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REMARKS ON ISOMORPHISMS OF TRANSFORMATION

SEMIGROUPS RESTRICTED BY AN EQUIVALENCE

RELATION

Chaiwat Namnak and Nares Sawatraksa

Abstract. Let T (X) be the full transformation semigroup on a set X

and σ be an equivalence relation on X. Denote

E(X,σ) = {α ∈ T (X) : ∀x, y ∈ X, (x, y) ∈ σ implies xα = yα}.
Then E(X,σ) is a subsemigroup of T (X). In this paper, we characterize

two semigroups of type E(X,σ) when they are isomorphic.

1. Introduction and preliminaries

Let X be an arbitrary nonempty set. The semigroup T (X) of all transforma-
tions on X consists of the mappings from X into itself with composition as the
semigroup operation. In [4], H. Pei studied subsemigroups of T (X) determined
by an equivalence relation σ on X, defined by:

T (X,σ) = {α ∈ T (X) : ∀x, y ∈ X, (x, y) ∈ σ implies (xα, yα) ∈ σ}.

It is clear that if σ ∈ {4(X), X ×X}, where 4(X) is the identity relation on
X, then T (X,σ) = T (X). He also discussed regularity of elements and Green’s
relations for T (X,σ). Recently, R. P. Sullivan and S. Mendes-Gonçalves intro-
duced a subsemigroup of T (X) defined by

E(X,σ) = {α ∈ T (X) : ∀x, y ∈ X, (x, y) ∈ σ implies xα = yα}

and called it the semigroup of transformations restricted by the equivalence σ
in [3]. Then E(X,σ) is a subsemigroup of T (X,σ). The authors characterized
Green’s relations on the largest regular subsemigroup of E(X,σ). They also
showed that if |X| ≥ 2 and σ 6= 4(X), then E(X,σ) is not isomorphic to T (Z)
for any set Z.

We easily get the following proposition which is a characterization of E(X,σ).
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Proposition 1.1. Let σ be an equivalence relation on a set X. Then the
following statements hold.

(1) idX ∈ E(X,σ) if and only if σ = 4(X) where idX is the identity
mapping on X.

(2) If σ and ρ are equivalence relations on X with ρ ⊆ σ, then E(X,σ) ⊆
E(X, ρ).

(3) E(X,σ) = T (X,σ) if and only if σ = 4(X). If this is the case, then
E(X,σ) = T (X).

J. Sanwong and W. Sommanee [6] introduced and studied the subsemigroup

T (X,Y ) = {α ∈ T (X) : Xα ⊆ Y }

of T (X) where ∅ 6= Y ⊆ X. We establish an embedding theorem for the
semigroup E(X,σ) into the semigroup T (Y,Z).

Proposition 1.2. Let σ be an equivalence relation on a set X. Every semi-
group E(X,σ) is embeddable in a semigroup T (Y,Z) for some sets Y and Z
with Z ⊆ Y .

Proof. Let Y = σ and Z = 4(X). Then Z ⊆ Y . For each α ∈ E(X,σ), we
define βα ∈ T (Y ) by

(x, y)βα = (xα, yα) for all (x, y) ∈ Y.

Since α ∈ E(X,σ), it then follows that Y βα ⊆ Z. Hence βα ∈ T (Y,Z). Define
φ : E(X,σ)→ T (Y,Z) by

αφ = βα for all α ∈ E(X,σ).

Let α1, α2 ∈ E(X,σ). To show that βα1α2
= βα1

βα2
, let (x, y) ∈ Y . Then

(x, y)βα1α2 = (xα1α2, yα1α2) = (xα1, yα1)βα2 = (x, y)βα1βα2 .

Hence φ is a homomorphism. Suppose that α1φ = α2φ. Then βα1
= βα2

. If
x ∈ X, then (x, x) ∈ Y and

(xα1, xα1) = (x, x)βα1
= (x, x)βα2

= (xα2, xα2).

Hence xα1 = xα2 for all x ∈ X which implies that φ is injective.
Therefore the theorem is proved. �

Over the past, isomorphism theorems for semigroups have been widely con-
sidered, see [1,2,5,7]. The purpose of this paper is to find necessary and suffi-
cient conditions for two transformation semigroups restricted by a equivalence
in order to be isomorphic.
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2. Main results

For the fixed equivalence relation σ on a set X and a ∈ X, we write aσ for
the set of all elements of X that are equivalent to a, that is, aσ = {x ∈ X :
(a, x) ∈ σ}.

To obtain the main result, the following two lemmas are needed.

Lemma 2.1. Let α ∈ E(X,σ). Then α is a right zero element of E(X,σ) if
and only if α is constant.

Proof. It is clear that if α is constant, then βα = α for all β ∈ E(X,σ).
Suppose that α is nonconstant. Then there exist distinct elements a, b ∈ Xα.

Thus a′α = a and b′α = b for some a′, b′ ∈ X. Since α ∈ E(X,σ) and a′α 6= b′α,
we deduce that (a′, b′) /∈ σ. Define β ∈ T (X) by

xβ =

{
a′, if x ∈ b′σ,
b′, otherwise

for all x ∈ X. It is clear that β ∈ E(X,σ). Since b′βα = a′α = a and
b′α = b, it follows that βα 6= α. Consequently, α is not a right zero element of
E(X,σ). �

Hence the corollary is an immediate consequence of Lemma 2.1.

Corollary 2.2. E(X,σ) is a right zero semigroup if and only if σ = X ×X.

Proof. Suppose that σ 6= X×X. Then there exist a, b ∈ X such that (a, b) /∈ σ.
Thus a 6= b. Define α ∈ E(X,σ) by

xα =

{
a, if x ∈ aσ,
b, otherwise

for all x ∈ X. Then α is nonconstant in E(X,σ). By Lemma 2.1, α is not a
right zero element of E(X,σ).

Conversely, assume that σ = X ×X. Then the semigroup E(X,σ) consists
of all constant mappings in T (X). By Lemma 2.1, E(X,σ) is a right zero
semigroup. �

Lemma 2.3. Let α1, α2 ∈ E(X,σ) and a ∈ X. If aα1β = aα2β for all
β ∈ E(X,σ), then (aα1, aα2) ∈ σ.

Proof. Suppose that (aα1, aα2) /∈ σ. Then aα1 6= aα2. Define β ∈ T (X) by

xβ =

{
aα1, if x ∈ (aα1)σ,
aα2, otherwise

for all x ∈ X. It is easy to see that β ∈ E(X,σ) and aα1β 6= aα2β. �

From now on, suppose that σ1 and σ2 are equivalence relations on sets X
and Y , respectively. In what follows, |A| means the cardinality of the set A.
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Theorem 2.4. E(X,σ1) and E(Y, σ2) are isomorphic as semigroups if and
only if there exists a bijection θ : X → Y such that (xσ1)θ = (xθ)σ2 for all
x ∈ X.

Proof. Assume that E(X,σ1) and E(Y, σ2) are isomorphic. Let ϕ : E(X,σ1)→
E(Y, σ2) be an isomorphism.

For each a ∈ X, we define αa ∈ E(X,σ1) by xαa = a for all x ∈ X. By
Lemma 2.1, αa is a right zero element of E(X,σ1) and hence

αaϕ = (βαa)ϕ = (βϕ)(αaϕ) for all β ∈ E(X,σ1).

Since ϕ is a bijection, we deduce that αaϕ is a right zero element of E(Y, σ2).
Then from Lemma 2.1, there exists a unique ya ∈ Y such that y(αaϕ) = ya for
all y ∈ Y .

Define θ : X → Y by

xθ = yx for all x ∈ X.

Clearly, θ is well-defined. Let x1, x2 ∈ X be such that x1θ = x2θ. Then
yx1

= yx2
which implies that αx1

ϕ = αx2
ϕ. Since ϕ is injective, it follows that

αx1 = αx2 and hence x1 = x2. This shows that α is injective.
To show that θ is surjective, let y ∈ Y . Then there exists βy ∈ E(Y, σ2)

such that zβy = y for all z ∈ Y . Since ϕ−1 is an isomorphism and βy is a right
zero of E(Y, σ2), it follows that βyϕ

−1 is a right zero of E(X,σ1). Then there
exists an element x′ ∈ X such that w(βyϕ

−1) = x′ = wαx′ for all w ∈ X. Since
αx′ϕ = βyϕ

−1ϕ = βy, we have yx′ = y. Therefore x′θ = y and whence θ is
surjective.

Finally, we will show that (xσ1)θ = (xθ)σ2 for all x ∈ X. Let x ∈ X and
a ∈ (xσ1)θ. Then a = bθ for some b ∈ xσ1 and thus (x, b) ∈ σ1. It follows that
αxβ = αbβ for all β ∈ E(X,σ1). Since ϕ is a homomorphism,

(αxϕ)(βϕ) = (αxβ)ϕ = (αbβ)ϕ = (αbϕ)(βϕ)

for all β ∈ E(X,σ1). Since ϕ is a bijection, it follows that

(αxϕ)γ = (αbϕ)γ for all γ ∈ E(Y, σ2).

We note here that if y ∈ Y , then y(αxϕ)γ = y(αbϕ)γ for all γ ∈ E(Y, σ2). By
Lemma 2.3, we obtain that (y(αxϕ), y(αbϕ)) ∈ σ2. Since (y(αxϕ), y(αbϕ)) =
(yx, yb) = (xθ, bθ) = (xθ, a), we deduce a ∈ (xθ)σ2. This proves that (xσ1)θ ⊆
(xθ)σ2. For the reverse inclusion, let c ∈ (xθ)σ2. Then (c, xθ) ∈ σ2. Since θ
is surjective, c = dθ for some d ∈ X. It follows that (αxϕ)β = (αdϕ)β for all
β ∈ E(Y, σ2). Since ϕ−1 is a homomorphism,

((αxϕ)ϕ−1)(βϕ−1) = (αxϕβ)ϕ−1 = (αdϕβ)ϕ−1 = ((αdϕ)ϕ−1)(βϕ−1)

for all β ∈ E(Y, σ2). It follows from the bijection of ϕ−1 that

dαxγ = d(αxϕ)ϕ−1γ = d(αdϕ)ϕ−1γ = dαdγ
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for all γ ∈ E(X,σ1). By Lemma 2.3, we deduce that (x, d) = (dαx, dαd) ∈ σ1,
thus d ∈ xσ1. This means that c = dθ ∈ (xσ1)θ. Hence (xθ)σ2 ⊆ (xσ1)θ and
the equality holds.

Conversely, suppose that θ : X → Y is a bijection such that (xσ1)θ = (xθ)σ2
for all x ∈ X. Define ϕ : E(X,σ1)→ E(Y, σ2) by

αϕ = θ−1αθ for all α ∈ E(X,σ1).

Let α ∈ E(X,σ1). To show that αϕ ∈ E(Y, σ2), let (x, y) ∈ σ2. Since θ is
surjective, we have x′θ = x and y′θ = y for some x′, y′ ∈ X. By assumption,
we then have y′θ ∈ (x′θ)σ2 = (x′σ1)θ which implies that (y′, x′) ∈ σ1. Since
α ∈ E(X,σ1), it follows that y′α = x′α. Therefore

xαϕ = xθ−1αθ = x′αθ = y′αθ = yθ−1αθ = yαϕ.

This shows that αϕ ∈ E(Y, σ2), whence ϕ is well-defined. Let α1, α2 ∈
E(X,σ1). We see that

(α1α2)ϕ = θ−1(α1α2)θ

= (θ−1α1θ)(θ
−1α2θ)

= (α1ϕ)(α2ϕ).

Therefore ϕ is a homomorphism. It is easy to verify that ϕ is bijective.
The theorem is thereby proven. �

Corollary 2.5. For positive integers m and n, let X and Y be sets such that
|X| = |Y | = n and |X/σ1| = |Y/σ2| = m. If m ∈ {1, n−1, n}, then E(X,σ1) ∼=
E(Y, σ2).

Proof. Suppose that m ∈ {1, n−1, n}. Since |X| = |Y |, there exists a bijection
θ : X → Y .

Case 1. m = 1. Then σ1 = X ×X and σ2 = Y × Y . Thus (xσ1)θ = Xθ =
Y = (xθ)σ2 for all x ∈ X.

Case 2. m = n. Then σ1 = 4(X) and σ2 = 4(Y ). Thus (xσ1)θ = (xθ)σ2
for all x ∈ X.

Case 3. m = n − 1. Then there exists a unique a1σ1 ∈ X/σ1 such that
|a1σ1| = 2 for some a1 ∈ X, say that a1σ1 = {a1, a2} for some a2 ∈ X.
Similarly, {b1, b2} ∈ Y/σ2 for some b1, b2 ∈ Y . Thus

xσ1 = {x} for all x ∈ X \ {a1, a2}

and

yσ2 = {y} for all y ∈ Y \ {b1, b2}.
Since |X \ {a1, a2}| = |Y \ {b1, b2}|, there exists ϕ : X \ {a1, a2} → Y \ {b1, b2}
is a bijection. Define θ : X → Y by

xθ =

{
bi, if x = ai,
xϕ, otherwise
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for all x ∈ X. It is clear that θ is a bijection and each element x in X,
(xσ1)θ = (xθ)σ2.

From the three cases above, E(X,σ1) ∼= E(Y, σ2) by Theorem 2.4. �

Note that if |X| ≤ 3 and σ is an equivalence on X, then |X/σ| ∈ {1, 2, 3}.
The following corollary is a direct consequence of Corollary 2.5 and Theorem
2.4.

Corollary 2.6. Let X and Y be sets such that |X| = |Y | ≤ 3. Then E(X,σ1) ∼=
E(Y, σ2) if and only if |X/σ1| = |Y/σ2|.
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