REMARKS ON ISOMORPHISMS OF TRANSFORMATION SEMIGROUPS RESTRICTED BY AN EQUIVALENCE RELATION

Chaiwat Namnak and Nares Sawatraksa

$$
\begin{aligned}
& \text { Abstract. Let } T(X) \text { be the full transformation semigroup on a set } X \\
& \text { and } \sigma \text { be an equivalence relation on } X \text {. Denote } \\
& \qquad E(X, \sigma)=\{\alpha \in T(X): \forall x, y \in X,(x, y) \in \sigma \text { implies } x \alpha=y \alpha\} .
\end{aligned}
$$

Then $E(X, \sigma)$ is a subsemigroup of $T(X)$. In this paper, we characterize two semigroups of type $E(X, \sigma)$ when they are isomorphic.

1. Introduction and preliminaries

Let X be an arbitrary nonempty set. The semigroup $T(X)$ of all transformations on X consists of the mappings from X into itself with composition as the semigroup operation. In [4], H. Pei studied subsemigroups of $T(X)$ determined by an equivalence relation σ on X, defined by:

$$
T(X, \sigma)=\{\alpha \in T(X): \forall x, y \in X,(x, y) \in \sigma \text { implies }(x \alpha, y \alpha) \in \sigma\}
$$

It is clear that if $\sigma \in\{\triangle(X), X \times X\}$, where $\triangle(X)$ is the identity relation on X, then $T(X, \sigma)=T(X)$. He also discussed regularity of elements and Green's relations for $T(X, \sigma)$. Recently, R. P. Sullivan and S. Mendes-Gonçalves introduced a subsemigroup of $T(X)$ defined by

$$
E(X, \sigma)=\{\alpha \in T(X): \forall x, y \in X,(x, y) \in \sigma \text { implies } x \alpha=y \alpha\}
$$

and called it the semigroup of transformations restricted by the equivalence σ in [3]. Then $E(X, \sigma)$ is a subsemigroup of $T(X, \sigma)$. The authors characterized Green's relations on the largest regular subsemigroup of $E(X, \sigma)$. They also showed that if $|X| \geq 2$ and $\sigma \neq \triangle(X)$, then $E(X, \sigma)$ is not isomorphic to $T(Z)$ for any set Z.

We easily get the following proposition which is a characterization of $E(X, \sigma)$.

[^0]Proposition 1.1. Let σ be an equivalence relation on a set X. Then the following statements hold.
(1) $i d_{X} \in E(X, \sigma)$ if and only if $\sigma=\triangle(X)$ where $i d_{X}$ is the identity mapping on X.
(2) If σ and ρ are equivalence relations on X with $\rho \subseteq \sigma$, then $E(X, \sigma) \subseteq$ $E(X, \rho)$.
(3) $E(X, \sigma)=T(X, \sigma)$ if and only if $\sigma=\triangle(X)$. If this is the case, then $E(X, \sigma)=T(X)$.
J. Sanwong and W. Sommanee [6] introduced and studied the subsemigroup

$$
T(X, Y)=\{\alpha \in T(X): X \alpha \subseteq Y\}
$$

of $T(X)$ where $\emptyset \neq Y \subseteq X$. We establish an embedding theorem for the semigroup $E(X, \sigma)$ into the semigroup $T(Y, Z)$.

Proposition 1.2. Let σ be an equivalence relation on a set X. Every semigroup $E(X, \sigma)$ is embeddable in a semigroup $T(Y, Z)$ for some sets Y and Z with $Z \subseteq Y$.

Proof. Let $Y=\sigma$ and $Z=\triangle(X)$. Then $Z \subseteq Y$. For each $\alpha \in E(X, \sigma)$, we define $\beta_{\alpha} \in T(Y)$ by

$$
(x, y) \beta_{\alpha}=(x \alpha, y \alpha) \text { for all }(x, y) \in Y .
$$

Since $\alpha \in E(X, \sigma)$, it then follows that $Y \beta_{\alpha} \subseteq Z$. Hence $\beta_{\alpha} \in T(Y, Z)$. Define $\phi: E(X, \sigma) \rightarrow T(Y, Z)$ by

$$
\alpha \phi=\beta_{\alpha} \text { for all } \alpha \in E(X, \sigma) .
$$

Let $\alpha_{1}, \alpha_{2} \in E(X, \sigma)$. To show that $\beta_{\alpha_{1} \alpha_{2}}=\beta_{\alpha_{1}} \beta_{\alpha_{2}}$, let $(x, y) \in Y$. Then

$$
(x, y) \beta_{\alpha_{1} \alpha_{2}}=\left(x \alpha_{1} \alpha_{2}, y \alpha_{1} \alpha_{2}\right)=\left(x \alpha_{1}, y \alpha_{1}\right) \beta_{\alpha_{2}}=(x, y) \beta_{\alpha_{1}} \beta_{\alpha_{2}} .
$$

Hence ϕ is a homomorphism. Suppose that $\alpha_{1} \phi=\alpha_{2} \phi$. Then $\beta_{\alpha_{1}}=\beta_{\alpha_{2}}$. If $x \in X$, then $(x, x) \in Y$ and

$$
\left(x \alpha_{1}, x \alpha_{1}\right)=(x, x) \beta_{\alpha_{1}}=(x, x) \beta_{\alpha_{2}}=\left(x \alpha_{2}, x \alpha_{2}\right) .
$$

Hence $x \alpha_{1}=x \alpha_{2}$ for all $x \in X$ which implies that ϕ is injective.
Therefore the theorem is proved.
Over the past, isomorphism theorems for semigroups have been widely considered, see $[1,2,5,7]$. The purpose of this paper is to find necessary and sufficient conditions for two transformation semigroups restricted by a equivalence in order to be isomorphic.

2. Main results

For the fixed equivalence relation σ on a set X and $a \in X$, we write $a \sigma$ for the set of all elements of X that are equivalent to a, that is, $a \sigma=\{x \in X$: $(a, x) \in \sigma\}$.

To obtain the main result, the following two lemmas are needed.
Lemma 2.1. Let $\alpha \in E(X, \sigma)$. Then α is a right zero element of $E(X, \sigma)$ if and only if α is constant.

Proof. It is clear that if α is constant, then $\beta \alpha=\alpha$ for all $\beta \in E(X, \sigma)$.
Suppose that α is nonconstant. Then there exist distinct elements $a, b \in X \alpha$. Thus $a^{\prime} \alpha=a$ and $b^{\prime} \alpha=b$ for some $a^{\prime}, b^{\prime} \in X$. Since $\alpha \in E(X, \sigma)$ and $a^{\prime} \alpha \neq b^{\prime} \alpha$, we deduce that $\left(a^{\prime}, b^{\prime}\right) \notin \sigma$. Define $\beta \in T(X)$ by

$$
x \beta= \begin{cases}a^{\prime}, & \text { if } x \in b^{\prime} \sigma, \\ b^{\prime}, & \text { otherwise }\end{cases}
$$

for all $x \in X$. It is clear that $\beta \in E(X, \sigma)$. Since $b^{\prime} \beta \alpha=a^{\prime} \alpha=a$ and $b^{\prime} \alpha=b$, it follows that $\beta \alpha \neq \alpha$. Consequently, α is not a right zero element of $E(X, \sigma)$.

Hence the corollary is an immediate consequence of Lemma 2.1.
Corollary 2.2. $E(X, \sigma)$ is a right zero semigroup if and only if $\sigma=X \times X$.
Proof. Suppose that $\sigma \neq X \times X$. Then there exist $a, b \in X$ such that $(a, b) \notin \sigma$. Thus $a \neq b$. Define $\alpha \in E(X, \sigma)$ by

$$
x \alpha= \begin{cases}a, & \text { if } x \in a \sigma, \\ b, & \text { otherwise }\end{cases}
$$

for all $x \in X$. Then α is nonconstant in $E(X, \sigma)$. By Lemma 2.1, α is not a right zero element of $E(X, \sigma)$.

Conversely, assume that $\sigma=X \times X$. Then the semigroup $E(X, \sigma)$ consists of all constant mappings in $T(X)$. By Lemma 2.1, $E(X, \sigma)$ is a right zero semigroup.

Lemma 2.3. Let $\alpha_{1}, \alpha_{2} \in E(X, \sigma)$ and $a \in X$. If $a \alpha_{1} \beta=a \alpha_{2} \beta$ for all $\beta \in E(X, \sigma)$, then $\left(a \alpha_{1}, a \alpha_{2}\right) \in \sigma$.

Proof. Suppose that $\left(a \alpha_{1}, a \alpha_{2}\right) \notin \sigma$. Then $a \alpha_{1} \neq a \alpha_{2}$. Define $\beta \in T(X)$ by

$$
x \beta= \begin{cases}a \alpha_{1}, & \text { if } x \in\left(a \alpha_{1}\right) \sigma, \\ a \alpha_{2}, & \text { otherwise }\end{cases}
$$

for all $x \in X$. It is easy to see that $\beta \in E(X, \sigma)$ and $a \alpha_{1} \beta \neq a \alpha_{2} \beta$.
From now on, suppose that σ_{1} and σ_{2} are equivalence relations on sets X and Y, respectively. In what follows, $|A|$ means the cardinality of the set A.

Theorem 2.4. $E\left(X, \sigma_{1}\right)$ and $E\left(Y, \sigma_{2}\right)$ are isomorphic as semigroups if and only if there exists a bijection $\theta: X \rightarrow Y$ such that $\left(x \sigma_{1}\right) \theta=(x \theta) \sigma_{2}$ for all $x \in X$.

Proof. Assume that $E\left(X, \sigma_{1}\right)$ and $E\left(Y, \sigma_{2}\right)$ are isomorphic. Let $\varphi: E\left(X, \sigma_{1}\right) \rightarrow$ $E\left(Y, \sigma_{2}\right)$ be an isomorphism.

For each $a \in X$, we define $\alpha_{a} \in E\left(X, \sigma_{1}\right)$ by $x \alpha_{a}=a$ for all $x \in X$. By Lemma 2.1, α_{a} is a right zero element of $E\left(X, \sigma_{1}\right)$ and hence

$$
\alpha_{a} \varphi=\left(\beta \alpha_{a}\right) \varphi=(\beta \varphi)\left(\alpha_{a} \varphi\right) \text { for all } \beta \in E\left(X, \sigma_{1}\right)
$$

Since φ is a bijection, we deduce that $\alpha_{a} \varphi$ is a right zero element of $E\left(Y, \sigma_{2}\right)$. Then from Lemma 2.1, there exists a unique $y_{a} \in Y$ such that $y\left(\alpha_{a} \varphi\right)=y_{a}$ for all $y \in Y$.

Define $\theta: X \rightarrow Y$ by

$$
x \theta=y_{x} \text { for all } x \in X
$$

Clearly, θ is well-defined. Let $x_{1}, x_{2} \in X$ be such that $x_{1} \theta=x_{2} \theta$. Then $y_{x_{1}}=y_{x_{2}}$ which implies that $\alpha_{x_{1}} \varphi=\alpha_{x_{2}} \varphi$. Since φ is injective, it follows that $\alpha_{x_{1}}=\alpha_{x_{2}}$ and hence $x_{1}=x_{2}$. This shows that α is injective.

To show that θ is surjective, let $y \in Y$. Then there exists $\beta_{y} \in E\left(Y, \sigma_{2}\right)$ such that $z \beta_{y}=y$ for all $z \in Y$. Since φ^{-1} is an isomorphism and β_{y} is a right zero of $E\left(Y, \sigma_{2}\right)$, it follows that $\beta_{y} \varphi^{-1}$ is a right zero of $E\left(X, \sigma_{1}\right)$. Then there exists an element $x^{\prime} \in X$ such that $w\left(\beta_{y} \varphi^{-1}\right)=x^{\prime}=w \alpha_{x^{\prime}}$ for all $w \in X$. Since $\alpha_{x^{\prime}} \varphi=\beta_{y} \varphi^{-1} \varphi=\beta_{y}$, we have $y_{x^{\prime}}=y$. Therefore $x^{\prime} \theta=y$ and whence θ is surjective.

Finally, we will show that $\left(x \sigma_{1}\right) \theta=(x \theta) \sigma_{2}$ for all $x \in X$. Let $x \in X$ and $a \in\left(x \sigma_{1}\right) \theta$. Then $a=b \theta$ for some $b \in x \sigma_{1}$ and thus $(x, b) \in \sigma_{1}$. It follows that $\alpha_{x} \beta=\alpha_{b} \beta$ for all $\beta \in E\left(X, \sigma_{1}\right)$. Since φ is a homomorphism,

$$
\left(\alpha_{x} \varphi\right)(\beta \varphi)=\left(\alpha_{x} \beta\right) \varphi=\left(\alpha_{b} \beta\right) \varphi=\left(\alpha_{b} \varphi\right)(\beta \varphi)
$$

for all $\beta \in E\left(X, \sigma_{1}\right)$. Since φ is a bijection, it follows that

$$
\left(\alpha_{x} \varphi\right) \gamma=\left(\alpha_{b} \varphi\right) \gamma \text { for all } \gamma \in E\left(Y, \sigma_{2}\right)
$$

We note here that if $y \in Y$, then $y\left(\alpha_{x} \varphi\right) \gamma=y\left(\alpha_{b} \varphi\right) \gamma$ for all $\gamma \in E\left(Y, \sigma_{2}\right)$. By Lemma 2.3, we obtain that $\left(y\left(\alpha_{x} \varphi\right), y\left(\alpha_{b} \varphi\right)\right) \in \sigma_{2}$. Since $\left(y\left(\alpha_{x} \varphi\right), y\left(\alpha_{b} \varphi\right)\right)=$ $\left(y_{x}, y_{b}\right)=(x \theta, b \theta)=(x \theta, a)$, we deduce $a \in(x \theta) \sigma_{2}$. This proves that $\left(x \sigma_{1}\right) \theta \subseteq$ $(x \theta) \sigma_{2}$. For the reverse inclusion, let $c \in(x \theta) \sigma_{2}$. Then $(c, x \theta) \in \sigma_{2}$. Since θ is surjective, $c=d \theta$ for some $d \in X$. It follows that $\left(\alpha_{x} \varphi\right) \beta=\left(\alpha_{d} \varphi\right) \beta$ for all $\beta \in E\left(Y, \sigma_{2}\right)$. Since φ^{-1} is a homomorphism,

$$
\left(\left(\alpha_{x} \varphi\right) \varphi^{-1}\right)\left(\beta \varphi^{-1}\right)=\left(\alpha_{x} \varphi \beta\right) \varphi^{-1}=\left(\alpha_{d} \varphi \beta\right) \varphi^{-1}=\left(\left(\alpha_{d} \varphi\right) \varphi^{-1}\right)\left(\beta \varphi^{-1}\right)
$$

for all $\beta \in E\left(Y, \sigma_{2}\right)$. It follows from the bijection of φ^{-1} that

$$
d \alpha_{x} \gamma=d\left(\alpha_{x} \varphi\right) \varphi^{-1} \gamma=d\left(\alpha_{d} \varphi\right) \varphi^{-1} \gamma=d \alpha_{d} \gamma
$$

for all $\gamma \in E\left(X, \sigma_{1}\right)$. By Lemma 2.3, we deduce that $(x, d)=\left(d \alpha_{x}, d \alpha_{d}\right) \in \sigma_{1}$, thus $d \in x \sigma_{1}$. This means that $c=d \theta \in\left(x \sigma_{1}\right) \theta$. Hence $(x \theta) \sigma_{2} \subseteq\left(x \sigma_{1}\right) \theta$ and the equality holds.

Conversely, suppose that $\theta: X \rightarrow Y$ is a bijection such that $\left(x \sigma_{1}\right) \theta=(x \theta) \sigma_{2}$ for all $x \in X$. Define $\varphi: E\left(X, \sigma_{1}\right) \rightarrow E\left(Y, \sigma_{2}\right)$ by

$$
\alpha \varphi=\theta^{-1} \alpha \theta \text { for all } \alpha \in E\left(X, \sigma_{1}\right) .
$$

Let $\alpha \in E\left(X, \sigma_{1}\right)$. To show that $\alpha \varphi \in E\left(Y, \sigma_{2}\right)$, let $(x, y) \in \sigma_{2}$. Since θ is surjective, we have $x^{\prime} \theta=x$ and $y^{\prime} \theta=y$ for some $x^{\prime}, y^{\prime} \in X$. By assumption, we then have $y^{\prime} \theta \in\left(x^{\prime} \theta\right) \sigma_{2}=\left(x^{\prime} \sigma_{1}\right) \theta$ which implies that $\left(y^{\prime}, x^{\prime}\right) \in \sigma_{1}$. Since $\alpha \in E\left(X, \sigma_{1}\right)$, it follows that $y^{\prime} \alpha=x^{\prime} \alpha$. Therefore

$$
x \alpha \varphi=x \theta^{-1} \alpha \theta=x^{\prime} \alpha \theta=y^{\prime} \alpha \theta=y \theta^{-1} \alpha \theta=y \alpha \varphi .
$$

This shows that $\alpha \varphi \in E\left(Y, \sigma_{2}\right)$, whence φ is well-defined. Let $\alpha_{1}, \alpha_{2} \in$ $E\left(X, \sigma_{1}\right)$. We see that

$$
\begin{aligned}
\left(\alpha_{1} \alpha_{2}\right) \varphi & =\theta^{-1}\left(\alpha_{1} \alpha_{2}\right) \theta \\
& =\left(\theta^{-1} \alpha_{1} \theta\right)\left(\theta^{-1} \alpha_{2} \theta\right) \\
& =\left(\alpha_{1} \varphi\right)\left(\alpha_{2} \varphi\right) .
\end{aligned}
$$

Therefore φ is a homomorphism. It is easy to verify that φ is bijective.
The theorem is thereby proven.
Corollary 2.5. For positive integers m and n, let X and Y be sets such that $|X|=|Y|=n$ and $\left|X / \sigma_{1}\right|=\left|Y / \sigma_{2}\right|=m$. If $m \in\{1, n-1, n\}$, then $E\left(X, \sigma_{1}\right) \cong$ $E\left(Y, \sigma_{2}\right)$.
Proof. Suppose that $m \in\{1, n-1, n\}$. Since $|X|=|Y|$, there exists a bijection $\theta: X \rightarrow Y$.

Case 1. $m=1$. Then $\sigma_{1}=X \times X$ and $\sigma_{2}=Y \times Y$. Thus $\left(x \sigma_{1}\right) \theta=X \theta=$ $Y=(x \theta) \sigma_{2}$ for all $x \in X$.

Case 2. $m=n$. Then $\sigma_{1}=\triangle(X)$ and $\sigma_{2}=\triangle(Y)$. Thus $\left(x \sigma_{1}\right) \theta=(x \theta) \sigma_{2}$ for all $x \in X$.

Case 3. $m=n-1$. Then there exists a unique $a_{1} \sigma_{1} \in X / \sigma_{1}$ such that $\left|a_{1} \sigma_{1}\right|=2$ for some $a_{1} \in X$, say that $a_{1} \sigma_{1}=\left\{a_{1}, a_{2}\right\}$ for some $a_{2} \in X$. Similarly, $\left\{b_{1}, b_{2}\right\} \in Y / \sigma_{2}$ for some $b_{1}, b_{2} \in Y$. Thus

$$
x \sigma_{1}=\{x\} \text { for all } x \in X \backslash\left\{a_{1}, a_{2}\right\}
$$

and

$$
y \sigma_{2}=\{y\} \text { for all } y \in Y \backslash\left\{b_{1}, b_{2}\right\} .
$$

Since $\left|X \backslash\left\{a_{1}, a_{2}\right\}\right|=\left|Y \backslash\left\{b_{1}, b_{2}\right\}\right|$, there exists $\varphi: X \backslash\left\{a_{1}, a_{2}\right\} \rightarrow Y \backslash\left\{b_{1}, b_{2}\right\}$ is a bijection. Define $\theta: X \rightarrow Y$ by

$$
x \theta= \begin{cases}b_{i}, & \text { if } x=a_{i} \\ x \varphi, & \text { otherwise }\end{cases}
$$

for all $x \in X$. It is clear that θ is a bijection and each element x in X, $\left(x \sigma_{1}\right) \theta=(x \theta) \sigma_{2}$.

From the three cases above, $E\left(X, \sigma_{1}\right) \cong E\left(Y, \sigma_{2}\right)$ by Theorem 2.4.
Note that if $|X| \leq 3$ and σ is an equivalence on X, then $|X / \sigma| \in\{1,2,3\}$. The following corollary is a direct consequence of Corollary 2.5 and Theorem 2.4 .

Corollary 2.6. Let X and Y be sets such that $|X|=|Y| \leq 3$. Then $E\left(X, \sigma_{1}\right) \cong$ $E\left(Y, \sigma_{2}\right)$ if and only if $\left|X / \sigma_{1}\right|=\left|Y / \sigma_{2}\right|$.

References

[1] P. Jitjankarn and T. Rungratgasame, A note on isomorphism theorems for semigroups of order-preserving transformations with restricted range, Int. J. Math. Math. Sci. 2015 (2015), Art. ID 187026, 6 pp.

2] Y. Kemprasit, W. Mora, and T. Rungratgasame, Isomorphism theorems for semigroups of order-preserving partial transformations, Int. J. Algebra 4 (2010), no. 17-20, 799-808.
[3] S. Mendes-Gonçalves and R. P. Sullivan, Semigroups of transformations restricted by an equivalence, Cent. Eur. J. Math. 8 (2010), no. 6, 1120-1131.
[4] H. Pei, Regularity and Green's relations for semigroups of transformations that preserve an equivalence, Comm. Algebra 33 (2005), no. 1, 109-118.
[5] T. Saitô, K. Aoki, and K. Kajitori, Remarks on isomorphisms of regressive transformation semigroups, Semigroup Forum 53 (1996), no. 1, 129-134.
[6] J. Sanwong and W. Sommanee, Regularity and Green's relations on a semigroup of transformations with restricted range, Int. J. Math. Math. Sci. 2008 (2008), Art. ID 794013, 11 pp.
[7] A. Umar, Semigroups of order-decreasing transformations: the isomorphism theorem, Semigroup Forum 53 (1996), no. 2, 220-224.

Chaiwat Namnak
Department of Mathematics
Faculty of Science
Naresuan University
Phitsanulok 65000, Thailand
Email address: chaiwatn@nu.ac.th
Nares Sawatraksa
Department of Mathematics
Faculty of Science
Naresuan University
Phitsanulok 65000, Thailand
Email address: naress58@nu.ac.th

[^0]: Received June 16, 2017; Revised October 17, 2017; Accepted December 28, 2017.
 2010 Mathematics Subject Classification. 20M20.
 Key words and phrases. transformation semigroup, isomorphism theorem, equivalence.
 This work was financially supported by Naresuan University Grant number R2560C186.

