NIL-CLEAN RINGS OF NILPOTENCY INDEX
 AT MOST TWO WITH APPLICATION TO INVOLUTION-CLEAN RINGS

Yu Li, Xiaoshan Quan, and Guoli Xia

Abstract

A ring is nil-clean if every element is a sum of a nilpotent and an idempotent, and a ring is involution-clean if every element is a sum of an involution and an idempotent. In this paper, a description of nil-clean rings of nilpotency index at most 2 is obtained, and is applied to improve a known result on involution-clean rings.

1. Introduction

Throughout this paper we assume that rings have an identity and the subrings share the same identity. For a ring R, the Jacobson radical and the set of nilpotents of a ring R are denoted by $J(R)$ and $\operatorname{Nil}(R)$, respectively. Recently, involution-clean rings were introduced in [3] where the author proved that the structure of an involution-clean ring is reduced to a nil-clean ring R such that $a^{2}+2 a=0$ for all $a \in \operatorname{Nil}(R)$ (see Lemma 3.1). In this paper, we target this class of nil-clean rings, and relate them to nil-clean rings of nilpotency index at most 2. We prove a description of nil-clean rings of nilpotency index at most 2 , and use it to further describe involution-clean rings.

As usual, $\mathbb{M}_{n}(R)$ stands for the $n \times n$ matrix ring over R and $\mathbb{T}_{n}(R)$ for the $n \times n$ (upper) triangular matrix ring over R. We write \mathbb{Z}_{n} for the ring of integers modulo n. An element a in a ring R is called an involution if $a^{2}=1$. A reduced ring is a ring without nonzero nilpotents. A ring is said to be of nilpotency index at most n if $a^{n}=0$ for all $a \in \operatorname{Nil}(R)$.

[^0]
2. Nil-clean rings of nilpotency index at most 2

Following Diesl [4], a ring R is nil-clean if every element of R is a sum of a nilpotent and an idempotent. One easily sees that a ring R is Boolean if and only if R is a nil-clean ring of nilpotency index 1 . In this section, we describe nil-clean rings of nilpotency index at most 2 . Notice that the structure of a general nil-clean ring is, so far, unknown.
Lemma 2.1. The following are equivalent for a ring R :
(1) Every element of R is a sum of an idempotent and a square-zero element.
(2) R is nil-clean of nilpotency index ≤ 2.
(3) $R / J(R)$ is nil-clean of nilpotency index ≤ 2, and $a^{2}=0$ for all $a \in$ $J(R) \cup \operatorname{Nil}(R)$.
Proof. (1) \Rightarrow (2). It suffices to show that $a^{n+1}=0$ whenever $a^{n+2}=0$ in R for $n \geq 1$. Write $1+a=b+e$ where $b^{2}=0$ and $e^{2}=e$. Let $f=1-e$. Then $f+a=b$, so

$$
0=(f+a)^{2}=f+f a+a f+a^{2}
$$

Thus, $0=\left(f+f a+a f+a^{2}\right) a^{n+1}=f a^{n+1}+a f a^{n+1}=(1+a) f a^{n+1}$, so $f a^{n+1}=$ 0 (as $1+a$ is a unit). Hence $0=\left(f+f a+a f+a^{2}\right) a^{n}=f a^{n}+a f a^{n}=(1+a) f a^{n}$, so $f a^{n}=0$. Thus, $0=\left(f+f a+a f+a^{2}\right) a^{n-1}=f a^{n-1}+a f a^{n-1}+a^{n+1}=$ $(1+a) f a^{n-1}+a^{n+1}$, so $0=a\left[(1+a) f a^{n-1}+a^{n+1}\right]=(1+a) a f a^{n-1}$, and hence $a f a^{n-1}=0$. It follows that $f a^{n-1}+a^{n+1}=0$. So $0=f\left[f a^{n-1}+a^{n+1}\right]=$ $f a^{n-1}+f a^{n+1}=f a^{n-1}$. It follows that $a^{n+1}=0$.
$(2) \Rightarrow(3) \Rightarrow(1)$. The implications are clear in view of [4, Corollary 3.17].
Let $\left(r_{\alpha}\right) \in \prod\left\{R_{\alpha}: \alpha \in \Gamma\right\}$. The support of $\left(r_{\alpha}\right)$ is the subset $\Lambda=\{\alpha \in \Gamma$: $\left.r_{\alpha} \neq 0\right\}$. We will denote $\left(r_{\alpha}\right)$ by $\left(r_{\alpha}\right)_{\Lambda}$. Here is a description of a nil-clean ring of nilpotentcy index ≤ 2.

Theorem 2.2. A ring R is a nil-clean ring of nilpotency index ≤ 2 if and only if $a^{2}=0$ for all $a \in J(R) \cup \operatorname{Nil}(R)$ and $R / J(R)$ is a subdirect product of rings $\left\{R_{\alpha}: \alpha \in \Gamma\right\}$, where $R_{\alpha}=\mathbb{Z}_{2}$ or $\mathbb{M}_{2}\left(\mathbb{Z}_{2}\right)$, such that whenever $\left(x_{\alpha}\right)_{\Lambda} \in R / J(R)$ with $x_{\alpha}^{3}=1$ and $x_{\alpha} \neq 1$ for all $\alpha \in \Lambda$, there exists $\left(y_{\alpha}\right)_{\Lambda} \in R / J(R)$ with $y_{\alpha} \neq 0$ and $y_{\alpha}^{2}=0$ for all $\alpha \in \Lambda$.
Proof. (\Rightarrow) By Lemmas 2.1, $a^{2}=0$ for all $a \in J(R) \cup \operatorname{Nil}(R)$. Moreover, $R / J(R)$ is nil-clean of nilpotentcy index ≤ 2. So, by [1, Theorem 1], $R / J(R)$ is a subdirect product of prime rings $\left\{R_{\alpha}: \alpha \in \Lambda\right\}$ of nilpotency index ≤ 2. Hence, by [2, Corollary 6], for each $\alpha, R_{\alpha} \cong \mathbb{M}_{n}(D)$ where D is a division ring and $n \leq 2$. As $\mathbb{M}_{n}(D)$ is still nil-clean, $D=\mathbb{Z}_{2}$ by [5, Theorem 3]. So $R_{\alpha} \cong \mathbb{Z}_{2}$ or $R_{\alpha} \cong \mathbb{M}_{2}\left(\mathbb{Z}_{2}\right)$. Identify $R / J(R)$ as a subring of $\prod_{\Gamma} R_{\alpha}$.

If $R / J(R)$ contains an element $x:=\left(x_{\alpha}\right)_{\Lambda}$ where $1 \neq x_{\alpha} \in R_{\alpha}$ with $x_{\alpha}^{3}=1$ for all $\alpha \in \Lambda$, then, as x is nil-clean in $R / J(R)$, there exists a nilpotent $y \in$ $R / J(R)$ such that $x+y$ is an idempotent. Write $y=\left(y_{\alpha}\right)$ where $y_{\alpha} \in R_{\alpha}$. It must be that $y_{\alpha}=0$ for $\alpha \in \Gamma \backslash \Lambda$ and $y_{\alpha} \neq 0$ for $\alpha \in \Lambda$. So $y=\left(y_{\alpha}\right)_{\Lambda}$.
(\Leftarrow) We only need to show that R is nil-clean. As $J(R)$ is nil, it suffices to show that $R / J(R)$ is nil-clean by [4, Corollary 3.17]. Regard $R / J(R)$ as a subring of $\prod_{\Gamma} R_{\alpha}$.

Let $x \in R / J(R)$. Write $x=\left(x_{\alpha}\right)$ where $x_{\alpha} \in R_{\alpha}$. In R_{α}, there are four types of elements $b: b^{2}=0 ; b^{2}=b ; b^{2}=1$ with $b \neq 1 ; b^{3}=1$ with $b \neq 1$. Thus, we can write Γ as a disjoint union of $\Lambda_{1}, \Lambda_{2}, \Lambda_{3}$ and Λ_{4} such that $x_{\alpha}^{2}=0$ if and only if $\alpha \in \Lambda_{1} ; x_{\alpha}^{2}=x_{\alpha}$ if and only if $\alpha \in \Lambda_{2} ; x_{\alpha}^{2}=1$ with $x_{\alpha} \neq 1$ if and only if $\alpha \in \Lambda_{3} ; x_{\alpha}^{3}=1$ with $x_{\alpha} \neq 1$ if and only if $\alpha \in \Lambda_{4}$. Without loss of generality, we can denote $x=\left(x_{\alpha}\right)=\left(\left(x_{\alpha}\right)_{\Lambda_{1}},\left(x_{\alpha}\right)_{\Lambda_{2}},\left(x_{\alpha}\right)_{\Lambda_{3}},\left(x_{\alpha}\right)_{\Lambda_{4}}\right)$. We have

$$
\begin{aligned}
x+x^{7} & =\left(\left(x_{\alpha}\right)_{\Lambda_{1}}, \mathbf{0}, \mathbf{0}, \mathbf{0}\right), \\
x^{2}+x^{5} & =\left(\mathbf{0}, \mathbf{0}, \mathbf{1}+\left(x_{\alpha}\right)_{\Lambda_{3}}, \mathbf{0}\right), \\
\left(x^{2}+x^{5}+x^{6}+x^{7}\right)^{2} & =\left(\mathbf{0}, \mathbf{0}, \mathbf{0},\left(x_{\alpha}\right)_{\Lambda_{4}}\right)
\end{aligned}
$$

So $\left(x_{\alpha}\right)_{\Lambda_{4}} \in R / J(R)$. By our assumption, there exists $\left(y_{\alpha}\right)_{\Lambda_{4}} \in R / J(R)$ with $y_{\alpha} \neq 0$ and $y_{\alpha}^{2}=0$ for all $\alpha \in \Lambda_{4}$. One can check that $\left(x_{\alpha}\right)_{\Lambda_{4}}+\left(y_{\alpha}\right)_{\Lambda_{4}} \in R / J(R)$ is an idempotent. We see that

$$
\begin{aligned}
y & :=\left(\left(x_{\alpha}\right)_{\Lambda_{1}}, \mathbf{0}, \mathbf{1}+\left(x_{\alpha}\right)_{\Lambda_{3}},\left(y_{\alpha}\right)_{\Lambda_{4}}\right) \\
& =\left(\left(x_{\alpha}\right)_{\Lambda_{1}}, \mathbf{0}, \mathbf{0}, \mathbf{0}\right)+\left(\mathbf{0}, \mathbf{0}, \mathbf{1}+\left(x_{\alpha}\right)_{\Lambda_{3}}, \mathbf{0}\right)+\left(\mathbf{0}, \mathbf{0}, \mathbf{0},\left(y_{\alpha}\right)_{\Lambda_{4}}\right) \in R / J(R)
\end{aligned}
$$

is nilpotent, and

$$
\left(\mathbf{0},\left(x_{\alpha}\right)_{\Lambda_{2}}, \mathbf{1},\left(x_{\alpha}\right)_{\Lambda_{4}}+\left(y_{\alpha}\right)_{\Lambda_{4}}\right)=x+y \in R / J(R)
$$

is an idempotent. Therefore, $x=y+(x+y)$ is nil-clean in $R / J(R)$. So $R / J(R)$ is nil-clean.

Corollary 2.3. If $R / J(R) \cong S \bigoplus\left(\prod \mathbb{M}_{2}\left(\mathbb{Z}_{2}\right)\right)$ for a Boolean ring S with $J(R)$ nil such that $a^{2}=0$ for all $a \in \operatorname{Nil}(R)$, then R is nil-clean of nilpotency index ≤ 2.

A subdirect product of a Boolean ring and a family of copies of $\mathbb{M}_{2}\left(\mathbb{Z}_{2}\right)$ need not be a nil-clean ring.

Example 2.4. Let $T=\prod_{n=1}^{\infty} R_{i}$ where $R_{i}=\mathbb{M}_{2}\left(\mathbb{Z}_{2}\right)$ for all $i \geq 1$. Let $z=\left(z_{i}\right) \in T$ where $z_{i}=\left(\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right) \in \mathbb{M}_{2}\left(\mathbb{Z}_{2}\right)$. Let S be the subring of T generated by z, i.e., $S=\{0,1, z, 1+z\}$ where $z^{2}=1+z$. Let $R=\left(\bigoplus_{i=1}^{\infty} R_{i}\right)+S$. Then R is a subdirect product of $\left\{R_{i}\right\}$, so $J(R)=0$ and R has nilpotency index 2. However, although R contains z, R does not contain a nilpotent $\left(y_{i}\right)$ with $y_{i} \neq 0$ for all $i \geq 1$. So R is not nil-clean by Theorem 2.2.

In general, it is unknown whether R nil-clean implies that the corner ring $e R e\left(e^{2}=e \in R\right)$ is nil-clean (see [4, Question 2]). But we have:

Corollary 2.5. If R is a nil-clean ring of nilpotency index at most 2 , then so is eRe for all $e^{2}=e \in R$.

Proof. Let $S=e$ Re. Then $J(S)=e J(R) e \subseteq J(R)$ and $\operatorname{Nil}(S) \subseteq \operatorname{Nil}(R)$. Since R is a nil-clean ring of nilpotency index at most $2, a^{2}=0$ for all $a \in$ $J(R) \cup \operatorname{Nil}(R)$ by Theorem 2.2, so $a^{2}=0$ for all $a \in J(S) \cup \operatorname{Nil}(S)$. Moreover, $\bar{R}:=R / J(R)$ is a subdirect product of $\left\{R_{\alpha}: \alpha \in \Gamma\right\}$ where either $R_{\alpha} \cong \mathbb{Z}_{2}$ or $R_{\alpha} \cong \mathbb{M}_{2}\left(\mathbb{Z}_{2}\right)$. That is, \bar{R} is a subring of $\prod R_{\alpha}$ such that $\pi_{\alpha}(\bar{R})=R_{\alpha}$ where $\pi_{\alpha}: \prod R_{\alpha} \rightarrow R_{\alpha}$ is the natural projection for all $\alpha \in \Gamma$. Let $\bar{e}=e+J(R) \in \bar{R}$. Write $\bar{e}=\left(e_{\alpha}\right)$ where $e_{\alpha} \in R_{\alpha}$ is an idempotent. It is easily seen that $\bar{e} \bar{R} \bar{e}$ is a subring of $\prod e_{\alpha} R_{\alpha} e_{\alpha}$ with $\pi_{\alpha}(\bar{e} \bar{R} \bar{e})=e_{\alpha} R_{\alpha} e_{\alpha}$ for all α. That is, $\bar{e} \bar{R} \bar{e}$ is a subdirect product of $\left\{e_{\alpha} R_{\alpha} e_{\alpha}\right\}$. We notice that, if $R_{\alpha} \cong \mathbb{Z}_{2}$, then $e_{\alpha} R_{\alpha} e_{\alpha}=0$ or $e_{\alpha} R_{\alpha} e_{\alpha} \cong \mathbb{Z}_{2}$, and that, if $R_{\alpha} \cong \mathbb{M}_{2}\left(\mathbb{Z}_{2}\right)$, then $e_{\alpha} R_{\alpha} e_{\alpha}=0$, or $e_{\alpha} R_{\alpha} e_{\alpha} \cong \mathbb{Z}_{2}$, or $e_{\alpha} R_{\alpha} e_{\alpha} \cong \mathbb{M}_{2}\left(\mathbb{Z}_{2}\right)$ (this only occurs when e_{α} is the identity of $\left.R_{\alpha}\right)$. Suppose that $x=\left(x_{\alpha}\right)_{\Lambda} \in \bar{e} \bar{R} \bar{e}$ where $e_{\alpha} \neq x_{\alpha} \in e_{\alpha} R_{\alpha} e_{\alpha}$ with $x_{\alpha}^{3}=e_{\alpha}$ for all $\alpha \in \Lambda$. It must be that, for each $\alpha \in \Lambda, R_{\alpha} \cong \mathbb{M}_{2}\left(\mathbb{Z}_{2}\right)$ and $e_{\alpha}=1_{R_{\alpha}}$. Then, by Theorem 2.2, there exists $y=\left(y_{\alpha}\right)_{\Lambda} \in \bar{R}$ such that $y_{\alpha} \neq 0$ and $y_{\alpha}^{2}=0$. But $y=\bar{e} y \bar{e} \in \bar{e} \bar{R} \bar{e}$. Note that $S / J(S)=e R e / e J(R) e=e R e /(e \operatorname{Re} \cap J(R)) \cong$ $(e R e+J(R)) / J(R)=\bar{e} \bar{R} \bar{e}$. Hence, by Theorem 2.2, S is a nil-clean ring of nilpotency index at most 2 .

A ring R is strongly π-regular if for each $a \in R$, there exists $n \geq 1$ such that $a^{n} \in a^{n+1} R \cap R a^{n+1}$. It is unknown whether every nil-clean ring is strongly π-regular (see [4, Question]). However, every nil-clean ring of nilpotency index at most 2 is certainly strongly π-regular.
Corollary 2.6. If R is nil-clean of nilpotency index ≤ 2, then R is strongly π-regular.
Proof. If $a \in J(R)$, then $a^{2}=0$. Suppose that $a \notin J(R)$. Let $x=\bar{a} \in R / J(R)$. As in the proof of Theorem 2.2, $x=\left(x_{\alpha}\right)=\left(\left(x_{\alpha}\right)_{\Lambda_{1}},\left(x_{\alpha}\right)_{\Lambda_{2}},\left(x_{\alpha}\right)_{\Lambda_{3}},\left(x_{\alpha}\right)_{\Lambda_{4}}\right)$. Moreover, $x+x^{7}=\left(\left(x_{\alpha}\right)_{\Lambda_{1}}, \mathbf{0}, \mathbf{0}, \mathbf{0}\right)$, so $\left(x+x^{7}\right)^{2}=\overline{0}$, i.e., $\left(a+a^{7}\right)^{2} \in J(R)$. Hence, $a^{4}\left(1+a^{6}\right)^{4}=\left(a+a^{7}\right)^{4}=\left(\left(a+a^{7}\right)^{2}\right)^{2}=0$, showing that $a^{4} \in a^{5} R \cap R a^{5}$. So R is strongly π-regular.

3. Involution-clean rings

Following Danchev [3], a ring is an involution-clean ring if every element is a sum of an idempotent and an involution. The following result is proved in [3].
Lemma 3.1 ([3]). A ring R is an involution-clean ring if and only if $R=A \times B$, where A is a nil-clean ring with $a^{2}+2 a=0$ for all $a \in \operatorname{Nil}(A)$ and B is zero or a subdirect product of \mathbb{Z}_{3} 's.

Next, we give a further description of the ring A in the decomposition in Lemma 3.1.
Lemma 3.2. A ring R is nil-clean with $a^{2}+2 a=0$ for all $a \in \operatorname{Nil}(R)$ if and only if $R / J(R)$ is nil-clean of nilpotency index $\leq 2, J(R)$ nil and $a^{2}+2 a=0$ for all $a \in \operatorname{Nil}(R)$.

Proof. In view of [4, Proposition 3.14 and Corollary 3.17], we see that
R is nil-clean with $a^{2}+2 a=0$ for all $a \in \operatorname{Nil}(R)$
$\Longleftrightarrow R / J(R)$ is nil-clean with $J(R)$ nil and with $a^{2}+2 a=0$ for all $a \in \operatorname{Nil}(R)$
$\Longleftrightarrow R / J(R)$ is nil-clean of nilpotency index $\leq 2, J(R)$ nil and
$a^{2}+2 a=0$ for all $a \in \operatorname{Nil}(R)$.
Theorem 3.3. A ring R is an involution-clean ring if and only if $R \cong A \times B$, where
(1) B is zero or a subdirect product of \mathbb{Z}_{3} 's.
(2) $J(A)$ is nil, $a^{2}+2 a=0$ for all $a \in \operatorname{Nil}(A)$, and $A / J(A)$ is a subdirect product of rings $\left\{A_{\alpha}: \alpha \in \Gamma\right\}$, where $A_{\alpha}=\mathbb{Z}_{2}$ or $\mathbb{M}_{2}\left(\mathbb{Z}_{2}\right)$, such that whenever $\left(x_{\alpha}\right)_{\Lambda} \in A / J(A)$ with $x_{\alpha}^{3}=1$ and $x_{\alpha} \neq 1$ for all $\alpha \in \Lambda$, there exists $\left(y_{\alpha}\right)_{\Lambda} \in A / J(A)$ with $y_{\alpha} \neq 0$ and $y_{\alpha}^{2}=0$ for all $\alpha \in \Lambda$.
Proof. This is by Lemmas 3.1, 3.2 and Theorem 2.2.
Corollary 3.4. If $R / J(R) \cong S \bigoplus\left(\prod \mathbb{M}_{2}\left(\mathbb{Z}_{2}\right)\right)$ for a Boolean ring S with $J(R)$ nil such that $a^{2}+2 a=0$ for all $a \in \operatorname{Nil}(R)$, then R is an involution-clean ring.

As seen in Example 2.4, a subdirect product of a Boolean ring and a family of copies of $\mathbb{M}_{2}\left(\mathbb{Z}_{2}\right)$ need not be an involution-clean ring.

Next we determine when a (formal or triangular) matrix ring is involutionclean.

Proposition 3.5. Let S, T be rings and M a non-trivial (S, T)-bimodule. Then the formal matrix ring $\left(\begin{array}{c}S \\ 0 \\ \hline\end{array} \underset{T}{M}\right)$ is an involution-clean ring if and only if S, T are involution-clean rings and $\operatorname{Nil}(S) M=M \operatorname{Nil}(T)=2 M=0$.
Proof. (\Rightarrow) If $x \in M$, then $\left(\begin{array}{ll}0 & x \\ 0 & 0\end{array}\right)^{2}+2\left(\begin{array}{ll}0 & x \\ 0 & 0\end{array}\right)=0$, and this shows that $2 x=0$. Hence $2 M=0$. Let $a \in \operatorname{Nil}(S)$ an $x \in M$. Then $\left(\begin{array}{cc}a & x \\ 0 & 0\end{array}\right)^{2}+2\left(\begin{array}{ll}a & x \\ 0 & 0\end{array}\right)=0$, and this shows that $a x=-2 x=0$. So $\operatorname{Nil}(S) M=0$. Similarly $M \operatorname{Nil}(T)=0$. As images of $\left(\begin{array}{c}S \\ 0\end{array} \underset{T}{M}\right), S$ and T are clearly involution-clean rings.
(\Leftarrow) We write $S=A \oplus A^{\prime}$ and $T=B \oplus B^{\prime}$ where $8=0$ in A and in $B, A^{\prime} \oplus B^{\prime}$ is zero or a subdirect product of \mathbb{F}_{3} 's. Write $1_{S}=1_{A}+1_{A^{\prime}}$ and $1_{T}=1_{B}+1_{B^{\prime}}$. From $2 M=0$, one deduces that $1_{A^{\prime}} M=0$ and $M 1_{B^{\prime}}=0$, and that $1_{A} x=x 1_{B}=x$ for all $x \in M$. Therefore,

$$
\left(\begin{array}{cc}
S & M \\
0 & T
\end{array}\right) \cong\left(\begin{array}{cc}
A & M \\
0 & B
\end{array}\right) \times A^{\prime} \times B^{\prime} .
$$

Thus, we only need to show that $\left(\begin{array}{cc}A & M \\ 0 & B\end{array}\right)$ is an involution-ring. Let $\left(\begin{array}{ll}a & x \\ 0 & b\end{array}\right) \in$ $\left(\begin{array}{cc}A & M \\ 0 & B\end{array}\right)$. Write $a=e+v$ and $b=f+w$ where $e^{2}=e, v^{2}=1, f^{2}=f$ and $w^{2}=1$. Then $(1+v)^{2}=2(1+v) \in J(A)$, so $(1+v) x=0$. Similarly, $x(1+w)=0$. Thus $v x+x w=(1+v) x+x(1+w)-2 x=0$, so $\left(\begin{array}{cc}a & x \\ 0 & b\end{array}\right)=\left(\begin{array}{cc}e & 0 \\ 0 & f\end{array}\right)+\left(\begin{array}{cc}v & x \\ 0 & w\end{array}\right)$ is a sum of an idempotent and an involution.

Theorem 3.6. Let R be a ring and $n \geq 2$. The following are equivalent:
(1) $\mathbb{T}_{n}(R)$ is an involution-clean ring.
(2) $\mathbb{T}_{n}(R)$ is a nil-clean ring of nilpotentcy index ≤ 2.
(3) $n=2$ and R is Boolean.
(4) $\mathbb{M}_{n}(R)$ is a nil-clean ring of nilpotency index ≤ 2.
(5) $\mathbb{M}_{n}(R)$ is an involution-clean ring.

Proof. (1) \Rightarrow (3) Write $\mathbb{T}_{n}(R)=\left(\begin{array}{cc}S & M \\ 0 & R\end{array}\right)$, where $S=\mathbb{T}_{n-1}(R)$ and $M=$ $\mathbb{M}_{(n-1) \times 1}(R)$. By Proposition 3.5, $2=0$ in R and $\operatorname{Nil}(S) M=0$, from which we deduce that $n=2$ and R is a reduced ring. As an image of $\mathbb{T}_{2}(R), R$ is involution-clean. Thus, R is a subdirect product of involution-clean domains in which 2 is zero. One easily sees that each of the domains is isomorphic to \mathbb{Z}_{2}, so R is Boolean.
$(3) \Rightarrow(2)$ Let $\left(\begin{array}{ll}a & b \\ 0 & c\end{array}\right) \in \mathbb{T}_{2}(R)$. Then $\left(\begin{array}{ll}a & b \\ 0 & c\end{array}\right)=\left(\begin{array}{ll}a & 0 \\ 0 & c\end{array}\right)+\left(\begin{array}{ll}0 & b \\ 0 & 0\end{array}\right)$ is a sum of an idempotent and a square-zero element.
$(2) \Rightarrow(1)$ As $2 \in \operatorname{Nil}(R), 2 E_{11}+E_{12}$ is nilpotent, so $0=\left(2 E_{11}+E_{12}\right)^{2}=$ $4 E_{11}+2 E_{12}$. This shows that $2=0$ in R. For $A \in \mathbb{M}_{n}(R)$, write $A=E+B$ where $E^{2}=E$ and $B^{2}=0$. Then $A=(1+E)+(1+B)$ is a sum of an idempotent and an involution.
$(5) \Rightarrow(4)$ By Lemma $3.1, \mathbb{M}_{n}(R) \cong A \times B$, where $8=0$ in A and B is zero or a subdirect product of \mathbb{Z}_{3} 's. Thus, there exists a central idempotent e of R such that $A \cong \mathbb{M}_{n}(e R)$ and $B \cong \mathbb{M}_{n}((1-e) R)$. As $n \geq 2$, it follows from Lemma 3.1 that $e=1$, so $8=0$ in $\mathbb{M}_{n}(R)$. As $E_{12} \in \mathbb{M}_{n}(R)$ is nilpotent, $\left(E_{12}\right)^{2}+2 E_{12}=0$, showing that $2=0$ in R. For $A \in \mathbb{M}_{n}(R)$, write $A=E+V$ where $E^{2}=E$ and $V^{2}=1$. Then $A=(1+E)+(1+V)$ is a sum of an idempotent and a square-zero element.
(4) \Rightarrow (3) If $x^{2}=0$ in R, then $x E_{11}+E_{12} \in \mathbb{M}_{n}(R)$ is nilpotent; so $x E_{12}=\left(x E_{11}+E_{12}\right)^{2}=0$, showing $x=0$. Hence R is a reduced ring. As $\mathbb{M}_{n}(R)$ is nil-clean, R is Boolean by [6, Corollary 6.3]. Assume that $n>2$. Then, as $E_{12}+E_{23} \in \mathbb{M}_{n}(R)$ is nilpotent, $E_{23}=\left(E_{12}+E_{23}\right)^{2}=0$. This contradictions shows that $n=2$.
$(3) \Rightarrow(5)$ By [6, Corollary 6.3$], R$ is nil-clean. By Lemma 3.1, it suffices to show that $A^{2}=0$ for any nilpotent matrix A in $\mathbb{M}_{2}(R)$. Let $A=\left(\begin{array}{cc}a & b \\ c & d\end{array}\right)$ be nilpotent in $\mathbb{M}_{2}(R)$. Then the determinant of A must be zero, so $a d=b c$. We have $A^{2}=\left(\begin{array}{cc}a+b c & a b+b d \\ a c+c d & b c+d\end{array}\right)$, and

$$
\begin{aligned}
A^{3} & =\left(\begin{array}{cc}
a+b c \cdot d & a b+b \cdot a d+b c+b d \\
a c+b c+c \cdot a d+c d & a \cdot b c+d
\end{array}\right) \\
& =\left(\begin{array}{cc}
a+a d & a b+b c+b c+b d \\
a c+b c+b c+c d & a d+d
\end{array}\right) \\
& =\left(\begin{array}{cc}
a+b c & a b+b d \\
a c+c d & b c+d
\end{array}\right)=A^{2} .
\end{aligned}
$$

It follows that $A^{2}=0$.

Example 3.7. \mathbb{Z}_{8} is an involution-clean ring, but 2 is not a sum of an idempotent and a square-zero element. The trivial extension $\mathbb{Z}_{4} \propto \mathbb{Z}_{4}$ is not an involution-clean, but is a nil-clean ring with index of nilpotency ≤ 2.

References

[1] E. P. Armendariz, On semiprime rings of bounded index, Proc. Amer. Math. Soc. 85 (1982), no. 2, 146-148.
[2] K. I. Beidar, On rings with zero total, Beiträge Algebra Geom. 38 (1997), no. 2, 233-239.
[3] P. V. Danchev, Invo-clean unital rings, Commun. Korean Math. Soc. 32 (2017), no. 1, 19-27.
[4] A. J. Diesl, Nil clean rings, J. Algebra 383 (2013), 197-211.
[5] T. Kosa̧n, T.-K. Lee, and Y. Zhou, When is every matrix over a division ring a sum of an idempotent and a nilpotent?, Linear Algebra Appl. 450 (2014), 7-12.
[6] M. T. Kosąn, Z. Wang, and Y. Zhou, Nil-clean and strongly nil-clean rings, J. Pure Appl. Algebra 220 (2016), no. 2, 633-646.

Yu Li
School of Mathematics and Statistics
Southwest University
Chongqing 400715, P. R. China
Email address: Liskyu@163.com
Xiaoshan Quan
School of Mathematics and Statistics
Guangxi Teachers Education University
Nanning, Guangxi 530001, P. R. China
Email address: xiaoshanquan3@163.com
Guoli Xia
Department of Mathematics and Statistics
Memorial University of Newfoundland
St. John's, NL A1C 5S7, Canada
Email address: linqyou1991@163.com

[^0]: Received July 25, 2017; Accepted September 6, 2017.
 2010 Mathematics Subject Classification. Primary 16U60.
 Key words and phrases. idempotent, nilpotent, involution, nil-clean ring of nilpotency index at most 2, involution-clean ring.

 This work was supported by the National Natural Science Foundation of China(11661014, 11461010, 11661013), the Guangxi Science Research and Technology Development Project(1599005-2-13), the Guangxi Natural Science Foundation(2016GXSFDA380017) and the Scientific Research Fund of Guangxi Education Department(KY2015ZD075).

