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REMARKS ON ISOMORPHISMS OF TRANSFORMATION
SEMIGROUPS RESTRICTED BY AN EQUIVALENCE
RELATION

CHAIWAT NAMNAK AND NARES SAWATRAKSA

ABSTRACT. Let T'(X) be the full transformation semigroup on a set X
and o be an equivalence relation on X. Denote
E(X,0) ={a €T(X):Vz,y € X, (x,y) € o implies zao = ya}.

Then E(X, o) is a subsemigroup of 7(X). In this paper, we characterize
two semigroups of type F(X, o) when they are isomorphic.

1. Introduction and preliminaries

Let X be an arbitrary nonempty set. The semigroup 7'(X) of all transforma-
tions on X consists of the mappings from X into itself with composition as the
semigroup operation. In [4], H. Pei studied subsemigroups of T'(X) determined
by an equivalence relation o on X, defined by:

T(X,0)={aeT(X):Vz,y € X,(z,y) € o implies (za, ya) € c}.

It is clear that if o € {A(X), X x X}, where A(X) is the identity relation on
X, then T(X,0) = T(X). He also discussed regularity of elements and Green’s
relations for T(X, o). Recently, R. P. Sullivan and S. Mendes-Gongalves intro-
duced a subsemigroup of T'(X) defined by

E(X,0)={aeT(X):Vx,y € X, (z,y) € o implies za = ya}

and called it the semigroup of transformations restricted by the equivalence o
in [3]. Then E(X, o) is a subsemigroup of T'(X,c). The authors characterized
Green’s relations on the largest regular subsemigroup of E(X, o). They also
showed that if | X| > 2 and 0 # A(X), then E(X, o) is not isomorphic to T'(Z)
for any set Z.

We easily get the following proposition which is a characterization of F(X, o).
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Proposition 1.1. Let o be an equivalence relation on a set X. Then the
following statements hold.
(1) idx € E(X,0) if and only if o = A(X) where idx is the identity
mapping on X.
(2) If o and p are equivalence relations on X with p C o, then E(X,0) C
E(X,p).
(3) E(X,0) =T(X,0) if and only if o = A(X). If this is the case, then
E(X,0)=T(X).

J. Sanwong and W. Sommanee [6] introduced and studied the subsemigroup
TX,)Y)={aeT(X): XaCY}

of T(X) where ) # Y C X. We establish an embedding theorem for the
semigroup E(X, o) into the semigroup T(Y, Z).

Proposition 1.2. Let o be an equivalence relation on a set X. FEvery semi-
group E(X, o) is embeddable in a semigroup T(Y,Z) for some sets Y and Z
with Z C Y.

Proof. Let Y = 0 and Z = A(X). Then Z C Y. For each o € E(X,0), we
define B, € T(Y) by

(2,9)Ba = (za, ya) for all (z,y) € Y.

Since a € E(X,0), it then follows that Y5, C Z. Hence 8, € T(Y, Z). Define
6 E(X,0) - T(Y, Z) by

ap = B, for all « € E(X, o).
Let aq, a0 € E(X,0). To show that 84,0, = BayBas, let (z,y) € Y. Then
(7,9)Bayay = (Tarag, yaras) = (vai,yor)Ba, = (2,Y)Ba; Bas-

Hence ¢ is a homomorphism. Suppose that ;¢ = ag¢p. Then B, = Ba,. If
z € X, then (z,z) € Y and

(xaq,zaq) = (2,2)Bay = (2,2)Bay, = (zag, zaz).

Hence zay = zay for all z € X which implies that ¢ is injective.
Therefore the theorem is proved. O

Over the past, isomorphism theorems for semigroups have been widely con-
sidered, see [1,2,5,7]. The purpose of this paper is to find necessary and suffi-
cient conditions for two transformation semigroups restricted by a equivalence
in order to be isomorphic.
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2. Main results

For the fixed equivalence relation ¢ on a set X and a € X, we write ac for
the set of all elements of X that are equivalent to a, that is, aoc = {z € X :
(a,x) € o}

To obtain the main result, the following two lemmas are needed.

Lemma 2.1. Let o € E(X,0). Then o is a right zero element of E(X,0) if
and only if a is constant.

Proof. Tt is clear that if « is constant, then Sa = « for all 8 € E(X, o).
Suppose that « is nonconstant. Then there exist distinct elements a,b € Xa.
Thus a’a = a and b'a = b for some o/, b’ € X. Since « € E(X,0) and o'« # Ve,
we deduce that (a’,b’) ¢ 0. Define 8 € T(X) by
5= a, ifzebo,
Pl , otherwise
for all x € X. Tt is clear that 8 € FE(X,o0). Since b'Sa = d'a = a and

b'a = b, it follows that Sa # «. Consequently, a is not a right zero element of
E(X,o0). O

Hence the corollary is an immediate consequence of Lemma 2.1.

Corollary 2.2. E(X,0) is a right zero semigroup if and only if o = X x X.

Proof. Suppose that o # X x X. Then there exist a,b € X such that (a,b) ¢ o.
Thus a # b. Define o € E(X, o) by

ca—=4 @ if x € ao,
"1 b, otherwise

for all x € X. Then « is nonconstant in E(X,s). By Lemma 2.1, « is not a
right zero element of E(X, o).

Conversely, assume that ¢ = X x X. Then the semigroup E(X, o) consists
of all constant mappings in T(X). By Lemma 2.1, E(X,0) is a right zero
semigroup. O

Lemma 2.3. Let aj,a0 € E(X,0) and a € X. If ac1f = aasf for all
B € E(X,0), then (aay,ans) € 0.

Proof. Suppose that (acy,acs) € o. Then acy # aas. Define § € T(X) by

acy, if z € (aaq)o,
xfh = .
acz, otherwise

for all x € X. Tt is easy to see that § € E(X,0) and aay 8 # acsf. O

From now on, suppose that ;1 and o9 are equivalence relations on sets X
and Y, respectively. In what follows, |A| means the cardinality of the set A.
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Theorem 2.4. E(X,01) and E(Y,02) are isomorphic as semigroups if and
only if there exists a bijection 0 : X — Y such that (xo1)0 = (x0)os for all
e X.

Proof. Assume that F(X,01) and E(Y, 02) are isomorphic. Let ¢ : E(X,01) —
E(Y, 02) be an isomorphism.

For each a € X, we define a, € E(X,01) by za, = a for all x € X. By
Lemma 2.1, «, is a right zero element of F(X, 1) and hence

aqgp = (Bag)p = (Be)(aqp) for all B € E(X,01).

Since ¢ is a bijection, we deduce that a4 is a right zero element of E(Y,02).
Then from Lemma 2.1, there exists a unique y, € Y such that y(a,p) = y, for
allyeY.

Define 0 : X — Y by

x0 =y, forall x € X.

Clearly, 6 is well-defined. Let x1,x2 € X be such that x10 = xz56. Then
Yz, = Yz, Which implies that oz, ¢ = agz,¢. Since ¢ is injective, it follows that
0z, = Oz, and hence x1 = x3. This shows that « is injective.

To show that 6 is surjective, let y € Y. Then there exists 8, € E(Y,02)
such that 28, =y for all z € Y. Since ¢! is an isomorphism and 3, is a right
zero of E(Y,05), it follows that 8,0~! is a right zero of E(X,0y). Then there
exists an element 2/ € X such that w(8,¢ ') = 2/ = way for all w € X. Since
i = Byp to = By, we have y,» = y. Therefore 2/0 = y and whence 6 is
surjective.

Finally, we will show that (x01)f = (z0)os for all x € X. Let € X and
a € (xo1)f. Then a = bl for some b € xoy and thus (z,b) € o;1. It follows that
a8 = apf for all € E(X,o01). Since ¢ is a homomorphism,

(az0)(Be) = (azB)p = (awB)e = (awp)(Be)
for all § € EF(X,01). Since ¢ is a bijection, it follows that

(azp)y = (app)y for all v € E(Y, 03).

We note here that if y € YV, then y(a.0)y = y(app)y for all v € E(Y,02). By
Lemma 2.3, we obtain that (y(a,¢),y(awp)) € oa. Since (y(azp), y(awp)) =
(Yu, Yp) = (20,00) = (26, a), we deduce a € (x8)oy. This proves that (xoy)f C
(z0)0. For the reverse inclusion, let ¢ € (x6)os. Then (¢,26) € o9. Since 0
is surjective, ¢ = df for some d € X. It follows that (ay,p)B = (aqp)s for all
B € E(Y,03). Since ¢! is a homomorphism,

(aep)e™)(Be™") = (aapB)e™" = (aapB)e™" = ((aap)e™ ) (Be™)
for all B € E(Y,03). It follows from the bijection of ¢! that

dogy = d(agp)p ™'y = d(aap)p™ 'y = daay
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for all v € E(X,01). By Lemma 2.3, we deduce that (x,d) = (day, dag) € o1,
thus d € xzoy. This means that ¢ = df € (zo1)0. Hence (26)os C (x01)0 and
the equality holds.

Conversely, suppose that 6 : X — Y is a bijection such that (zo1)0 = (260)04
for all x € X. Define ¢ : E(X,01) — E(Y,02) by

ap =0""af forall a € E(X,0y).

Let o € E(X,01). To show that ap € E(Y,02), let (z,y) € o2. Since 6 is
surjective, we have 2’6 = z and 3’6 = y for some z’,3’ € X. By assumption,
we then have y'6 € (2'0)oy = (2’01)0 which implies that (y/,z’) € o1. Since
a € E(X,01), it follows that '« = 2’«. Therefore

rap =z0"1al = 2'af =y ab = yh~1ab = yayp.

This shows that ap € E(Y,03), whence ¢ is well-defined. Let aj,a0 €
E(X,01). We see that

(1a0)p = 07 (10)0
6~ a10)(0 anh)
a1p)(azp).

Therefore ¢ is a homomorphism. It is easy to verify that ¢ is bijective.
The theorem is thereby proven. O

= (
= (

Corollary 2.5. For positive integers m and n, let X and Y be sets such that
| X|=1Y|=nand |X/o1| = |Y/o2| =m. Ifm € {l,n—1,n}, then E(X,01) =
E(K 0'2).

Proof. Suppose that m € {1,n—1,n}. Since | X| = |Y, there exists a bijection
0:X—>Y.

Case 1. m=1. Then oy = X X X and 09 =Y X Y. Thus (z01)0 = X0 =
Y = (20)o for all x € X.

Case 2. m = n. Then o1 = A(X) and o9 = A(Y). Thus (z01)0 = (20)04
forall z € X.

Case 3. m = n — 1. Then there exists a unique aj01 € X/oy such that
laro1| = 2 for some a; € X, say that ayjo1 = {a1,a2} for some ay € X.
Similarly, {bl, bg} S Y/O’g for some bl, by € Y. Thus

xoy = {a} for all x € X \ {a1,a2}
and

yoy = {y} for all y € Y \ {b1,b2}.
Since | X \ {a1,a2}| = [Y'\ {b1, b2}, there exists ¢ : X \ {a1,a2} = Y \ {b1, b2}
is a bijection. Define §: X — Y by

20 — bi, ifx= a;,
| xp, otherwise
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for all x € X. It is clear that 6 is a bijection and each element z in X,
(x01)0 = (20)0s.

From the three cases above, E(X,01) = E(Y, 03) by Theorem 2.4. O
Note that if |X| < 3 and o is an equivalence on X, then |X/o| € {1,2,3}.

The following corollary is a direct consequence of Corollary 2.5 and Theorem
2.4.

Corollary 2.6. Let X andY be sets such that | X| = |Y| < 3. Then E(X,01) &
E(Y,02) if and only if | X/o1| = [Y/o2|.
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