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A GENERALIZATION OF ARMENDARIZ AND
NI PROPERTIES

DaAN Li, ZHELIN P1AO, AND SANG JO YUN

ABSTRACT. Antoine showed that the properties of Armendariz and NI
are independent of each other. The study of Armendariz and NI rings
has been doing important roles in the research of zero-divisors in non-
commutative ring theory. In this article we concern a new class of rings
which generalizes both Armendariz and NI rings. The structure of such
sort of ring is investigated in relation with near concepts and ordinary
ring extensions. Necessary examples are examined in the procedure.

1. Introduction

Throughout this paper every ring is associative with identity unless otherwise
stated. Let R be a ring. The upper nilradical (i.e., the sum of all nil ideals),
the lower nilradical (i.e., the intersection of all prime ideals), the Jacobson
radical, and the set of all nilpotents in R are denoted by N*(R), N.(R), J(R),
and N(R), respectively. It is well-known that N.(R) C N*(R) C N(R) and
N*(R) C J(R). The set of all idempotents and group of units in R are written
by I(R) and U(R), respectively. The polynomial ring with an indeterminate x
over a ring R is denoted by R[x]. Let C(,) denote the set of all coefficients of
given a polynomial f(z). Z and Z,, denote the ring of integers and the ring of
integers modulo n, respectively. Denote the n by n (n > 2) full (resp., upper
triangular) matrix ring over R by Mat,, (R) (resp., T,(R)). Use E;; for the
matrix with (¢,7)-entry 1 and elsewhere 0. Let S{(ai,asz,...,a,) denote the
free algebra generated by the noncommuting indeterminates a1, as, . .., a, over
a commutative ring S. S{a1,as,...,a,} denotes the set of all polynomials of
zero constant term in S{a1,aq,...,an).

A ring is usually called reduced if it has no nonzero nilpotent elements.
Following Rege and Chhawchharia [11, Definition 1.1], a ring R is called Ar-
mendariz if ab = 0 for all a € Cj(,) and b € Cy(,) whenever f(x)g(xz) = 0 for
f(z),g9(x) € R[z]. Reduced rings are shown to be Armendariz by [3, Lemma 1],
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but not conversely by [9, Proposition 2]. A ring is usually said to be Abelian if
every idempotent is central. Let R be an Armendariz ring. Then R is Abelian
and N(R) is a subring of R by [7, Corollary 8] and [2, Corollary 3.3], respec-
tively.

Following Marks [10], a ring R is called NI if N*(R) = N(R). Reduced
rings are clearly NI. Note that R is NI if and only if N(R) forms an ideal if
and only if R/N*(R) is reduced. Notice that Armendariz and NI properties are
independent of each other as can be seen by the Armendariz ring in [2, Example
4.8] that is not NI, and the NI ring T}, (R) that is not Abelian (hence not
Armendariz), where R is a reduced ring and n > 2.

The study of Armenariz and NI rings has provided many sorts of information
for zero-divisors which have been doing very important roles in ring theory. We
will introduce a ring property which generalizes both Armendariz and NI ring
properties.

Definition 1.1. A ring R (possibly without identity) is said to be inserting-

preserves-nilpotent (simply, IPN) provided that if f(z)g(z) € N(R[x]) for
f(x),9(x) € R[z], then aN(R)b C N(R) for all a € Cy(,y and b € Cy(y).

The following lemma does basic roles in this article. We use & for the direct
sum of rings.

Lemma 1.2. (1) A finite direct sum of IPN rings is IPN.

(2) Let R be a ring and I be a nil ideal of R. If R/I is an IPN ring, then R
is IPN.

(3) The class of IPN rings is closed under subrings (possibly without identity).

Proof. (1) Let R; be IPN rings for i =1,2,...,n, and R = &}, R;. Note first
N(R) = @N(R) Suppose that f(z)g(z) € N(R[z]) for f(z)=> " (a(i))pz",
g(x) = Zk o(b())xz® € R[z], where (a(i))n, (b(i))r € R. Write
(a(i))n = (@(D)n, a2)n, .., a(n)n) and (b(@))r = (b(1)k, b(2), - -, b(n)k)-

Then we have f(x);g(z); € N(R;[x]) for all ¢ with

m !

f@)i = a(i)pa" and g(x); = > b(i)sa",

h=0 k=0

noting that f(z)g(x) can be rewritten by

(f(@)1g(2)1, f(2)29(@)2s - o f(@)ng()n)-

Since R; is IPN, we have c;a;d; € N(R;) for all ¢; € Cyyy,, di € Cy(ay,,
and a; € N(R;). Let here ¢ = (c1,¢2,...,¢,), d = (d1,da,...,d,), and a =
(a1,az,...,0ap). Then ¢, d, a are also arbitrary in Cf,), Cy(y), and N(R),
respectively. From these results, we now have cad € N(R) and ¢N(R)d C N(R)
follows, recalling N(R) = @N(R ). Therefore R is IPN.

(2) Write R = R/I and note N(R) C N(R). Assume that R/I is IPN. Let
f(z)g(z) € N(R[x]) for f(x),g(x) € R[z]. Then f(x)g(z) € N(R[z]) clearly.
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Since R is IPN, aab € N(R) for all a € Cj(y),b € Cy(ay, and o € N(R). This
implies (aab)" € I for some h > 1. But since [ is nil, [(aab)"]* = 0 for some
k > 1. Thus we now aN(R)b C N(R), and so R is IPN.

(3) Let R be an IPN ring and S be a subring (possibly without identity) of
R. Note N(R)NS = N(S) and N(R[z]) N S[z] = N(S[z]). Let f(x)g(z) €
N(S[z]) for f(x),g9(x) € S[z]. Then f(z)g(x) € N(R[x]). Since R is IPN,
aN(R)b C N(R) for all a € C(,) and b € Cy(,y. This implies

aN(S)b C SNaN(R)bC SNN(R)=N(S5),
concluding that S is IPN. (]

From Lemma 1.2, we obtain the following elementary fact.

Corollary 1.3. A ring R is IPN if and only if both eR and (1 —e)R are IPN
for a central idempotent e in R.

Proof. The proof comes from Lemma 1.2(1, 3), noting R=eR® (1 —e)R. O

The class of IPN rings contains both Armendariz and NI rings as we see in
the following.

Proposition 1.4. (1) Armendariz rings are IPN.
(2) NI rings are IPN.

Proof. (1) Let R be an Armendariz ring. Let f(z)g(z) € N(R[z]) for f(x), g(z)
€ R[z]. Say (f(z)g(x))™ = 0. Then (ab)™ = 0 for all a € Cy(,) and b € Cy(y,
by help of [1, Proposition 1], entailing ab € N(R). Note ba € N(R).

N(R) forms a subring of R by [2, Corollary 3.3], and so bacx € N(R) for all
a € N(R). This yields aab € N(R), entailing aN(R)b C N(R). Thus R is
IPN.

(2) Let R be an NI ring. Then N*(R) = N(R), and so aN(R)b C N(R) for
all a € Cy(yy and b € Cy(y), where f(x) and g(x) are arbitrary in R[z]. Thus
R is IPN. U

In the following we construct an IPN ring that is neither Armendariz nor
NI

Example 1.5. (1) Let K be a field and A = K({a,b) be the free algebra
generated by a,b over K. Let I be the ideal of A generated by b for m > 2
and set Rg = A/I. Then Ry is Armendariz by [2, Example 4.8]. However R
is not NI as can be seen by b € N(Ry) but ba ¢ N(Ry), i.e., b ¢ N*(Ry).

Next consider R = T,,(Rp) for n > 2. Then R is not Armendariz because
R is not Abelian, recalling that Armendariz rings are Abelian. Moreover R is
not NI by help of [8, Proposition 4.1] because Ry is not NI.

We will see that R is IPN. Let I = {(a;;) € R | a;; = 0 for all i}. Then I is
a nilpotent ideal of R such that R/I is isomorphic to the product of n-copies
of Ry (ie., ? >~ @ |R; with R; = Ry for all ). But Armendariz rings are
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IPN by Proposition 1.4(1), and so R/I is IPN by Lemma 1.2(1). Furthermore,
since T is nil, R is IPN by Lemma 1.2(2).

(2) Let A be any ring and consider R = Mat,,(A) for n > 2. R cannot be
IPN because E12E11 = 0 but E12E21E11 = E11 ¢ N(R), noting E21 € N(R)
and 0 7£ Fi € I(R)

Recall that a ring R is said to be directly finite (or Dedekind finite) if ab =1
implies ba = 1 for a,b € R. Abelian rings are easily shown to be directly finite.

Proposition 1.6. IPN rings are directly finite.

Proof. Let R be an IPN ring and assume on the contrary that R is not directly
finite. Then ab =1 and ba # 1 for some a,b € R. Consider a + ba and 1 — ba.
Then (a + ba)(1 — ba) = 0. Let a = b(1 — ba). Then a? = 0. Since R is IPN,
we get (a + ba)a(l —ba) € N(R). But
(a+ ba)a(l — ba) = (a+ ba)(b(1 — ba))(1 — ba)

= (a + ba)b(1 — ba)

= (1 —ba) + b(1 —ba) € I(R).
Assume (1 —ba)+b(1 —ba) =0. Then 0 = a(l —ba) + ab(l —ba) = 1—ba # 0.
This induces a contradiction. Thus (a + ba)a(l — ba) ¢ N(R), contrary to R
being IPN. Therefore R is directly finite. t

By Propositions 1.4(2) and 1.6, we obtain the following.
Corollary 1.7 ([8, Proposition 2.7(1)]). NI rings are directly finite.

The converse of Proposition 1.6 need not hold as can be seen by Mat,, (A),
over any Artinian ring A for n > 2, which is Artinian (hence directly finite)
but not IPN by Example 1.5(2).

By Proposition 1.6, the class of directly finite rings contains both Abelian
rings and IPN rings. In the following we see that the properties of Abelian and
IPN are independent of each other.

Example 1.8. (1) We follow the construction of [2, Example 4.11]. Let K be
a field and A = K{(a,a1,b). Let I be the ideal of A generated by
1—aa™ !, 1—ata, and b%.
Set R = A/I and identify a, a~!, and b with their images in R for simplicity.
Then aa~! =1 =a"'a and b* = 0. So
a(a™b) =b € N(R) but ab(a™'b) ¢ N(R),
in spite of b € N(R). So R is not IPN. We next show that R is Abelian.

Every element of R is able to be expressed by

kE+f+a g +gea ' +atgzat,

where k € K, f € K{a,a™*,b}, g; € R for i = 1,2,3, every term of f neither
starts nor ends by ¢! when nonzero, every term of g; does not end by ¢~ when
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nonzero, and every term of g» does not start by a~! when nonzero. Suppose
e2=cfore=k+f+atg +gpat+algsat € R Then k? =k, s0k=0
ork=1.
Case 1. k=0,ie,e=f4+a'gi +goa ' +a tgza™'.
From e? = e, we obtain

P4+ fatgr+gea f+geata g = f
and

1

foea™ '+ fatgza™ +agretgaa goaT + goa T a T gzaT +a " gza e

= a*191 + gch1 + cflgng1

10‘_191 = f7

by the properties of f,g1,g2. From f2+ fa='g1 4+ goa™ ' f + gaa™
we get

gata"tgy = fand f2+ falgi +geatf =0
by the property of f. Now we have f? = 0 from the equality f2 + fa='g; +
gea~'f = 0 also by the property of f, entailing f = 0. Consequently we have
e=a"'g1 +goa"! +a"tgza"'. From e? = e, we obtain

gaata" g1 =0

and

1 1 1

a_lgle+g2a_1gga_1+gga_ a_lgga_1+a_1g3a_ e = a_1g1—|—g2a_1+a_1g3a_ .

1a=1g; = 0 implies that g, = 0 or go = 0.

L and

The equality goa~
Suppose g1 =0. Then e = goa™! +a"'gza~

g2a tgeat + goata T gsa T +a T gsa T goa T +a gza T a T gza !
= goa ' +a gzat.

The second equality yields

la7tgsa™! = goa™! and

1

g2a71g2a71 + ga2a

1

-1, -1 -1 -1 -1 -1 - -1 -
a""gsa "gea - +a gsa a “gsa - =a gza

by the property of go. The first equality implies go = 0. Hence we have
e = a 'a"lgsa~!. Next, from e? = e, we get a 'a " 'gsa e ta " lgsa”! =
a"ta"lgza™!, entailing g3 = 0. Therefore e = 0.

Suppose g2 = 0. Then we also get e = 0 through a similar method.
Summarizing, e = 0 when k£ = 0.

Case 2. k=1,ie,e=1+f+atg+goat +atgza™t.

Let eg = f+a 191 + goa™ ' +a"1gza™'. Form e? = e, we obtain

1+60:(1+60)2:1+260+63 andeg:—eo,

Through a similar method to the case 1, we can obtain eg = 0. Thus e =1
when k£ = 1.

By Cases 1 and 2, we can conclude that e =1 or e = 0, i.e., I(R) = {0,1}.
Therefore R is Abelian.
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(2) T,,(R) is clearly NI (hence IPN by Proposition 1.4(2)) over a reduced
ring R, but T, (R) is non-Abelian when n > 2 (also see Example 1.5(1)).

Following [6], a ring R is said to be von Neumann regular if for every a € R
there exists b € R such that a = aba. When given a ring is von Neumann
regular, the ring properties above are equivalent as we see in the following.

Theorem 1.9. For a von Neumann reqular ring R, the following conditions
are equivalent:

(1) R is reduced;

(2) R is Armendariz;

(3) R is NI,

(4) R is Abelian;

(5) R is IPN

Proof. The implications (1) = (2) and (2) = (4) are stated above. The im-
plications (2) = (5) and (3) = (5) come from Proposition 1.4. (4) = (1) is
shown by [6, Theorem 3.2] because R is von Neumann regular. (1) = (3) is
obvious. Since R is von Neumann regular, J(R) = 0 (hence N*(R) =0). So R
is reduced if R is NI, showing (3) = (1).

(5) = (1): Let R be IPN. Assume on the contrary that there exists 0 # a € R
with a? = 0. Since R is von Neumann regular, there exists b € R such that
a = aba. Let

f(z) =a+ az and g(z) = ab + bax
in R[z]. Then f(x)g(z) = ax + ax? € N(R[z]). In fact, (f(z)g(z))? = 0. Since
R is IPN, aN(R)ab C N(R). Note (bab(1 — ba))? = 0. So a(bab(1 — ba))ab €
N(R). But
a(bab(1 — ba))ab = (aba)b(ab — ba’b)
= ab(ab — 0)
=abe I(R)
and ab # 0. This induces a contradiction. Thus a = 0 and so R is reduced. [

Considering Proposition 1.6, one may ask whether von Neumann regular
directly finite rings are IPN (hence reduced by Theorem 1.9). However the
answer is negative as can be seen by Mat,, (R) over a division ring R for n > 2.

This Mat,, (R) is semisimple Artinian (hence von Neumann regular and directly
finite), but not reduced.

2. Examples of IPN rings

In this section we argue about the IPN property of several kinds of rings
which have roles in ring theory. Let R be a ring R and n > 2. Following the
literature, let

Dy, (R) = {(aij) €Tnw(R) | a1 == ann}
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and
Vo (R)={(aij) € Dn(R)|ast =a(s41)(4+1) for s=1,...,n—2and t=2,...,n—1}.
Note that V,,(R) ﬂ]] via (a;j) = @11 + @12x + @132 + -+ + @l

Theorem 2.1. Let R be a ring and n > 2. The following conditions are
equivalent:
(1) R is IPN;
(2) T.(R) is IPN;
(3) Dn(R) is IPN;,
(4) V,,(R) is IPN.
Proof. Tt suffices to prove (1) implying (2) by help of Lemma 1.2(3). Let R be
IPN. Set

I ={(auw) €ETh(R) |a; =0foralli=1,2,...,n}.
Then I is a nil ideal of T;,(R) and T,,(R)/I is isomorphic to the product of n-

copies of R. So T,(R)/I is IPN by Lemma 1.2(1) because R is IPN. Moreover
since I is nil, T;,(R) is IPN by Lemma 1.2(2). O

We can obtain the following through almost similar method in the proof of
Theorem 2.1.

Proposition 2.2. Let R, S be rings and gMg be an R-S-bimodule. Then both
R and S are IPN if and only if (&) is an IPN ring.

Let R be an algebra (possibly without identity) over a commutative ring S.
Following [5], the Dorroh extension of R by S is the Abelian group D = R&® S
with multiplication given by (r1, s1)(r2, s2) = (r1re 4+ s17r2 + sar1, $182), where
r; € Rand s; € S.

Proposition 2.3. (1) Let R be a unitary algebra over a reduced commutative
ring S. Then R is IPN if and only if so is the Dorroh extension D of R by S.

(2) Let R be a nil unitary algebra over a commutative ring S. Then R is
IPN if and only if so is the Dorroh extension D of R by S.

Proof. (1) It suffices to prove the necessity by help of Lemma 1.2(3). Since
R has 1, every s € S is identified with s1 € R. So if (r,s)(r',s") = 0 for
(r,s),(r',s") € D, then (r + s)(r' + s') = 0. We will use this fact freely. Sup-
pose that R is IPN and let f(z)g(z) € N(D[z]) for f(z) = > 1", a;x’, g(z) =
Yo bjz! € Dlz] with a; = (ri,s;) and b; = (r}, s}). Let

/ /
a; =r;+s; and B =1; + 5.

Then we get F(x)G(z) € N(R[z]) for

F(z) = zm:aixi and G(x) = En:ﬁjxj in R[x].
=0 =0



748 D. LI, Z. PIAO, AND S. J. YUN

Since R is IPN, oyufB; € N(R) for all o, 55, and v € N(R). But since S is
reduced, we have
N(D)={(u,0) € D|u € N(R)}.
So we obtain

ai(u, 0)b; = (ri, si)(u, )TWSJ)
(rzur + r,us + szur + szus ,0)
= (aluﬁ_?? 0) € N(D).
This implies a;N(D)b; C N(D), and therefore D is IPN.
(2) Let I ={(r,0) € D | r € R}. Then I is a nil ideal of D. Moreover D/I

is isomorphic to S. Since S is commutative, D /I is IPN by Proposition 1.4(2).
Since I is nil, D is IPN by Lemma 1.2(2). O

An element u of a ring R is usually said to be right reqular if ur = 0 for
r € R implies r = 0. A left regular element is defined analogously, and an
element is said to be regular if it is both left and right regular.

Proposition 2.4. Let R be a ring and M be a multiplicatively closed subset
of R which consists of central reqular elements. Then R is an IPN ring if and
only if so is RM 1.
Proof. Write E = RM~1. Let rm~! € N(E) with r € R and m € M. Say
(rm™ ! =0 for I > 1. Then 0 = (rm~1)! = r'm~" and r! = 0 follows. So we
have
N(E)={rm " |r e N(R) and m € M}
because r® = 0 for some ¢ > 1 implies (rm~1)! = 0 for all m € M. It suffices
to prove the necessity by help of Lemma 1.2(3). Let f(z)g(x) € N(FE]z]) for
flx) = Z:no iz, g(z ) > 5o Bjx? € Elx]. There exist u,v € M such that
a; = au~t, Bj = bju~! with a;,b; € R for all 4, j. Say [f(x)g(x)]k =0 for k >
1. Let fi(z) = Zz:() a;xt, g1 (x) = E?:o bjz? € Rlz]. Then f(z) = fi(x)u™?
and g(x) = g1(z)v~!. Moreover we have
= [f(2)g(@)]" = [fi(z)u gr(2)v™ ] = [fa(2)g1(2)]* (uv)
and this 1mphes [f1(z)g1(2)]* = 0. If R is IPN, then a;N(R)b; C N(R) for all
i,7. This yields
a;i(rm™ N B; = a;u (rm ™ bju™t = arbj(umv) Tt € N(E)
for all 4,7, where rm~! € N(E). Therefore RM~! is IPN. O

The ring of Laurent polynomials in x, coefficients in a ring R, consists of
all formal sums ;" , 7z’ with the usual addition and multiplication, where
r; € R and k,n are (possibly negative) integers. This ring is usually written

by R[z;z~ 1.

Corollary 2.5. Let R be a ring. R[z] is an IPN ring if and only if so is
Rlz;x~1].
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Proof. Let M = {1,z,22,...}. Then M is clearly a multiplicatively closed
subset of central regular elements in R[z]. Moreover R[x;z~1] = Rlx]M 1. So
we obtain the result by help of Proposition 2.4. (I

Following Birkenmeier et al. [4], aring R is called 2-primalif N.(R) = N(R).
2-primal rings are clearly NI (hence IPN), but the converse need not be true
as we see in [8, Exmaple 1.2] and [10, Example 2.2]. The property of 2-primal
goes up to polynomial rings by [4, Proposition 2.6]. So there are many IPN
rings over which polynomial rings are also IPN.

But the preceding argument is not valid for NI rings. There exist NI rings
over which the polynomial rings need not be NI by the ring construction of
Smoktunowicz in [12]. In fact, we do not know of any example of an IPN ring
over which the polynomial ring is not IPN. But it does seem possible for the
polynomial ring R[z] over the NI ring R, constructed by Smoktunowicz, to be
not IPN. We end our article by raising the following.

Question. Is R[z] IPN when R is an IPN ring?
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