, say that $a_1 \sigma_1 = \{a_1, a_2\}$ for some $a_2 \in X$. Similarly, $\{b_1, b_2\} \in Y/\sigma_2$ for some $b_1, b_2 \in Y$. Thus

$$x\sigma_1 = \{x\}$$
 for all $x \in X \setminus \{a_1, a_2\}$

and

$$y\sigma_2 = \{y\}$$
 for all $y \in Y \setminus \{b_1, b_2\}$.

Since $|X \setminus \{a_1, a_2\}| = |Y \setminus \{b_1, b_2\}|$, there exists $\varphi : X \setminus \{a_1, a_2\} \to Y \setminus \{b_1, b_2\}$ is a bijection. Define $\theta : X \to Y$ by

$$x\theta = \begin{cases} b_i, & \text{if } x = a_i, \\ x\varphi, & \text{otherwise} \end{cases}$$

for all $x \in X$. It is clear that θ is a bijection and each element x in X, $(x\sigma_1)\theta = (x\theta)\sigma_2$.

From the three cases above, $E(X, \sigma_1) \cong E(Y, \sigma_2)$ by Theorem 2.4.

Note that if $|X| \leq 3$ and σ is an equivalence on X, then $|X/\sigma| \in \{1,2,3\}$. The following corollary is a direct consequence of Corollary 2.5 and Theorem 2.4

Corollary 2.6. Let X and Y be sets such that $|X| = |Y| \le 3$. Then $E(X, \sigma_1) \cong E(Y, \sigma_2)$ if and only if $|X/\sigma_1| = |Y/\sigma_2|$.

References

- P. Jitjankarn and T. Rungratgasame, A note on isomorphism theorems for semigroups of order-preserving transformations with restricted range, Int. J. Math. Math. Sci. 2015 (2015), Art. ID 187026, 6 pp.
- [2] Y. Kemprasit, W. Mora, and T. Rungratgasame, Isomorphism theorems for semigroups of order-preserving partial transformations, Int. J. Algebra 4 (2010), no. 17-20, 799-808.
- [3] S. Mendes-Gonçalves and R. P. Sullivan, Semigroups of transformations restricted by an equivalence, Cent. Eur. J. Math. 8 (2010), no. 6, 1120–1131.
- [4] H. Pei, Regularity and Green's relations for semigroups of transformations that preserve an equivalence, Comm. Algebra 33 (2005), no. 1, 109–118.
- [5] T. Saitô, K. Aoki, and K. Kajitori, Remarks on isomorphisms of regressive transformation semigroups, Semigroup Forum 53 (1996), no. 1, 129–134.
- [6] J. Sanwong and W. Sommanee, Regularity and Green's relations on a semigroup of transformations with restricted range, Int. J. Math. Math. Sci. 2008 (2008), Art. ID 794013, 11 pp.
- [7] A. Umar, Semigroups of order-decreasing transformations: the isomorphism theorem, Semigroup Forum 53 (1996), no. 2, 220–224.

CHAIWAT NAMNAK
DEPARTMENT OF MATHEMATICS
FACULTY OF SCIENCE
NARESUAN UNIVERSITY
PHITSANULOK 65000, THAILAND
Email address: chaiwatn@nu.ac.th

NARES SAWATRAKSA
DEPARTMENT OF MATHEMATICS
FACULTY OF SCIENCE
NARESUAN UNIVERSITY
PHITSANULOK 65000, THAILAND
Email address: naress58@nu.ac.th