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MULTIVALUED MAPPINGS IN HILBERT SPACES
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and Siwanat Weerakham

Abstract. In this paper, we introduce new iterative schemes by using

the modified Ishikawa iteration for two hybrid multivalued mappings in a

Hilbert space. We then obtain weak convergence theorem under suitable
conditions. We use CQ and shrinking projection methods with Ishikawa

iteration for obtaining strong convergence theorems. Furthermore, we

give examples and numerical results for supporting our main results.

1. Introduction

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖,
respectively. Let C be a nonempty closed and convex subset of H. A subset
C ⊂ H is said to be proximinal if for each x ∈ H, there exists y ∈ C such that

‖x− y‖ = d(x,C) = inf{‖x− z‖ : z ∈ C}.

Let CB(C),K(C) and P (C) denote the families of nonempty closed bounded
subsets, nonempty compact subsets and nonempty proximinal bounded subset
of C, respectively. The Hausdorff metric on CB(C) is defined by

H(A,B) = max
{

sup
x∈A

d(x,B), sup
y∈B

d(y,A)
}

for all A,B ∈ CB(C) where d(x,B) = infb∈B ‖x− b‖. A singlevalued mapping
T : C → C is said to be nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖

for all x, y ∈ C. A multivalued mapping T : C → CB(C) is said to be
nonexpansive if

H(Tx, Ty) ≤ ‖x− y‖
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for all x, y ∈ C. An element p ∈ C is called a fixed point of a mapping
T : C → C (resp., a multivalued mapping T : C → CB(C)) if p = Tp (resp.,
p ∈ Tp). The fixed point set of T is denoted by F (T ). If F (T ) 6= ∅ and

H(Tx, Tp) ≤ ‖x− p‖
for all x ∈ C and p ∈ F (T ), then T is said to be quasi-nonexpansive.

Since 1965, fixed point theorems and the existence of fixed points of singl-
evalued nonexpansive mappings have been intensively studied and considered
by many authors (see, for example, [1, 3, 6–8,11,18–20,22,25]).

In 1953, Mann [14] introduced the following iterative procedure for approx-
imating a fixed point of a nonexpansive mapping T in a Hilbert space H:

(1.1) xn+1 = αnxn + (1− αn)Txn, ∀n ∈ N,

where the initial point x1 is taken in C arbitrarily and {αn} is a sequence in
[0,1]. We know that Mann’s iteration has the only weak convergence theorem
(see, for example, [2, 21]).

In 1974, Ishikawa [10] introduced the following iterative scheme which is a
generalization of the Mann’s iterative algorithm (1.1): x0 ∈ C chosen arbitrarily,

xn+1 = αnxn + (1− αn)Tzn, n ≥ 0,
zn = βnxn + (1− βn)Txn,

where {αn} and {βn} are appropriate control sequences in [0, 1]. However,
Ishikawa iteration processes also has only weak convergence even in a Hilbert
space.

For obtaining strong convergence theorem, Nakajo and Takahashi [17] pro-
posed the following modification of the Mann’s iteration method (1.1) for a
single nonexpansive mapping T in a Hilbert space H:

x0 ∈ C chosen arbitrarily,
yn = αnxn + (1− αn)Txn,
Cn = {z ∈ C : ‖yn − z‖ ≤ ‖xn − z‖},
Qn = {z ∈ C : 〈x0 − xn, xn − z〉},
xn+1 = PCn∩Qn

x0.

They proved that if the sequence {αn} is bounded above by 1, then the sequence
{xn} converges strongly to PFix(T )x0.

Recently, Takahashi et al. [27] introduced the following modification of the
Mann’s iteration method (1.1) which just involved one closed convex set for a
family of nonexpansive mappings {Tn}:

u0 ∈ H chosen arbitrarily,
C1 = C, u1 = Pc1x0,
yn = αnun + (1− αn)Tnun,
Cn = {z ∈ C : ‖yn − z‖ ≤ ‖un − z‖},
un+1 = PCn+1

x0.
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They proved that if αn ≤ a for all n ≥ 1 and for some 0 < a < 1, then the
sequence {un} converges strongly to PF (τ)x0.

In 2008, Kohsaka and Takahashi [12, 13] presented a new mapping which
is called a nonspreading mapping and obtained fixed point theorems for a
single nonspreading mapping and also a common fixed point theorems for a
commutative family of nonspreading mapping in Banach spaces. Let H be a
Hilbert space and let C be a nonempty closed convex subset of H. A mapping
T : C → C is said to be nonspreading if

2‖Tx− Ty‖2 ≤ ‖x− Ty‖2 + ‖y − Tx‖2

for all x, y ∈ C. Recently, Iemoto and Takahashi [9] showed that T : C → C is
nonspreading if and only if

‖Tx− Ty‖2 ≤ ‖x− y‖2 + 2〈x− Ty, y − Ty〉 ∀x, y ∈ C.

Further, Takahashi [26] defined a class of nonlinear mappings which is called
hybrid as follows:

‖Tx− Ty‖2 ≤ ‖x− y‖2 + 〈x− Tx, y − Ty〉

for all x, y ∈ C. It was shown that a mapping T : C → H is hybrid if and only
if

3‖Tx− Ty‖2 ≤ ‖x− y‖2 + ‖y − Tx‖2 + ‖x− Ty‖2

for all x, y ∈ C.
Inspired by Kohsaka and Takahashi [12,13], Iemoto and Takahashi [9], Taka-

hashi [26], Cholamjiak and Cholamjiak [5] introduced a new concept of multi-
valued mappings in Hilbert spaces by using Hausdorff metric. A multivalued
mapping T : C → CB(C) is said to be hybrid if

3H(Tx, Ty)2 ≤ ‖x− y‖2 + d(y, Tx)2 + d(x, Ty)2

for all x, y ∈ C. They showed that if T is hybrid and F (T ) 6= ∅, then T is
quasi-nonexpansive. Moreover, they gave an example of a hybrid multivalued
mapping which is not nonexpansive.

Example 1.1 ([5]). Let H = R Consider C = [0, 3] with the usual norm.
Define a multivalued mapping T : C → CB(C) by

Tx =

{
{0}, x ∈ [0, 2];[
0, x

x+1

]
, x ∈ (2, 3].

We now give other examples of hybrid multivalued mappings which are not
nonexpansive.

Example 1.2. Let H = R. Consider C = [2, 5] with the usual norm. Define
two hybrid multivalued mappings T1 : C → K(C) by

T1x =

{
{5}, x ∈ [3, 5];[
(x+ 5)( tan−1(19x−65)

2 ) + x, 5
]
, x /∈ [3, 5].
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To see that T1 is hybrid, we observe the following cases.
Case 1. If x, y ∈ [3, 5], then H(T1x, T1, y) = 0.
Case 2. If x ∈ [3, 5] and y /∈ [3, 5], then T1x = {5} and T1y =

[
(y +

5)( tan−1(19y−65)
2 ) + y, 5

]
. This implies that

3H(T1x, T1y)2 = 3
(
(y + 5)(

tan−1(19y − 65)

2
) + y − 5

)2
< 3

< ‖x− y‖2 + d(x, T1y)2 + d(y, T1x)2.

Case 3. If x, y /∈ [3, 5], then T1x =
[
(x + 5)( tan−1(19x−65)

2 ) + x, 5
]

and T1y =[
(y + 5)( tan−1(19y−65)

2 ) + y, 5
]
. This implies that

3H(T1x, T1y)2

= 3
(
(x+ 5)(

tan−1(19x− 65)

2
) + x−

(
(y + 5)(

tan−1(19y − 65)

2
) + y

))2
< 3

< ‖x− y‖2 + d(x, T1y)2 + d(y, T1x)2.

But T1 is not nonexpansive since for x = 2.94 and y = 3.42, we have T1x =
[4.45, 5] and T1y = {5}. This implies that

H(T1x, T1y) = |5− 4.45| = 0.55 > 0.48 = ‖x− y‖.

Example 1.3. Let H = R. Consider C = [2, 5] with the usual norm. Define
two hybrid multivalued mappings T2 : C → K(C) by

T2x =

{
{5}, x ∈ [3, 5];[
(x− 5)(− cos(0.1x2.5−0.98)

1.29 ) + x, 5
]
, x /∈ [3, 5].

To see that T2 is hybrid, we observe the following cases.
Case 1. If x, y ∈ [3, 5], then H(T2x, T2, y) = 0.
Case 2. If x ∈ [3, 5] and y /∈ [3, 5], then T2x = {5} and T2y =

[
(y +

5)(− cos(0.1y2.5−0.98)
1.29 ) + y, 5

]
. This implies that

3H(T2x, T2y)2 = 3
(
(y + 5)(

− cos(0.1y2.5 − 0.98)

1.29
) + y − 5

)2
< 3

< ‖x− y‖2 + d(x, T2y)2 + d(y, T2x)2.

Case 3. If x, y /∈ [3, 5], then T2x =
[
(x + 5)(− cos(0.1x2.5−0.98)

1.29 ) + x, 5
]

and

T2y =
[
(y + 5)(− cos(0.1y2.5−0.98)

1.29 ) + y, 5
]
. This implies that

3H(T2x, T2y)2

= 3
(
(x+ 5)(

− cos(0.1x2.5−0.98)

1.29
) + x−

(
(y + 5)(

− cos(0.1y2.5−0.98)

1.29
) + y

))2
< 3

< ‖x− y‖2 + d(x, T2y)2 + d(y, T2x)2.
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But T2 is not nonexpansive since for x = 2.97 and y = 3.55, we have T2x =
[4.28, 5] and T2y = {5}. This implies that

H(T2x, T2y) = |5− 4.28| = 0.72 > 0.58 = ‖x− y‖.

Motivated and inspired by the above works, we introduce the iterative
scheme for finding a common fixed point of two hybrid multivalued mappings
by using the Ishikawa iteration. We also obtain weak convergence theorems.
Moreover, we use CQ and shrinking projection methods with Ishikawa iteration
for obtaining strong convergence theorems. As application, we give examples
and numerical results for supporting our main results.

2. Preliminaries and lemmas

We now provide some basic results for the proof. In a Hilbert space H, let
C be a nonempty closed and convex subset of H. Let {xn} be a sequence in
H, we denote the weak convergence of {xn} to a point x ∈ H by xn ⇀ x and
the strong convergence of {xn} to a point x ∈ H by xn → x. For every point
x ∈ H, there exists a unique nearest point of C, denoted by PCx, such that
‖x− PCx‖ ≤ ‖x− y‖ for all y ∈ C. Such a PC is called the metric projection
from H on to C.

Lemma 2.1 ([7, 15]). Let H be a real Hilbert space. Then for each x, y ∈ H
and each t ∈ [0, 1]

(a) ‖x− y‖2 = ‖x‖2 − 2〈x, y〉+ ‖y‖2.
(b) ‖tx+ (1− t)y‖2 = t‖x‖2 + (1− t)‖y‖2 − t(1− t)‖x− y‖2.
(c) If {xn} is a sequence in H weakly convergent to z, then

lim sup
n→∞

‖xn − y‖2 = lim sup
n→∞

‖xn − z‖2 + ‖z − y‖2.

Lemma 2.2 ([16]). Let C be a nonempty closed and convex subset of a real
Hilbert space H. For each x, y ∈ H and a ∈ R, the set

D = {v ∈ C : ‖y − v‖2 ≤ ‖x− v‖2 + 〈z, v〉+ a}

is closed and convex.

Lemma 2.3 ([17]). Let C be a nonempty closed and convex subset of a real
Hilbert space H and PC : H → C be the metric projection from H onto C.
Then ‖y − PCx‖2 + ‖x− PCx‖2 ≤ ‖x− y‖2 for all x ∈ H and y ∈ C.

Lemma 2.4 ([23]). Let X be a Banach space satisfying Opial’s condition and
let {xn} be a sequence in X. Let u, v ∈ X be such that

limn→∞ ‖xn − u‖ and limn→∞ ‖xn − v‖ exist.

If {xnk
} and {xmk

} are subsequences of {xn} which converge weakly to u and
v, respectively, then u = v.
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Lemma 2.5 ([5]). Let C be a closed and convex subset of a real Hilbert space
H. Let T : C → K(C) be a hybrid multivalued mapping. Let {xn} be a sequence
in C such that xn ⇀ p and limn→∞ ‖xn − yn‖ = 0 for some yn ∈ Txn. Then
p ∈ Tp.

Lemma 2.6 ([5]). Let C be a closed and convex subset of a real Hilbert space
H. Let T : C → K(C) be a hybrid multivalued mapping with F (T ) 6= ∅, then
F (T ) is closed.

Condition (A). Let H be a Hilbert space and C be a subset of H. A
multivalued mapping T : C → CB(C) is said to satisfy Condition (A) if
‖x− p‖ = d(x, Tp) for all x ∈ H and p ∈ F (T ).

Lemma 2.7 ([5]). Let C be a closed and convex subset of a real Hilbert space
H. Let T : C → K(C) be a hybrid multivalued mapping with F (T ) 6= ∅. If T
satisfies Condition (A), then F (T ) is convex.

Remark 2.8. We see that T satisfies Condition (A) if and only if Tp = {p} for
all p ∈ F (T ). It is known that the best approximation operator PT , which is
defined by PTx = {y ∈ Tx : ‖y − x‖ = d(x, Tx)}, also satisfies Condition (A)
(see [4, 5, 24]).

3. Main results

In this section, we prove a weak convergence theorem for a modification
of Ishikawa iteration for two hybrid multivalued mappings. Further, we use
CQ and shrinking projection methods with Ishikawa iteration to obtain strong
convergence theorems.

Theorem 3.1. Let C be a closed and convex subset of a real Hilbert space H
and T1, T2 : C → K(C) be hybrid multivalued mappings with F (T1)∩F (T2) 6= ∅.
Let {xn} be a sequence generated by

(3.1)

 x1 ∈ C chosen arbitrarily,
zn ∈ βnxn + (1− βn)T1xn,
xn+1 ∈ αnxn + (1− αn)T2zn,

for all n ≥ 1, where {αn}, {βn} ⊂ (0, 1).
Assume that the following hold:

(i) 0 < lim infn→∞ αn < lim supn→∞ αn < 1;
(ii) 0 < lim infn→∞ βn < lim supn→∞ βn < 1.

If T1 and T2 satisfy Condition (A), then the sequence {xn} converges weakly to
a common fixed point of {T1, T2}.

Proof. Let p ∈ F (T1) ∩ F (T2). By using Lemma 2.1(b) and T1, T2 satisfy
Condition (A), for vn ∈ T2zn and wn ∈ T1xn, we get

‖xn+1 − p‖2 = ‖αn(xn − p) + (1− αn)‖vn − p)‖2

≤ αn‖xn − p‖2 + (1− αn)‖vn − p‖2
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= αn‖xn − p‖2 + (1− αn)d(vn − T2p)2

≤ αn‖xn − p‖2 + (1− αn)H(T2zn, T2p)
2

≤ αn‖xn − p‖2 + (1− αn)‖zn − p‖2(3.2)

and

‖zn − p‖2 = ‖βn(xn − p) + (1− βn(wn − p)‖2

= βn‖xn − p‖2 + (1− βn)‖wn − p‖2 − βn(1− βn)‖xn − wn‖2

= βn‖xn − p‖2 + (1− βn)d(wn, T1p)
2 − βn(1− βn)‖xn − wn‖2

≤ βn‖xn − p‖2 + (1− βn)H(T1xn, T1p)
2 − βn(1− βn)‖xn − wn‖2

≤ ‖xn − p‖2 − βn(1− βn)‖xn − wn‖2.(3.3)

It follows from (3.2) and (3.3) that

‖xn+1 − p‖2 ≤ αn‖xn − p‖2 + (1− αn)[‖xn − p‖2 − βn(1− βn)‖xn − wn‖2]

≤ ‖xn − p‖2 − βn(1− αn)(1− βn)‖xn − wn‖2

≤ ‖xn − p‖2.
This implies that

(3.4) ‖xn+1 − p‖ ≤ ‖xn − p‖.
Therefore, limn→∞ ‖xn − p‖ exists. From (3.3), we have

βn(1− αn)(1− βn)‖xn − wn‖2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2.
Since lim supn→∞ αn < 1, 0 < lim infn→∞ βn < lim supn→∞ βn < 1 and
limn→∞ ‖xn − p‖ exists, we have

(3.5) lim
n→∞

‖xn − wn‖ = 0.

On the other hand, we have

‖xn+1 − p‖2 = ‖αn(xn − p) + (1− αn)vn − p‖2

= αn‖xn − p‖2 + (1− αn)‖vn − p‖2 − αn(1− αn)‖xn − vn‖2

= αn‖xn − p‖2 + (1− αn)d(vn, T2p)
2 − α(1− αn)‖xn − vn‖2

≤ αn‖xn − p‖2 + (1− αn)H(T2zn, T2p)
2 − αn(1− αn)‖xn − vn‖2

≤ αn‖xn − p‖2 + (1− αn)‖zn − p‖2 − αn(1− αn)‖xn − vn‖2

≤ ‖xn − p‖2 − αn(1− αn)‖xn − vn‖2.(3.6)

This implies that

αn(1− αn)‖xn − vn‖2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2.
Since 0 < lim infn→∞ αn < lim supn→∞ αn < 1 and limn→∞ ‖xn − p‖ exists,
we obtain

(3.7) lim
n→∞

‖xn − vn‖ = 0.
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From (3.5), we get

‖zn − xn‖ = ‖βnxn + (1− βn)wn − xn‖
≤ ‖wn − xn‖ → 0(3.8)

as n→∞.
It follows from (3.7) and (3.8) that

‖zn − vn‖ ≤ ‖zn − xn‖+ ‖xn − vn‖ → 0(3.9)

as n→∞.
Since the sequence {xn} is bounded, there exists a subsequence {xnk

} of
{xn} such that xnk

⇀ q for some q ∈ C. By Lemmas 2.5 and 3.5, we have
q ∈ T1q. From (3.9), we also have znk

⇀ q. Again by Lemma 2.5, we can
conclude that q ∈ T2q. This implies that q ∈ F (T1) ∩ F (T2). We next show
that {xn} converges weakly to q. We take another subsequence {xmk

} of {xn}
converging weakly to some q′ ∈ F (T1) ∩ F (T2). Since limn→∞ ‖xn − p‖ exists
for every p ∈ F (T1) ∩ F (T2), from Lemma 2.4, q = q′. This completes the
proof. �

Theorem 3.2. Let C be a nonempty closed and convex subset of a real Hilbert
space H. Let T1, T2 : C → K(C) be hybrid multivalued mappings with F (T1) ∩
F (T2) 6= ∅. Let {xn} be a sequence generated by

(3.10)


x1 ∈ C,C1 = C,
zn ∈ βnxn + (1− βn)T1xn,
yn ∈ αnxn + (1− αn)T2zn,
Cn+1 = {z ∈ Cn : ‖yn − z‖ ≤ ‖xn − z‖},
xn+1 = PCn+1

x0,∀n ≥ 1,

where {αn}, {βn} ⊂ (0, 1).
Assume that the following hold:

(i) 0 < lim infn→∞ αn < lim supn→∞ αn < 1;
(ii) 0 < lim infn→∞ βn < lim supn→∞ βn < 1.

If T1 and T2 satisfy Condition (A), then the sequence {xn} converges strongly
to a common fixed point of {T1, T2}.
Proof. We split the proof into four steps.
Step 1. Show that {xn} is well-defined. Since T1 and T2 satisfy Condition
(A), from Lemmas 2.6-2.7, F (T1) ∩ F (T2) is close and convex. Now, we show
that Cn is closed and convex for all n ≥ 1. For this end, we prove by induction
on n that Cn is closed and convex. For n = 1, C1 = C is closed and convex.
Assume that Cn is closed and convex for some n ∈ N. From the definition
Cn+1 and Lemma 2.4, we have that Cn+1 also closed and convex. Hence Cn is
closed and convex for all n ∈ N. Next, we show that F (T1) ∩ F (T2) ⊂ Cn for
each n ≥ 1. By using Lemma 2.1(b) and T1, T2 satisfy Condition (A), for each
p ∈ F (T1) ∩ F (T2), vn ∈ T2zn and wn ∈ T1xn, we have

‖yn − p‖2 = ‖αn(xn − p) + (1− αn)(vn − p)‖2
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≤ αn‖xn − p‖2 + (1− αn)‖vn − p‖2

= αn‖xn − p‖2 + (1− αn)d(vn, T2p)
2

≤ αn‖xn − p‖2 + (1− αn)H(T2zn, T2p)
2

≤ αn‖xn − p‖2 + (1− αn)‖zn − p‖2(3.11)

and

‖zn − p‖2 = ‖βn(xn − p) + (1− βn)(wn − p)‖2

= βn‖xn − p‖2 + (1− βn)‖wn − p‖2 − βn(1− βn)‖xn − wn‖2

= βn‖xn − p‖2 + (1− βn)d(wn, T1p)
2 − βn(1− βn)‖xn − wn‖2

≤ βn‖xn − p‖2 + (1− βn)H(T1xn, T1p)
2 − βn(1− βn)‖xn − wn‖2

≤ βn‖xn − p‖2 + (1− βn)‖xn − p‖2 − βn(1− βn)‖xn − wn‖2

≤ ‖xn − p‖2 − βn(1− βn)‖xn − wn‖2.(3.12)

Substituting (3.12) in (3.11), we have

‖yn − p‖2 ≤ αn‖xn − p‖2 + (1− αn)[‖xn − p‖2 − βn(1− βn)‖xn − wn‖2]

≤ αn‖xn − p‖2 + (1− αn)‖xn − p‖2

− βn(1− αn)(1− βn)‖xn − wn‖2

≤ ‖xn − p‖2 − βn(1− αn)(1− βn)‖xn − wn‖2

≤ ‖xn − p‖2.(3.13)

Therefore, p ∈ Cn, n ≥ 1. This implies that F (T1)∩F (T2) ⊆ Cn for each n ≥ 1
and so Cn 6= ∅. Hence the sequence {xn} is well-defined.
Step 2. Show that xn → w ∈ C as n → ∞. From xn = PCnx1, Cn+1 ⊆ Cn
and xn+1 ∈ Cn, we have

(3.14) ‖xn − x1‖ ≤ ‖xn+1 − x1‖, ∀n ≥ 1.

On the other hand, since F (T1) ∩ F (T2) ⊆ Cn, we obtain

(3.15) ‖xn − x1‖ ≤ ‖z − x1‖, ∀n ≥ 1

for all z ∈ F (T1) ∩ F (T2). The inequalities (3.14) and (3.15) imply that the
sequence {xn−x1} is bound and nondecreasing, hence limn→∞ ‖xn−x1‖ exists.
For m > n, by the definition of Cn, we have xm = PCm

x1 ∈ Cm ⊆ Cn. By
Lemma 2.3, we obtain that

(3.16) ‖xm − xn‖2 ≤ ‖xm − x1‖2 − ‖xn − x1‖2.

Since limn→∞ ‖xn−x1‖ exists, it follows from (3.16) that limn→∞ ‖xm−xn‖ =
0. Hence {xn} is a Cauchy sequence in C and so xn → w ∈ C as n→∞.
Step 3. Show that limn→∞ ‖xn − wn‖ = 0 = limn→∞ ‖zn − vn‖ where wn ∈
T1xn and vn ∈ T2zn.
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From Step 2, we know that limn→∞ ‖xn+1 − xn‖ = 0. Since xn+1 ∈ Cn, we
have

‖yn − xn‖ ≤ ‖yn − xn+1‖+ ‖xn+1 − xn‖
≤ 2‖xn+1 − xn‖ → 0(3.17)

as n→∞.
From (3.12) and T2 satisfies Condition (A), we have

‖yn − p‖2 = ‖αn(xn − p) + (1− αn)vn − p‖2, ∀vn ∈ T2zn
= αn‖xn − p‖2 + (1− αn)‖vn − p‖2 − αn(1− αn)‖xn − vn‖2

= αn‖xn − p‖2 + (1− αn)d(vn, T2p)
2 − α(1− αn)‖xn − vn‖2

≤ αn‖xn − p‖2 + (1− αn)H(T2zn, T2p)
2 − αn(1− αn)‖xn − vn‖2

≤ αn‖xn − p‖2 + (1− αn)‖zn − p‖2 − αn(1− αn)‖xn − vn‖2

≤ ‖xn − p‖2 − αn(1− αn)‖xn − vn‖2.(3.18)

This implies that

αn(1− αn)‖xn − vn‖ ≤ ‖xn − p‖2 − ‖yn − p‖2.
Since 0 < lim infn→∞ αn < lim supn→∞ αn < 1, it follows from (3.17) that

(3.19) lim
n→∞

‖xn − vn‖ = 0.

From (3.13), we have

‖yn − p‖2 ≤ ‖xn − p‖2 − βn(1− αn)(1− βn)‖xn − wn‖2.
This implies that

βn(1− αn)(1− βn)‖xn − wn‖2 ≤ ‖xn − p‖2 − ‖yn − p‖2.
Since lim supn→∞ αn < 1 and 0 < lim infn→∞ βn < lim supn→∞ βn < 1, we
obtain

(3.20) lim
n→∞

‖xn − wn‖ = 0.

From (3.20), we have

‖zn − xn‖ = ‖βnxn + (1− βn)wn − xn‖
= (1− βn)‖wn − xn‖ → 0(3.21)

as n→∞.
From (3.19) and (3.21), so

‖zn − vn‖ ≤ (‖zn − xn‖+ ‖xn − vn‖)→ 0(3.22)

as n→∞.
Step 4. Show that w = PF (T1)∩F (T2)x1. From Steps 2-3 and Lemma 2.5,
we obtain w ∈ F (T1) ∩ F (T2). Form (3.15), we have ‖w − x1‖ ≤ ‖x1 − z‖,
∀z ∈ F (T1) ∩ F (T2). By the definition of the projection operator, we can
conclude that w = PF (T1)∩F (T2)x1. This completes the proof. �
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Theorem 3.3. Let C be a nonempty closed and convex subset of a real Hilbert
space H. Let T1, T2 : C → K(C) be hybrid multivalued mappings with F (T1) ∩
F (T2) 6= ∅. Let {xn} be a sequence generated by

(3.23)



x1 ∈ C chosen arbitrarily,
zn ∈ βnxn + (1− βn)T1xn,
yn ∈ αnxn + (1− αn)T2zn,
Cn = {z ∈ C : ‖yn − z‖ ≤ ‖xn − z‖},
Qn = {z ∈ C : 〈x0 − xn, xn − z〉 ≥ 0},
xn+1 = PCn∩Qn

x0,∀n ≥ 1,

where {αn}, {βn} ⊂ (0, 1).
Assume that the following hold:

(i) 0 < lim infn→∞ αn < lim supn→∞ αn < 1;
(ii) 0 < lim infn→∞ βn < lim supn→∞ βn < 1.

If T1 and T2 satisfy Condition (A), then the sequence {xn} converges strongly
to a common fixed point of {T1, T2}.

Proof. We split the proof into four steps.
Step 1. Show that {xn} is well-defined. From Lemmas 2.6-2.7, we know that
F (T1) ∩ F (T2) is a closed and convex subset of C. From the definition of Qn
and Lemma 2.2, it is obvious that Qn is closed and convex for each n ≥ 1. As
the same proof in Step 1 of Theorem 3.2, we have Cn is closed and convex for
each n ≥ 1. Next, show that F (T1) ∩ F (T2) ⊆ Cn ∩ Qn. By using Lemma
2.1(b) and T1, T2 satisfy Condition (A), for each p ∈ F (T1)∩F (T2), vn ∈ T2zn
and wn ∈ T1xn, we have

‖yn − p‖2 = ‖αn(xn − p) + (1− αn)vn − p‖2

= αn‖xn − p‖2 + (1− αn)‖vn − p‖2 − αn(1− αn)‖xn − vn‖2

≤ αn‖xn − p‖2 + (1− αn)‖vn − p‖2

= αn‖xn − p‖2 + (1− αn)d(vn, T2p)
2

≤ αn‖xn − p‖2 + (1− αn)H(T2zn, T2p)
2

≤ αn‖xn − p‖2 + (1− αn)‖zn − p‖2(3.24)

and

‖zn − p‖2 = ‖βn(xn − p) + (1− βn)(wn − p)‖2

= βn‖xn − p‖2 + (1− βn)‖wn − p‖2 − βn(1− βn)‖xn − wn‖2

= βn‖xn − p‖2 + (1− βn)d(wn, T1p)− βn(1− βn)‖xn − wn‖2

≤ βn‖xn − p‖2 + (1− βn)H(T1xn, T1p)
2 − βn(1− βn)‖xn − wn‖2

≤ βn‖xn − p‖2 + (1− βn)‖xn − p‖2 − βn(1− βn)‖xn − wn‖2

≤ ‖xn − p‖2 − βn(1− βn)‖xn − wn‖2.(3.25)
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Substituting (3.25) in (3.24), we have

‖yn − p‖2 ≤ αn‖xn − p‖2 + (1− αn)[‖xn − p‖2 − βn(1− βn)‖xn − wn‖2]

≤ αn‖xn − p‖2 + (1− αn)‖xn − p‖2

− βn(1− αn)(1− βn)‖xn − wn‖2

≤ ‖xn − p‖2 − βn(1− αn)(1− βn)‖xn − wn‖2

≤ ‖xn − p‖2.(3.26)

Therefore, p ∈ Cn, n ≥ 1. This implies that F (T1) ∩ F (T2) ⊆ Cn for each
n ≥ 1. Next, we show that F (T1) ∩ F (T2) ⊆ Qn for all n ∈ N. For n = 1, we
have F (T1) ∩ F (T2) ⊆ C = Q1. Assume that F (T1) ∩ F (T2) ⊆ Qn. Sine xn+1

is the projection of x1 onto Cn ⊆ Qn, we have

〈x1 − xn+1, xn+1 − z〉 ≥ 0, ∀ z ∈ Cn ∩Qn.
Thus F (T1) ∩ F (T2) ⊆ Qn+1. This implies that {xn} is well-defined.
Step 2. Show that xn → w ∈ C as n→∞. From the definition of Qn, we get
xn = PQn

x1. Since xn+1 ∈ Qn, we have

‖xn − x1‖ ≤ ‖xn+1 − x1‖, ∀n ≥ N.(3.27)

On the other hand, we obtain

‖xn − x1‖ ≤ ‖z − x1‖, ∀z ∈ F (T1) ∩ F (T2).(3.28)

The inequalities (3.27) and (3.28) imply that the sequence {xn − x1} is
bounded and nondecreasing, hence limn→∞ ‖xn − x1‖ exists. For m > n, by
definition of Qn, we have xm = PQmx1 ∈ Qm ⊆ Qn. By Lemma 2.3, we obtain
that

‖xm − xn‖2 ≤ ‖xm − x1‖2 − ‖xn − x1‖2.(3.29)

Since limn→∞ ‖xn−x1‖ exists, it follows from (3.29) that limn→∞ ‖xm−xn‖ =
0. Hence {xn} is a Cauchy sequence in C and so xn → w ∈ C as n → ∞. In
particular, we have limn→∞ ‖xn+1 − xn‖ = 0.
Step 3. Show that limn→∞ ‖xn − wn‖ = 0 = limn→∞ ‖zn − vn‖ where wn ∈
T1xn and vn ∈ T2zn.

Since xn+1 ∈ Cn, from Step 2, we have

‖yn − xn‖ ≤ ‖yn − xn+1‖+ ‖xn+1 − xn‖
≤ 2‖xn+1 − xn‖ → 0(3.30)

as n→∞.
From (3.25) and T2 satisfies Condition (A), we have

‖yn − p‖2 = ‖αn(xn − p) + (1− αn)vn − p‖2, ∀vn ∈ T2zn
= αn‖xn − p‖2 + (1− αn)‖vn − p‖2 − αn(1− αn)‖xn − vn‖2

= αn‖xn − p‖2 + (1− αn)d(vn, T2p)
2 − αn(1− αn)‖xn − vn‖2

≤ αn‖xn − p‖2 + (1− αn)H(T2zn, T2p)
2 − αn(1− αn)‖xn − vn‖2
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≤ αn‖xn − p‖2 + (1− αn)‖zn − p‖2 − αn(1− αn)‖xn − vn‖2

≤ ‖xn − p‖2 − αn(1− αn)‖xn − vn‖2.(3.31)

This implies that

αn(1− αn)‖xn − vn‖ ≤ ‖xn − p‖2 − ‖yn − p‖2.
Since 0 < lim infn→∞ αn < lim supn→∞ αn < 1, it follows from (3.30) that

(3.32) lim
n→∞

‖xn − vn‖ = 0.

From (3.26), we have

‖yn − p‖2 ≤ ‖xn − p‖2 − βn(1− αn)(1− βn)‖xn − wn‖2.
This implies that

βn(1− αn)(1− βn)‖xn − wn‖2 ≤ ‖xn − p‖2 − ‖yn − p‖2.
Since lim supn→∞ αn < 1 and 0 < lim infn→∞ βn < lim supn→∞ βn < 1, we
obtain

lim
n→∞

‖xn − wn‖ = 0.(3.33)

From (3.33), we have

‖zn − xn‖ = ‖βnxn + (1− βn)wn − xn‖
= (1− βn)‖wn − xn‖ → 0(3.34)

as n→∞.
From (3.32) and (3.34), so

‖zn − vn‖ ≤ (‖zn − xn‖+ ‖xn − vn‖)→ 0(3.35)

as n→∞.
Step 4. Show that w = PF (T1)∩F (T2)x1. From Steps 2-3 and Lemma 2.5,
we obtain w ∈ F (T1) ∩ F (T2). Form (3.28), we have ‖w − x1‖ ≤ ‖x1 − z‖,
∀z ∈ F (T1) ∩ F (T2). By the definition of the projection operator, we can
conclude that w = PF (T1)∩F (T2)x1. This completes the proof. �

If Tp = {p} for all p ∈ F (T ), T satisfies Condition (A), then we obtain the
following results.

Corollary 3.4. Let C be a closed and convex subset of a real Hilbert space H
and T1, T2 : C → K(C) be hybrid multivalued mappings with F (T1)∩F (T2) 6= ∅.
Let {xn} be a sequence generated by x1 ∈ C chosen arbitrarily,

zn ∈ βnxn + (1− βn)T1xn,
xn+1 ∈ αnxn + (1− αn)T2zn,

for all n ≥ 1, where {αn}, {βn} ⊂ (0, 1).
Assume that the following hold:

(i) 0 < lim infn→∞ αn < lim supn→∞ αn < 1;
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(ii) 0 < lim infn→∞ βn < lim supn→∞ βn < 1.

If T1p = {p}, T2q = {q} for all p ∈ F (T1) and q ∈ F (T2), then the sequence
{xn} converges weakly to a common fixed point of {T1, T2}.

Corollary 3.5. Let C be a nonempty closed and convex subset of a real Hilbert
space H. Let T1, T2 : C → K(C) be hybrid multivalued mappings with F (T1) ∩
F (T2) 6= ∅. Let {xn} be a sequence generated by

x1 ∈ H,C1 = C,
zn ∈ βnxn + (1− βn)T1xn,
yn ∈ αnxn + (1− αn)T2zn,
Cn+1 = {z ∈ Cn : ‖yn − z‖ ≤ ‖xn − z‖},
xn+1 = PCn+1

x1,∀n ≥ 1,

where {αn}, {βn} ⊂ (0, 1).
Assume that the following hold:

(i) 0 < lim infn→∞ αn < lim supn→∞ αn < 1;
(ii) 0 < lim infn→∞ βn < lim supn→∞ βn < 1.

If T1p = {p}, T2q = {q} for all p ∈ F (T1) and q ∈ F (T2), then the sequence
{xn} converges strongly to a common fixed point of {T1, T2}.

Corollary 3.6. Let C be a nonempty closed and convex subset of a real Hilbert
space H. Let T1, T2 : C → K(C) be hybrid multivalued mappings with F (T1) ∩
F (T2) 6= ∅. Let {xn} be the sequence generated by

x1 ∈ C chosen arbitrarily,
zn ∈ βnxn + (1− βn)T1xn,
yn ∈ αnxn + (1− αn)T2zn,
Cn = {z ∈ C : ‖yn − z‖ ≤ ‖xn − z‖},
Qn = {z ∈ C : 〈x1 − xn, xn − z〉 ≥ 0},
xn+1 = PCn∩Qn

x1,∀n ≥ 1,

where {αn}, {βn} ⊂ (0, 1).
Assume that the following hold:

(i) 0 < lim infn→∞ αn < lim supn→∞ αn < 1;
(ii) 0 < lim infn→∞ βn < lim supn→∞ βn < 1.

If T1p = {p}, T2q = {q} for all p ∈ F (T1) and q ∈ F (T2), then the sequence
{xn} converge strongly to a common fixed point of {T1, T2}.

Since PT satisfies Condition (A), then we obtain the results.

Corollary 3.7. Let C be a closed and convex subset of a real Hilbert space H
and T1, T2 : C → P (C) be hybrid multivalued mappings with F (T1)∩F (T2) 6= ∅.
Let {xn} be a sequence generated by x1 ∈ C chosen arbitrarily,

zn ∈ βnxn + (1− βn)PT1
xn,

xn+1 ∈ αnxn + (1− αn)PT2zn,
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for all n ≥ 1, where {αn}, {βn} ⊂ (0, 1).
Assume that the following hold:

(i) 0 < lim infn→∞ αn < lim supn→∞ αn < 1;
(ii) 0 < lim infn→∞ βn < lim supn→∞ βn < 1.

If PT1
, PT2

are hybrid multivalued mappings, then the sequence {xn} converges
weakly to a common fixed point of {T1, T2}.

Proof. By the same proof in Theorem 3.1, we have xn → wn ∈ PT1
xn ⊆ T1xn

and we have zn → vn ∈ PT2
zn ⊆ T2zn. From Lemma 2.5, we obtain this

results. �

Corollary 3.8. Let C be a nonempty closed and convex subset of a real Hilbert
space H. Let T1, T2 : C → P (C) be hybrid multivalued mappings with F (T1) ∩
F (T2) 6= ∅. Let {xn} be a sequence generated by

x1 ∈ H,C1 = C,
zn ∈ βnxn + (1− βn)PT1

xn,
yn ∈ αnxn + (1− αn)PT2

zn,
Cn+1 = {z ∈ Cn : ‖yn − z‖ ≤ ‖xn − z‖},
xn+1 = PCn+1x1,∀n ≥ 1,

where {αn}, {βn} ⊂ (0, 1).
Assume that the following hold:

(i) 0 < lim infn→∞ αn < lim supn→∞ αn < 1;
(ii) 0 < lim infn→∞ βn < lim supn→∞ βn < 1.

If PT1
, PT2

are hybrid multivalued mappings, then the sequence {xn} converges
strongly to a common fixed point of {T1, T2}.

Proof. By the same proof in Theorem 3.2, we have xn → wn ∈ PT1
xn ⊆ T1xn

and we have zn → vn ∈ PT2
zn ⊆ T2zn. From Lemma 2.5, we obtain this

results. �

Corollary 3.9. Let C be a nonempty closed and convex subset of a real Hilbert
space H. Let T1, T2 : C → P (C) be hybrid multivalued mappings with F (T1) ∩
F (T2) 6= ∅. Let {xn} be a sequence generated by

x1 ∈ C chosen arbitrarily,
zn ∈ βnxn + (1− βn)PT1

xn,
yn ∈ αnxn + (1− αn)PT2

zn,
Cn = {z ∈ C : ‖yn − z‖ ≤ ‖xn − z‖},
Qn = {z ∈ C : 〈x1 − xn, xn − z〉 ≥ 0},
xn+1 = PCn∩Qnx1,∀n ≥ 1,

where {αn}, {βn} ⊂ (0, 1).
Assume that the following hold:

(i) 0 < lim infn→∞ αn < lim supn→∞ αn < 1;
(ii) 0 < lim infn→∞ βn < lim supn→∞ βn < 1.



782 W. CHOLAMJIAK, N. CHUTIBUTR, AND S. WEERAKHAM

If PT1
, PT2

are hybrid multivalued mappings, then the sequence {xn} converge
strongly to a common fixed point of {T1, T2}.

Proof. By the same proof in Theorem 3.3, we have xn → wn ∈ PT1
xn ⊆ T1xn

and we have zn → vn ∈ PT2
zn ⊆ T2zn. From Lemma 2.5, so we obtain the

results. �

4. Example and numerical results

In this section, we give examples with numerical results for supporting our
theorem.

Example 4.1. Let H = R and C = [2, 5]. Define two hybrid multivalued
mappings T1, T2 : C → K(C) by

T1x =

{
{5}, x ∈ [3, 5];[
(x+ 5)( tan−1(19x−65)

2 ) + x, 5
]
, x /∈ [3, 5]

and

T2x =

{
{5}, x ∈ [3, 5];[
(x− 5)(− cos(0.1x2.5−0.98)

1.29 ) + x, 5
]
, x /∈ [3, 5]

for all x ∈ C. Choose αn = n
2n+1 and βn = 2n

5n+1 .

It is easy to check that {αn} and {βn} satisfy all conditions in Theorems 3.2-3.3.
From Examples 1.2-1.3, we see that T1 and T2 are hybrid. Choosing x1 = 2 and
taking randomly wn ∈ T1xn and vn ∈ T2zn, we obtain the numerical results of
iteration (3.10) as follows:

Table 1. Numerical results of iteration (3.10) being randomized in the first
time.

n
Randomized in the 1st

wn zn vn yn xn
1 4.989956 3.993304 5.000000 4.000000 2.000000
2 4.915212 4.218772 5.000000 4.200000 3.000000
3 5.000000 4.475000 5.000000 4.400000 3.600000
4 5.000000 4.619048 5.000000 4.555556 4.000000
5 5.000000 4.722222 5.000000 4.671717 4.277778
6 5.000000 4.796676 5.000000 4.757576 4.474747
7 5.000000 4.850730 5.000000 4.820875 4.616162
8 5.000000 4.890154 5.000000 4.867538 4.718519
9 5.000000 4.919011 5.000000 4.901961 4.793028
10 5.000000 4.940194 5.000000 4.927378 4.847495
... ... ... ... ... ...
43 5.000000 4.999996 5.000000 4.999996 4.999991

Choosing x1 = 2 and taking randomly wn ∈ T1xn and vn ∈ T2zn, we obtain
the numerical results of iteration (3.23) as follows:
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Table 2. Numerical results of iteration (3.10) being randomized in the
second time.

n
Randomized in the 2nd

wn zn vn yn xn
1 4.605374 3.736916 5.000000 4.000000 2.000000
2 4.979731 4.259829 5.000000 4.200000 3.000000
3 5.000000 4.475000 5.000000 4.400000 3.600000
4 5.000000 4.619048 5.000000 4.555556 4.000000
5 5.000000 4.722222 5.000000 4.671717 4.277778
6 5.000000 4.796676 5.000000 4.757576 4.474747
7 5.000000 4.850730 5.000000 4.820875 4.616162
8 5.000000 4.890154 5.000000 4.867538 4.718519
9 5.000000 4.919011 5.000000 4.901961 4.793028
10 5.000000 4.940194 5.000000 4.927378 4.847495
... ... ... ... ... ...
43 5.000000 4.999996 5.000000 4.999996 4.999991

Table 3. Numerical results of iteration (3.23) being randomized in the first
time.

n
Randomized in the 1st

wn zn vn yn xn
1 4.637906 3.758604 5.000000 4.000000 2.000000
2 5.000000 4.272727 5.000000 4.200000 3.000000
3 5.000000 4.475000 5.000000 4.400000 3.600000
4 5.000000 4.619048 5.000000 4.555556 4.000000
5 5.000000 4.722222 5.000000 4.671717 4.277778
6 5.000000 4.796676 5.000000 4.757576 4.474747
7 5.000000 4.850730 5.000000 4.820875 4.616162
8 5.000000 4.890154 5.000000 4.867538 4.718519
9 5.000000 4.919011 5.000000 4.901961 4.793028
10 5.000000 4.940194 5.000000 4.927378 4.847495
... ... ... ... ... ...
43 5.000000 4.999996 5.000000 4.999996 4.999991

Remark 4.2. According to the investigations of our numerical results under the
same conditions, we can see that

(i) the sequences {xn} are the same in each step of randomize.
(ii) the sequences {xn} of the shrinking projection method in Tables 1-2 and

the CQ method in Tables 3-4 are also the same.
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Table 4. Numerical results of iteration (3.23) being randomized in the
second time.

n
Randomized in the 2nd

wn zn vn yn xn
1 4.453659 3.635773 5.000000 4.000000 2.000000
2 5.000000 4.272727 5.000000 4.200000 3.000000
3 5.000000 4.475000 5.000000 4.400000 3.600000
4 5.000000 4.619048 5.000000 4.555556 4.000000
5 5.000000 4.722222 5.000000 4.671717 4.277778
6 5.000000 4.796676 5.000000 4.757576 4.474747
7 5.000000 4.850730 5.000000 4.820875 4.616162
8 5.000000 4.890154 5.000000 4.867538 4.718519
9 5.000000 4.919011 5.000000 4.901961 4.793028
10 5.000000 4.940194 5.000000 4.927378 4.847495
... ... ... ... ... ...
43 5.000000 4.999996 5.000000 4.999996 4.999991

Figure 1. Error plots for all sequences {xn} in Tables 1-4.
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