HYPONORMAL SINGULAR INTEGRAL OPERATORS WITH CAUCHY KERNEL ON L^{2}

Takahiko Nakazi

Abstract

For $1 \leq p \leq \infty$, let H^{p} be the usual Hardy space on the unit circle. When α and β are bounded functions, a singular integral operator $S_{\alpha, \beta}$ is defined as the following: $S_{\alpha, \beta}(f+\bar{g})=\alpha f+\beta \bar{g}\left(f \in H^{p}, g \in z H^{p}\right)$. When $p=2$, we study the hyponormality of $S_{\alpha, \beta}$ when α and β are some special functions.

1. Introduction

Let \mathcal{K} be a Hilbert space and $\mathcal{B}(\mathcal{K})$ be the set of bounded linear operators on \mathcal{K}. For X in $\mathcal{B}(\mathcal{K}),\left[X^{*}, X\right]=X^{*} X-X X^{*}$ is called the selfcommutator of X. If $\left[X^{*}, X\right]=0$, then X is called a normal operator and if $\left[X^{*}, X\right] \geq 0$, then X is called a hyponormal operator. When \mathcal{H} is a closed subspace of \mathcal{K}, P is the orthogonal projection from \mathcal{K} to \mathcal{H} and I is the identity operator, if

$$
P\left[X^{*}, X\right](I-P)=(I-P)\left[X^{*}, X\right] P=0,
$$

then X is called a D-operator. Of course, if X is a normal operator, then X is a D-operator. However a hyponormal operator is not necessary a D-operator. When a hyponormal X is a D-operator, we call it nearly normal.

There are a lot of papers about a normal operator and a hyponormal operator. We are interested in when a concrete operator is normal or hyponormal. There are many researches when X is a Toeplitz operator, for example, [1], [2], [3] and [11]. Recently Yamamoto and the author [12] started to study when X is some singular integral operator. In this paper we continue to study such a problem.

Let L^{2} be the usual Lebesgue space and H^{2} denotes the usual Hardy space on the unit circle. For x, y in L^{2}, put

$$
\langle x, y\rangle=\int_{0}^{2 \pi} x\left(e^{i \theta}\right) \bar{y}\left(e^{i \theta}\right) d \theta / 2 \pi
$$

Then by the inner product $\langle\rangle,, L^{2}$ and H^{2} become Hilbert spaces.

[^0]For α, β in L^{∞} put

$$
S_{\alpha, \beta}=(\alpha-\beta) P+\beta I=\alpha P+\beta(I-P)
$$

where I is the identity operator on L^{2} and P denotes the orthogonal projection to H^{2}. Then $S_{\alpha, \beta}$ is called a singular integral operator on L^{2} and

$$
\left(S_{\alpha, \beta} f\right)(z)=\frac{\alpha(z)+\beta(z)}{2} f(z)+\frac{\alpha(z)-\beta(z)}{2} \frac{1}{\pi i} \int \frac{f(\xi)}{\xi-z} d \zeta
$$

where the integral is understood in the sense of Cauchy's principal value (cf. [5, Vol. I, p. 12]). Throughout this paper

$$
\alpha=a+F+\bar{f}
$$

and

$$
\beta=b+G+\bar{g}
$$

where $a, b \in \mathbb{C}$ and $F, G, f, g \in z H^{2}$. Moreover

$$
\phi=\alpha-\beta=c+A+\bar{B}
$$

where $c=a-b, A=F-G$ and $B=f-g$.
Yamamoto and the author [12] describe completely the symbols α and β for a normal $S_{\alpha, \beta}$. In this paper, we study when $S_{\alpha, \beta}$ is a hyponormal operator or a nearly normal operator.

In order to study $S_{\alpha, \beta}$, we need a few notations as the following:

$$
T_{\alpha}=P M_{\alpha} P, \tilde{T}_{\alpha}=(I-P) M_{\alpha}(I-P)
$$

and

$$
H_{\alpha}=(I-P) M_{\alpha} P, \tilde{H}_{\alpha}=P M_{\alpha}(I-P)
$$

Then T_{α} is called a Toeplitz operator and H_{α} is called a Hankel operator. Moreover $T_{\alpha}^{*}=T_{\bar{\alpha}}, \tilde{T}_{\alpha}^{*}=\tilde{T}_{\bar{\alpha}}$ and $H_{\alpha}^{*}=\tilde{H}_{\bar{\alpha}}$.

2. Hyponormal operator

In this section, we show a necessary and sufficient condition for a hyponormal $S_{\alpha, \beta}$.
Theorem 1. $S_{\alpha, \beta}$ is hyponormal if and only if $\tilde{H}_{\alpha} H_{\bar{\alpha}}-\tilde{H}_{\beta} H_{\bar{\beta}} \geq 0$ and $H_{\beta} \tilde{H}_{\bar{\beta}}-$ $H_{\alpha} \tilde{H}_{\bar{\alpha}} \geq 0$, and
$\left|\left\langle\left(\tilde{H}_{\alpha} H_{\bar{\alpha}}-\tilde{H}_{\beta} H_{\bar{\beta}}\right) u, u\right\rangle\right| \cdot\left|\left\langle\left(H_{\beta} \tilde{H}_{\bar{\beta}}-H_{\alpha} \tilde{H}_{\bar{\alpha}}\right) v, v\right\rangle\right| \geq\left|\left\langle\left(\tilde{T}_{\phi} H_{\bar{\beta}}-H_{\alpha} T_{\bar{\phi}}\right) u, v\right\rangle\right|^{2}$, where u is in H^{2} and v is in $\bar{z} \bar{H}^{2}$.

Proof. By Lemma 3.1 in [12], $S_{\alpha, \beta}$ is hyponormal if and only if

$$
\begin{aligned}
& \left\langle\left(\tilde{H}_{\alpha} H_{\bar{\alpha}}-\tilde{H}_{\beta} H_{\bar{\beta}}\right) u, u\right\rangle+\left\langle\left(H_{\beta} \tilde{H}_{\bar{\beta}}-H_{\alpha} \tilde{H}_{\bar{\alpha}}\right) v, v\right\rangle \\
& +\left\langle\left(\tilde{T}_{\phi} H_{\bar{\beta}}-H_{\alpha} T_{\bar{\phi}}\right) u, v\right\rangle+\overline{\left\langle\left(\tilde{T}_{\phi} H_{\bar{\beta}}-H_{\alpha} \tilde{T}_{\bar{\phi}}\right) u, v\right\rangle} \geq 0 .\left(u \in H^{2}, v \in \bar{z} \bar{H}^{2}\right)
\end{aligned}
$$

Hence if $S_{\alpha, \beta}$ is hyponormal, then as $v=0,\left\langle\left(\tilde{H}_{\alpha} H_{\bar{\alpha}}-\tilde{H}_{\beta} H_{\bar{\beta}}\right) u, u\right\rangle \geq 0$ and as $u=0,\left\langle\left(H_{\beta} \tilde{H}_{\bar{\beta}}-H_{\alpha} \tilde{H}_{\alpha}\right) v, v\right\rangle \geq 0$. Moreover then for any real number t,
$\left\langle\left(\tilde{H}_{\alpha} H_{\bar{\alpha}}-\tilde{H}_{\beta} H_{\bar{\beta}}\right) u, u\right\rangle t^{2}-2\left|\left\langle\left(\tilde{T}_{\phi} H_{\bar{\beta}}-H_{\alpha} T_{\phi}\right) u, v\right\rangle\right| t+\left\langle\left(H_{\beta} \tilde{H}_{\bar{\beta}}-H_{\alpha} \tilde{H}_{\bar{\alpha}}\right) v, v\right\rangle \geq 0$.
This shows the 'only if' part. The proof is reversible and so the 'if part' follows.

The following lemma is known by [6, Theorem 7] or the proof of [7, Lemma 4]. However we give a proof for completeness.

Lemma 1. (1) $\tilde{H}_{\alpha} H_{\bar{\alpha}} \geq \tilde{H}_{\beta} H_{\bar{\beta}}$ if and only if there exists k in H^{∞} such that $\|k\|_{\infty} \leq 1$ and $k \bar{\alpha}-\bar{\beta}$ belongs to H^{∞}.
(2) $H_{\beta} \tilde{H}_{\bar{\beta}} \geq H_{\alpha} \tilde{H}_{\bar{\alpha}}$ if and only if there exists h in H^{∞} such that $\|h\|_{\infty} \leq 1$ and $h \beta-\alpha$ belongs to H^{∞}.

Proof. We show (2) because (1) can be shown similarly.
Suppose there exists a contractive function h in H^{∞} such that $h \beta-\alpha \in H^{\infty}$. Then $H_{h \beta}=H_{\alpha}$ and so $\tilde{H}_{\overline{h \beta}}=\tilde{H}_{\bar{\alpha}}$. Hence

$$
H_{\alpha} \tilde{H}_{\bar{\alpha}}=H_{h \beta} \tilde{H}_{\overline{h \beta}}=H_{\beta} T_{h} T_{\bar{h}} \tilde{H}_{\bar{\beta}} \leq H_{\beta} \tilde{H}_{\bar{\beta}}
$$

because $T_{h} T_{\bar{h}} \leq I, H_{h \beta}=H_{\beta} T_{h}$ and $\tilde{H}_{\overline{h \beta}}=T_{\bar{h}} \tilde{H}_{\bar{\beta}}$.
Conversely suppose $H_{\beta} \tilde{H}_{\bar{\beta}} \geq H_{\alpha} \tilde{H}_{\bar{\alpha}}$. Then by a theorem of Douglas [4], there exists a contraction B such that $B \tilde{H}_{\bar{\beta}}=\tilde{H}_{\bar{\alpha}}$. Since $T_{\bar{z}} \tilde{H}_{\bar{\beta}}=\tilde{H}_{\bar{\beta}} \tilde{T}_{z}$ and $T_{\bar{z}} \tilde{H}_{\bar{\alpha}}=\tilde{H}_{\bar{\alpha}} \tilde{T}_{\bar{z}}, B \tilde{H}_{\bar{\beta}} \tilde{T}_{z}=B T_{\bar{z}} \tilde{H}_{\bar{\beta}}$ and $B \tilde{H}_{\bar{\beta}} \tilde{T}_{z}=\tilde{H}_{\bar{\alpha}} \tilde{T}_{z}=T_{\bar{z}} \tilde{H}_{\bar{\alpha}}=T_{\bar{z}} B \tilde{H}_{\bar{\beta}}$. Hence $B T_{\bar{z}} \tilde{H}_{\bar{\beta}}=T_{\bar{z}} B \tilde{H}_{\bar{\beta}}$. Since $T_{\bar{z}}\left(\operatorname{Ran} \tilde{H}_{\bar{\beta}}\right) \subseteq \operatorname{Ran} \tilde{H}_{\bar{\beta}}, B S_{\bar{z}}=S_{\bar{z}} B$ where $S_{\bar{z}}$ is the restriction to of $T_{\bar{z}}$ to the closure $\operatorname{Ran} \tilde{H}_{\bar{\beta}}$. By a theorem of Sarason [13], $B^{*}=S_{h}$ for some h in H^{∞} with $\|h\|_{\infty} \leq 1$. Hence $\tilde{H}_{\bar{\alpha}}=S_{\bar{h}} \tilde{H}_{\bar{\beta}}=T_{\bar{h}} \tilde{H}_{\bar{\beta}}=\tilde{H}_{\bar{\beta} \bar{h}}$. Thus $h \beta-\alpha$ belongs to H^{∞}.

Theorem 2. If $S_{\alpha, \beta}$ is hyponormal, then there exist k and h are in H^{∞} such that $\|k\|_{\infty} \leq 1$ and $\|h\|_{\infty} \leq 1$, and $k \bar{\alpha}-\bar{\beta}$ and $h \beta-\alpha$ belong to H^{∞}. Hence

$$
(k-1) \bar{G}+k \bar{A} \quad \text { and }(h-1) \bar{f}-h \bar{B}
$$

belong to H^{∞}.
Proof. It is clear by Theorem 1 and Lemma 1.
Theorem 3. Let $\alpha=a+F+\bar{f}, \beta=b+G+\bar{g}, \psi_{+}=F+\bar{G}$ and $\psi_{-}=f+\bar{g}$ where F, f, G and g are in $z H^{\infty}$. If $S_{\alpha, \beta}$ is hyponormal, then $T_{\psi_{+}}$and $T_{\psi_{-}}$are hyponormal.

Proof. If $S_{\alpha, \beta}$ is hyponormal, then by Theorem 2 , there exist contractions k and h in H^{∞} such that $k \bar{\alpha}-\bar{\beta}$ and $h \beta-\alpha$ belong to H^{∞}. Hence $k \bar{F}-\bar{G}$ and $h \bar{g}-\bar{f}$ belong to H^{∞}. Therefore $k(\bar{F}+G)-(\bar{G}+F)$ and $h(\bar{g}+f)-(\bar{f}+g)$ belong to H^{∞}. Now by [11, Lemma 1] $T_{\psi_{+}}$and $T_{\psi_{-}}$are hyponormal.

If $T_{F+\bar{G}}$ is hyponormal, then it is easy to see $\left[T_{F}^{*}, T_{F}\right] \geq\left[T_{G}^{*}, T_{G}\right]$. If F and G are inner, then $I-T_{F} T_{F}^{*} \geq I-T_{G} T_{G}^{*}$. Hence $F H^{2} \supseteq G H^{2}$. Therefore $G=Q F$ for some inner Q. If $S_{\alpha, \beta}$ is hyponormal, then by Theorem $3\left[T_{F}^{*}, T_{F}\right] \geq\left[T_{G}^{*}, T_{G}\right]$ and $\left[T_{g}^{*}, T_{g}\right] \geq\left[T_{f}^{*}, T_{f}\right]$. Moreover if F, G, f and g are inner, then $G=Q F$ and $f=q g$ for some inner Q and q.

When $T_{F+\bar{G}}$ is hyponormal, if F and G are polynomials we have a lot of papers [8], [9], [10], [11] and [14].

3. Analytic symbol

In this section we give sufficient conditions for $S_{\alpha, \beta}$ to be a hyponormal operator.
Theorem 4. (1) $S_{\alpha, \beta}$ is nearly normal if and only if $\tilde{H}_{\alpha} H_{\bar{\alpha}}-\tilde{H}_{\beta} H_{\bar{\beta}} \geq$ $0, H_{\beta} \tilde{H}_{\bar{\beta}}-H_{\alpha} \tilde{H}_{\bar{\alpha}} \geq 0$ and $\tilde{T}_{\phi} H_{\bar{\beta}}-H_{\alpha} T_{\bar{\phi}}=0$.
(2) If $S_{\alpha, \beta}$ is hyponormal, and $\tilde{H}_{\alpha} H_{\bar{\alpha}}=\tilde{H}_{\beta} H_{\bar{\beta}}$ or $H_{\beta} \tilde{H}_{\bar{\beta}}=H_{\alpha} \tilde{H}_{\bar{\alpha}}$, then $S_{\alpha, \beta}$ is nearly normal.

Proof. (1) It is clear by Theorem 1 and the definition of a nearly normal operator.
(2) It is clear by Theorem 1 and (1) and the definition of a nearly normal operator.

Corollary 1. If both α and β are in H^{∞}, then the following (1), (2) and (3) are equivalent.
(1) $S_{\alpha, \beta}$ is hyponormal.
(2) $S_{\alpha, \beta}$ is nearly normal.
(3) $T_{\alpha+\bar{\beta}}$ is hyponormal and $\tilde{T}_{\phi} H_{\bar{\beta}}=0$.

Proof. (1) $\Rightarrow(2)$. Since $H_{\beta} \tilde{H}_{\bar{\beta}}=H_{\alpha} \tilde{H}_{\bar{\alpha}}=0$, by (2) of Theorem $4 S_{\alpha, \beta}$ is nearly normal.
$(2) \Rightarrow(3)$. By (1) of Theorem 4 and by (1) of Lemma 1 there exists k in H^{∞} such that $\|k\|_{\infty} \leq 1$ and $k \bar{\alpha}-\bar{\beta} \in H^{\infty}$. Hence $k(\bar{\alpha}+\beta)-(\alpha+\bar{\beta})$ belongs to H^{∞}. By [11, Lemma 1], $T_{\alpha+\bar{\beta}}$ is hyponormal and $\tilde{T}_{\phi} H_{\bar{\beta}}-H_{\alpha} T_{\bar{\phi}}=0$ by (1) of Theorem 4 and $\alpha \in H^{\infty}$ by hypothesis.
$(3) \Rightarrow(1)$. By [11, Lemma 1] there exists k in H^{∞} such that $\|k\|_{\infty} \leq 1$ and $k(\bar{\alpha}+\beta)-(\alpha+\bar{\beta}) \in H^{\infty}$. Hence $k \bar{\alpha}-\bar{\beta}$ be longs to H^{∞}. By (1) and (2) of Lemma 1, and (1) of Theorem $4 S_{\alpha, \beta}$ is nearly normal and so hyponormal.

Corollary 2. If both $\bar{\alpha}$ and $\bar{\beta}$ are in H^{∞}, then a result similar to Corollary 1 holds.

Lemma 2. (1) Put $\alpha=q_{\alpha} t_{\alpha}, \beta=q_{\beta} t_{\beta}$ and $\phi=\alpha-\beta=q t$ where q_{α}, q_{β} and q are inner, and t_{α}, t_{β} and t are outer. Suppose $\operatorname{Ker} \tilde{H}_{\beta}=\bar{Q}_{\beta} \bar{z} \bar{H}^{2}$ and Q_{β} is inner. Then $\tilde{H}_{\beta} \tilde{T}_{\bar{\phi}}=0$ if and only if $q=Q_{\beta} q_{0}$ where q_{0} is inner.
(2) Put $\bar{\alpha}=q_{\alpha} t_{\alpha}, \bar{\beta}=q_{\beta} t_{\beta}$, and $\bar{\phi}=\bar{\alpha}-\bar{\beta}=q t$ where q_{α}, q_{β} and q are inner, and t_{α}, t_{β} and t are outer. Suppose $\operatorname{Ker} H_{\alpha}=Q_{\alpha} H^{2}$. Then $H_{\alpha} T_{\bar{\phi}}=0$ if and only if $q=Q_{\alpha} q_{0}$ where q_{0} is inner.
Proof. (1) $\tilde{H}_{\beta} \tilde{T}_{\bar{\phi}}=0$ if and only if $\tilde{T}_{\bar{\phi}}\left(\bar{z} \bar{H}^{2}\right)=\bar{q} \bar{z} \bar{t} \bar{H}^{2} \subseteq \bar{Q}_{\beta} \bar{z} \bar{H}^{2}$ by the definition of Q_{β}. Hence this is equivalent to $q_{0}=\bar{Q}_{\beta} q$ is inner.
(2) It can be proved as (1).

Corollary 3. Suppose q_{α}, q_{β} and q are inner, and t_{α}, t_{β} and t are outer.
(1) Put $\alpha=q_{\alpha} t_{\alpha}, \beta=q_{\beta} t_{\beta}$ and $\phi=\alpha-\beta=q t$. Suppose $\operatorname{Ker} \tilde{H}_{\beta}=\bar{Q}_{\beta} \bar{z} \bar{H}^{2}$ and Q_{β} are inner. Then $S_{\alpha, \beta}$ is nearly normal if and only if there exists a contraction k in H^{∞} such that $k \bar{\alpha}-\bar{\beta} \in H^{\infty}$ and $q=Q_{\beta} q_{0}$ where q_{0} is inner.
(2) Put $\bar{\alpha}=q_{\alpha} t_{\alpha}, \bar{\beta}=q_{\beta} t_{\beta}$ and $\bar{\phi}=\bar{\alpha}-\bar{\beta}=q t$. Suppose $\operatorname{KerH}_{\alpha}=Q_{\alpha} H^{2}$ and Q_{α} are inner. Then $S_{\alpha, \beta}$ is nearly normal if and only if there exists a contraction h in H^{∞} such that $h \beta-\alpha \in H^{\infty}$ and $q=Q_{\alpha} q_{0}$ where q_{0} is inner.

Proof. (1) Since $H_{\alpha} T_{\bar{\phi}}=0$, if $S_{\alpha, \beta}$ is nearly normal, then by (1) of Theorem 4 $\tilde{H}_{\beta} \tilde{T}_{\bar{\phi}}=0$. Now (1) of Lemma 1 and (1) of Lemma 2 show (1). The converse is clear by (1) of Lemma 1 and (1) of Lemma 2 and (1) of Theorem 4.
(2) Since $\tilde{T}_{\phi} H_{\bar{\beta}}=0$, if $S_{\alpha, \beta}$ is nearly normal, then by (1) of Theorem 4 $H_{\alpha} T_{\bar{\phi}}=0$. Now (2) of Lemma 1 and (2) of Lemma 2 show (2). The converse is clear by (2) of Lemma 1 and (2) of Lemma 2 and (1) of Theorem 4.

In (1) of Corollary $3, \operatorname{Ker} \tilde{H}_{\beta}=\{0\}$ if and only if $\beta=t_{\beta}$ is a cyclic vector of $T_{\bar{z}}$ in H^{2}. Similarly, in (2) of Corollary $3, \operatorname{Ker} H_{\alpha}=\{0\}$ if and only if $\alpha=\bar{t}_{\alpha}$ is a cyclic vector of \tilde{T}_{z} in $\bar{z} \bar{H}^{2}$.

Corollary 4. (1) Let α and β be in H^{∞}. Suppose β is a cyclic vector of $T_{\bar{z}}$ in H^{2}. Then $S_{\alpha, \beta}$ is nearly normal if and only if there exists a contraction k in H^{∞} such that $k \bar{\alpha}-\bar{\beta}$ belongs to H^{∞}.
(2) Let $\bar{\alpha}$ and $\bar{\beta}$ be in H^{∞}. Suppose α is a cyclic vector of \tilde{T}_{z} in $\bar{z} \bar{H}^{2}$. Then $S_{\alpha, \beta}$ is nearly normal if and only if there exists a contraction h in H^{∞} such that $h \beta-\alpha$ belongs to H^{∞}.

Example I. (1) If $\alpha=Q\left(c q_{\beta}+\bar{m}\right)$ and $\beta=c q_{\beta}$ where Q and q_{β} are inner and $m \in H^{2}, q_{\beta} m \in H^{2} \ominus Q z H^{2}$ and $c \in \mathbb{C}$, then $S_{\alpha, \beta}$ is nearly normal.
(2) If $\alpha=\sum_{j=1}^{n} a_{j} z^{j}$ and $\beta=a_{n} z$, then $S_{\alpha, \beta}$ is nearly normal.
(3) Suppose $\alpha=a_{0}+a_{1} z, \beta=b_{0}+b_{1} z$ and $\alpha \neq \beta$. Then $S_{\alpha, \beta}$ is nearly normal if and only if $\alpha=a_{0}$ and $\beta=b_{0}$.

Proof. (1) Since $m \in H^{2} \ominus Q z H^{2}, \alpha$ belongs to H^{∞}. Moreover $Q \bar{\alpha}-\bar{\beta}=m$. On the other hand, since $q_{\beta} m \in H^{2} \ominus Q z H^{2}$,

$$
\alpha-\beta=c(Q-1) q_{\beta}+Q \bar{m}=c(Q-1) q_{\beta}+q_{\beta} s
$$

where $s=Q \bar{q}_{\beta} \bar{m} \in H^{\infty}$. In (1) of Corollary 3, if q is the inner part of $q_{\beta}\{c(Q-1)+s\}$ and $Q_{\beta}=q_{\beta}$, then $S_{\alpha, \beta}$ is nearly normal.
(2) In (1), put $Q=z^{n-1}, q_{\beta}=z$ and $a_{n}=c$. Then $\alpha=Q(c z+\bar{m})$ and $m=\bar{a}_{1} z^{n-2}+\cdots+\bar{a}_{n-2} z+\bar{a}_{n-1}$.
(3) By (1) of Corollary 3, it is clear.

We can give a similar example to Example I using (2) of Corollary 3.

4. Polynomial symbol

In this section, we would like to study the hyponormality of $S_{\alpha, \beta}$ when $\alpha=\sum_{j=-n}^{n} \alpha_{j} z^{j}$ and $\beta=\sum_{j=-n}^{n} \beta_{j} z^{j}$. In this special case, it is still difficult to study the hyponormality. We study it essentially when $n=1$ and $n=2$.
Lemma 3. Let $\alpha=a+F_{n} z^{n}+\bar{f}_{n} \bar{z}^{n}, \beta=b+G_{n} z^{n}+\bar{g}_{n} \bar{z}^{n}$ and $\phi=\alpha-\beta=$ $c+A_{n} z^{n}+\bar{B}_{n} \bar{z}^{n}$ for $n \geq 1$. If $u=\sum_{j=0}^{\ell} u_{j} z^{j}, \ell \geq n$ and $v=\sum_{j=1}^{m} v_{j} \bar{z}^{j}$, $m \geq n+1$, then the followings hold.
(1) $\left\langle\tilde{T}_{\phi} H_{\bar{\beta}} u, v\right\rangle=\bar{G}_{n}\left(c \sum_{j=0}^{n-1} u_{j} \bar{v}_{n-j}+\bar{B}_{n} \sum_{j=0}^{n-1} u_{j} \bar{v}_{2 n-j}\right)$.
(2) $\left\langle H_{\alpha} T_{\bar{\phi}} u, v\right\rangle=\bar{f}_{n}\left(\bar{c} \Sigma_{j=0}^{n-1} u_{j} \bar{v}_{n-j}+\bar{A}_{n} \Sigma_{j=n}^{2 n-1} u_{j} \bar{v}_{2 n-j}\right)$.
(3) $\left\langle\left(\tilde{T}_{\phi} H_{\bar{\beta}}-H_{\alpha} T_{\bar{\phi}}\right) u, v\right\rangle=\left(\bar{G}_{n} c-\bar{f}_{n} \bar{c}\right) \sum_{j=0}^{n-1} u_{j} \bar{v}_{n-j}+\bar{G}_{n} \bar{B}_{n} \Sigma_{j=0}^{n-1} u_{j} \bar{v}_{2 n-j}$

$$
-\bar{f}_{n} \bar{A}_{n} \Sigma_{j=n}^{2 n-1} u_{j} \bar{v}_{2 n-j}
$$

(4) $\left\|H_{\bar{\alpha}} u\right\|^{2}=\left|F_{n}\right|^{2} \sum_{j=0}^{n-1}\left|u_{j}\right|^{2}$.
(5) $\left\|\tilde{H}_{\bar{\beta}} v\right\|^{2}=\left|g_{n}\right|^{2} \sum_{j=1}^{n}\left|v_{j}\right|^{2}$.

Proof. It is easy to see this lemma by a calculation.
Theorem 5. Let $\alpha=a+F_{n} z^{n}+\bar{f}_{n} \bar{z}^{n}, \beta=b+G_{n} z^{n}+\bar{g}_{n} \bar{z}^{n}$ and $\alpha-\beta=$ $c+A_{n} z^{n}+\bar{B}_{n} \bar{z}^{n}$. Then $S_{\alpha, \beta}$ is hyponormal if and only if for any complex sequences $\left\{u_{j}\right\}_{j=0}^{n}$ and $\left\{v_{j}\right\}_{j=1}^{n+1}$

$$
\left|\left(\bar{G}_{n} c-\bar{f}_{n} \bar{c}\right)\right|^{2} \leq\left(\left|F_{n}\right|^{2}-\left|G_{n}\right|^{2}\right)\left(\left|g_{n}\right|^{2}-\left|f_{n}\right|^{2}\right)
$$

where $\left|F_{n}\right| \geq\left|G_{n}\right|,\left|g_{n}\right| \geq\left|f_{n}\right|$ and $G_{n}\left(\overline{f_{n}-g_{n}}\right)=f_{n}\left(F_{n}-G_{n}\right)=0$.
Proof. By Theorem 1 and Lemma 3, $S_{\alpha, \beta}$ is hyponormal if and only if

$$
\begin{aligned}
& \left|\left(\bar{G}_{n} c-\bar{f}_{n} \bar{c}\right) \sum_{j=0}^{n-1} u_{j} \bar{v}_{n-j}+\bar{G}_{n} \bar{B}_{n} \sum_{j=0}^{n-1} u_{j} \bar{v}_{2 n-j}-\bar{f}_{n} \bar{A}_{n} \sum_{j=n}^{2 n-1} u_{j} \bar{v}_{2 n-j}\right|^{2} \\
\leq & \left(\left|F_{n}\right|^{2}-\left|G_{n}\right|^{2}\right)\left(\left|g_{n}\right|^{2}-\left|f_{n}\right|^{2}\right)\left(\sum_{j=0}^{n-1}\left|u_{j}\right|^{2}\right)\left(\sum_{j=1}^{n}\left|v_{j}\right|^{2}\right),
\end{aligned}
$$

where $\left|F_{n}\right| \geq\left|G_{n}\right|$ and $\left|g_{n}\right| \geq\left|f_{n}\right|$. If $\prod_{j=n+1}^{2 n} v_{j} \neq 0$, then choosing $\left\{u_{j}\right\}_{j=0}^{n-1}$ as like $\left|\sum_{j=0}^{n-1} u_{j} \bar{v}_{2 n-j}\right| \rightarrow \infty$, we can get $\bar{G}_{n} \bar{B}_{n}=0$. If $\prod_{j=n}^{2 n-1} u_{j} \neq 0$, then choosing $\left\{v_{j}\right\}_{j=1}^{n}$ as like $\left|\Sigma_{j=n}^{2 n-1} u_{j} \bar{v}_{2 n-j}\right| \rightarrow \infty$, we can get $f_{n} A_{n}=0$. Hence $S_{\alpha, \beta}$ is hyponormal if and only if

$$
\left|\left(\bar{G}_{n} c-\bar{f}_{n} \bar{c}\right) \sum_{j=0}^{n-1} u_{j} \bar{v}_{n-j}\right|^{2}
$$

$$
\leq\left(\left|F_{n}\right|^{2}-\left|G_{n}\right|^{2}\right)\left(\left|g_{n}\right|^{2}-\left|f_{n}\right|^{2}\right)\left(\sum_{j=0}^{n-1}\left|u_{j}\right|^{2}\right)\left(\sum_{j=1}^{n}\left|v_{j}\right|^{2}\right)
$$

where $G_{n} B_{n}=f_{n} A_{n},\left|F_{n}\right| \geq\left|G_{n}\right|$ and $\left|g_{n}\right| \geq\left|f_{n}\right|$. This shows this theorem because

$$
\left|\sum_{j=0}^{n-1} u_{j} \bar{v}_{n-j}\right|^{2} \leq\left(\sum_{j=0}^{n-1}\left|u_{j}\right|^{2}\right)\left(\sum_{j=0}^{n-1}\left|\bar{v}_{n-j}\right|^{2}\right)
$$

Corollary 5. Let $\alpha=a_{-1} \bar{z}+a_{0}+a_{1} z$ and $\beta=b_{-1} \bar{z}+b_{0}+b_{1} z$. Then $S_{\alpha, \beta}$ is hyponormal if and only if

$$
\left|\bar{b}_{1}\left(a_{0}-b_{0}\right)-a_{-1}\left(\overline{a_{0}-b_{0}}\right)\right|^{2} \leq\left(\left|a_{1}\right|^{2}-\left|b_{1}\right|^{2}\right)\left(\left|b_{-1}\right|^{2}-\left|a_{-1}\right|^{2}\right)
$$

where $\left|a_{1}\right| \geq\left|b_{1}\right|,\left|b_{-1}\right| \geq\left|a_{-1}\right|$ and $b_{1}\left(a_{-1}-b_{-1}\right)=a_{-1}\left(a_{1}-b_{1}\right)=0$.
Corollary 6. Let $\alpha=a+F_{n} z^{n}+\bar{f}_{n} \bar{z}^{n}, \beta=b+G_{n} z^{n}+\bar{g}_{n} \bar{z}^{n}$ and $\alpha-\beta=$ $c+A_{n} z^{n}+\bar{B}_{n} \bar{z}^{n}$. Then $S_{\alpha, \beta}$ is hyponormal if and only if $S_{\alpha, \beta}$ is nearly normal.
Proof. By Theorem 5, if $S_{\alpha, \beta}$ is hyponormal, then $G_{n}\left(\overline{f_{n}-g_{n}}\right)=f_{n}\left(F_{n}-\right.$ $\left.G_{n}\right)=0$. Hence if $F_{n}=G_{n}$, then $S_{\alpha, \beta}$ is nearly normal. If $f_{n}=0$, then $G_{n} \bar{g}_{n}=$ 0 and $\left|\bar{G}_{n} c\right|^{2} \leq\left(\left|F_{n}\right|^{2}-\left|G_{n}\right|^{2}\right)\left|g_{n}\right|^{2}$. This shows $S_{\alpha, \beta}$ is nearly normal.

The following theorem is a generalization of Corollary 5. It is not beautiful but will be useful and important.
Theorem 6. Let $\alpha=a+F_{1} z+F_{2} z^{2}+\bar{f}_{1} \bar{z}+\bar{f}_{2} \bar{z}^{2}, \beta=b+G_{1} z+G_{2} z^{2}+\bar{g}_{1} \bar{z}+\bar{g}_{2} \bar{z}^{2}$ and $\phi=\alpha-\beta=c+A_{1} z+A_{2} z^{2}+\bar{B}_{1} \bar{z}+\bar{B}_{2} \bar{z}^{2}$. Then $S_{\alpha, \beta}$ is hyponormal if and only if

$$
\begin{aligned}
& \mid\left\{\left(c \bar{G}_{1} u_{0}+c \bar{G}_{2} u_{1}+A_{1} \bar{G}_{2} u_{0}\right)-\bar{f}_{1}\left(\bar{c} u_{0}+\bar{A}_{1} u_{1}\right)-\bar{f}_{2}\left(\bar{c} u_{1}\right)\right\} \bar{v}_{1} \\
& +\left.\left(c \bar{G}_{2} u_{0}+\bar{B}_{1} \bar{G}_{1} u_{0}+\bar{B}_{1} \bar{G}_{2} u_{1}\right) \bar{v}_{2}\right|^{2} \\
\leq & \left\{\left(\left|\bar{F}_{1} u_{0}+\bar{F}_{2} u_{1}\right|^{2}-\left|\bar{G}_{1} u_{0}+\bar{G}_{2} u_{1}\right|^{2}\right)+\left(\left|\bar{F}_{2}\right|^{2}-\left|\bar{G}_{2}\right|^{2}\right)\left|u_{0}\right|^{2}\right\} \\
& \times\left\{\left(\left|g_{1} v_{1}+g_{2} v_{2}\right|^{2}-\left|f_{1} v_{1}+f_{2} v_{2}\right|^{2}\right)+\left(\left|g_{2}\right|^{2}-\left|f_{2}\right|^{2}\right)\left|v_{1}\right|^{2}\right\}
\end{aligned}
$$

and $\left|\bar{F}_{1} u_{0}+\bar{F}_{2} u_{1}\right|^{2}-\left|\bar{G}_{1} u_{0}+\bar{G}_{2} u_{1}\right|^{2}+\left(\left|\bar{F}_{2}\right|^{2}-\left|\bar{G}_{2}\right|^{2}\right)\left|u_{0}\right|^{2} \geq 0,\left|g_{1} v_{1}+g_{2} v_{2}\right|^{2}-$ $\left|f_{1} v_{1}+f_{2} v_{2}\right|^{2}+\left(\left|g_{2}\right|^{2}-\left|f_{2}\right|^{2}\right)\left|v_{1}\right|^{2} \geq 0$ for $u_{j} \in \mathbb{C}(j=0,1)$ and $v_{j} \in \mathbb{C}(j=$ $1,2)$, where $B_{2} G_{2}=0, B_{1} G_{2}+\bar{c} B_{2} G_{1}=0, A_{2} f_{2}=0, A_{2} f_{1}=0$, and $A_{1} f_{2}=0$.
Proof. Note that
$\left\|H_{\bar{\alpha}} u\right\|^{2}-\left\|H_{\bar{\beta}} u\right\|^{2}=\left(\left|\bar{F}_{1} u_{0}+\bar{F}_{2} u_{1}\right|^{2}-\left|\bar{G}_{1} u_{0}+\bar{G}_{2} u_{1}\right|^{2}\right)+\left(\left|\bar{F}_{2}\right|^{2}-\left|\bar{G}_{2}\right|^{2}\right)\left|u_{0}\right|^{2}$ and

$$
\left\|\tilde{H}_{\bar{\beta}} v\right\|^{2}-\left\|\tilde{H}_{\bar{\alpha}} v\right\|^{2}=\left(\left|g_{1} v_{1}+g_{2} v_{2}\right|^{2}-\left|f_{1} v_{1}+f_{2} v_{2}\right|^{2}\right)+\left(\left|g_{2}\right|^{2}-\left|f_{2}\right|^{2}\right)\left|v_{1}\right|^{2}
$$

Moreover

$$
\begin{aligned}
\left\langle\tilde{T}_{\phi} H_{\bar{\beta}} u, v\right\rangle= & \left(c \bar{G}_{1} u_{0}+c \bar{G}_{2} u_{1}+A_{1} \bar{G}_{2} u_{0}\right) \bar{v}_{1}+\left(c \bar{G}_{2} u_{0}+\bar{B}_{1} \bar{G}_{1} u_{0}+\bar{B}_{1} \bar{G}_{2} u_{1}\right) \bar{v}_{2} \\
& +\left(\bar{B}_{1} \bar{G}_{2} u_{0}+c \bar{B}_{2} \bar{G}_{1} u_{0}+c \bar{B}_{2} \bar{G}_{2} u_{1}\right) \bar{v}_{3}+\left(\bar{B}_{2} \bar{G}_{2} u_{0}\right) \bar{v}_{4}
\end{aligned}
$$

and

$$
\begin{aligned}
\left\langle H_{\alpha} T_{\bar{\phi}} u, v\right\rangle= & \left\{\bar{f}_{1}\left(\bar{c} u_{0}+\bar{A}_{1} u_{1}+\bar{A}_{2} u_{2}\right)+\bar{f}_{2}\left(\bar{c} u_{1}+\bar{A}_{1} u_{2}+\bar{A}_{2} u_{3}\right)\right\} \bar{v}_{1} \\
& +\bar{f}_{2}\left(\bar{c} u_{0}+\bar{A}_{1} u_{1}+\bar{A}_{2} u_{2}\right) \bar{v}_{2} .
\end{aligned}
$$

Theorem 1 and the proof of Theorem 5 show the theorem. For example, as $\left|v_{4}\right| \rightarrow \infty$ we $B_{2} G_{2}=0$ and as $\left|v_{3}\right| \rightarrow \infty$ we get $B_{1} G_{2}+\bar{c} B_{2} G_{1}=0$. Similarly as $\left|u_{3}\right| \rightarrow \infty$ we get $f_{2} A_{2}=0$ and as $\left|u_{2}\right| \rightarrow \infty$ we get $f_{1} A_{2}=f_{2} A_{1}=0$.

Corollary 7. When $c=0, S_{\alpha, \beta}$ is hyponormal if and only if

$$
\begin{aligned}
& \left|A_{1}\left(G_{2} u_{0}-\bar{f}_{1} u_{1}\right) \bar{v}_{1}+\bar{B}_{1}\left(\bar{G}_{1} u_{0}+\bar{G}_{2}\right) v_{2}\right|^{2} \\
\leq & \left\{\left|F_{1} u_{0}+\bar{F}_{2} u_{1}\right|^{2}-\left|\bar{G}_{1} u_{0}+\bar{G}_{2} u_{1}\right|^{2}+\left(\left|\bar{F}_{2}\right|^{2}-\left|\bar{G}_{2}\right|^{2}\right)\left|u_{0}\right|^{2}\right\} \\
& \times\left\{\left(\left|g_{1} v_{1}+g_{2} v_{2}\right|^{2}-\left|f_{1} v_{1}+f_{2} v_{2}\right|^{2}+\left(\left|g_{2}\right|^{2}\left|f_{2}\right|^{2}\left|v_{1}\right|^{2}\right\}\right.\right.
\end{aligned}
$$

and $\left|\bar{F}_{1} u_{0}+\bar{F}_{2} u_{1}\right|^{2}-\left|\bar{G}_{1} u_{0}+\bar{G}_{2} u_{1}\right|^{2}+\left(\left|\bar{F}_{2}\right|^{2}-\left|\bar{G}_{2}\right|^{2}\right)\left|u_{0}\right|^{2} \geq 0,\left|g_{1} v_{1}+g_{2} v_{2}\right|^{2}-$ $\left|f_{1} v_{1}+f_{2} v_{2}\right|^{2}+\left(\left|g_{2}\right|^{2}-\left|f_{2}\right|^{2}\right)\left|v_{1}\right|^{2} \geq 0$ where $B_{2} G_{2}=B_{1} G_{2}=A_{2} f_{2}=A_{2} f_{1}=$ $A_{1} f_{2}=0$ and $u_{i}, v_{j} \in \mathbb{C}(i=0,1 ; j=1,2)$.

Corollaries 8 and 9 give examples that are hyponormal but not nearly normal and Corollary 10 give examples that are nearly normal.

Corollary 8. When $A_{1}=0, A_{2} B_{1} B_{2} \neq 0, S_{\alpha, \beta}$ is hyponormal if and only if $\left|c \bar{G}_{1} u_{0} \bar{v}_{1}+B_{1} G_{1} u_{0} \bar{v}_{2}\right|^{2} \leq\left(\left|\bar{F}_{1} u_{0}+\bar{F}_{2} u_{1}\right|^{2}+\left|F_{2}\right|^{2}\left|u_{0}\right|^{2}\right)\left(\left|g_{1} v_{1}+g_{2} v_{2}\right|^{2}+\left|g_{2}\right|^{2}\left|v_{1}\right|^{2}\right)$, where $G_{2}=f_{1}=f_{2}=0$ and $u_{i}, v_{j} \in \mathbb{C}(i=0,1 ; j=1,2)$.

Proof. If $S_{\alpha, \beta}$ is hyponormal, then Theorem 6 shows and so $G_{2}=f_{1}=f_{2}=0$ the 'only if' part. Conversely the 'if' part is clear.

Example II. Let $\alpha=a+F_{1} z+F_{2} z^{2}$ and $\beta=b+G_{1} z+\bar{g}_{1} \bar{z}+\bar{g}_{2} \bar{z}^{2}$.
(1) If $S_{\alpha, \beta}$ is hyponormal, then $\left|(a-b) \bar{G}_{1}+g_{1} G_{1}\right|^{2} \leq\left(\left|F_{1}+F_{2}\right|^{2}+\left|F_{2}\right|^{2}\right)\left(\mid g_{1}+\right.$ $\left.\left.g_{2}\right|^{2}+\left|g_{2}\right|^{2}\right)$. If $S_{\alpha, \beta}$ is nearly normal, then $(a-b) \bar{G}_{1}+g_{1} G_{1}=0$.
(2) If $\alpha=1+z+z^{2}$ and $\beta=z+\bar{z}+\bar{z}^{2}$, then $S_{\alpha, \beta}$ is hyponormal but not nearly normal.

Proof. (1) In Corollary 8, as $u_{0}=u_{1}=v_{1}=v_{2}=1$, we can get (1).
(2) In Corollary $8, c=B_{1}=1$ and $F_{1}=F_{2}=G_{1}=g_{1}=g_{2}=1$. Hence $S_{\alpha, \beta}$ is hyponormal if and only if $\left|u_{0} \bar{v}_{1}+u_{0} \bar{v}_{2}\right|^{2} \leq\left(\left|u_{0}+u_{1}\right|^{2}+\left|u_{0}\right|^{2}\right)\left(\mid v_{1}+\right.$ $\left.v_{2}\right|^{2}+\left|v_{1}\right|^{2}$). Hence $S_{\alpha, \beta}$ is hyponormal and by (1) $S_{\alpha, \beta}$ is not nearly normal because $(a-b) \bar{G}_{1}+g_{1} G_{1}=2$.

Corollary 9. Suppose $A_{1} A_{2} B_{1} B_{2} \neq 0$. Then $S_{\alpha, \beta}$ is hyponormal if and only if

$$
\left|B_{1} G_{1}\right|^{2}\left|v_{2}\right|^{2} \leq\left(\left|F_{2}\right|^{2}-\left|G_{1}\right|^{2}\right)\left(\left|g_{1} v_{1}+g_{2} v_{2}\right|^{2}+\left|g_{2}\right|^{2}\left|v_{1}\right|^{2}\right)
$$

where $G_{2}=c G_{1}=f_{2}=f_{1}=0$ and $v_{j}(j=1,2)$.

Proof. If $S_{\alpha, \beta}$ is hyponormal, by Theorem 6, $G_{2}=c G_{1}=f_{2}=f_{1}=0$. Hence by Theorem 6 ,

$$
\begin{aligned}
\left|B_{1} G_{1}\right|^{2}\left|u_{0}\right|^{2}\left|v_{2}\right|^{2} \leq & \left\{\left|\bar{F}_{1} u_{0}+\bar{F}_{2} u_{1}\right|^{2}+\left(\left|F_{2}\right|^{2}-\left|G_{1}\right|^{2}\right)\left|u_{0}\right|^{2}\right\} \\
& \times\left(\left|g_{1} v_{1}+g_{2} v_{2}\right|^{2}+\left|g_{2}\right|^{2}\left|v_{1}\right|^{2}\right) .
\end{aligned}
$$

Since $F_{2} \neq 0$, if we choose u_{1} as $-\bar{F}_{1} u_{0} / \bar{F}_{2}$, then the 'only if' part of corollary follows. The 'if' part is clear.

Example III. Let $\alpha=a+F_{1} z+F_{2} z^{2}$ and $\beta=a+G_{1} z+\bar{g}_{1} \bar{z}+\bar{g}_{2} \bar{z}^{2}$ where $F_{2} \neq 0, g_{1} g_{2} \neq 0,\left|F_{2}\right| \neq\left|G_{1}\right|$ and $F_{1} \neq G_{1}$. Then
(1) $S_{\alpha, \beta}$ is hyponormal if and only if

$$
\frac{\left|G_{1}\right|^{2}}{\left|F_{2}\right|^{2}-\left|G_{1}\right|^{2}} \leq\left|t+\frac{g_{2}}{g_{1}}\right|^{2}+|t|^{2}\left|\frac{g_{2}}{g_{1}}\right|^{2}
$$

for any $t \in \mathbb{C}$. Moreover $S_{\alpha, \beta}$ is not nearly normal.
(2) When $g_{1}=g_{2}, S_{\alpha, \beta}$ is hyponormal if and only if $2\left|G_{1}\right|^{2} \leq\left|F_{2}\right|^{2}$.

Proof. (1) By Theorem 6, $S_{\alpha, \beta}$ is hyponormal if and only if

$$
\left|g_{1} G_{1}\right|^{2} \leq\left(\left|F_{2}\right|^{2}-\left|G_{1}\right|^{2}\right)\left(\left|g_{1} \frac{v_{1}}{v_{2}}+g_{2}\right|^{2}+\left|g_{2}\right|^{2}\left|\frac{v_{1}}{v_{2}}\right|^{2}\right)
$$

Put $t=v_{1} / v_{2}$. Then

$$
\frac{\left|G_{1}\right|^{2}}{\left|F_{2}\right|^{2}-\left|G_{1}\right|^{2}} \leq\left|t+\frac{g_{2}}{g_{1}}\right|^{2}+|t|^{2}\left|\frac{g_{2}}{g_{1}}\right|^{2}
$$

for any $t \in \mathbb{C}$ and $S_{\alpha, \beta}$ is not nearly normal.
(2) When $g_{1}=g_{2}$, by (1) $S_{\alpha, \beta}$ is hyponormal if and only if

$$
\frac{\left|G_{1}\right|^{2}}{\left|F_{2}\right|^{2}-\left|G_{1}\right|^{2}} \leq|t+1|^{2}+|t|^{2}
$$

for any $t \in \mathbb{C}$. Since $\inf \left(|t+1|^{2}+|t|^{2}\right)=1 / 4, S_{\alpha, \beta}$ is hyponormal if and only if $4\left|G_{1}\right|^{2} \leq\left|F_{2}\right|^{2}-\left|G_{1}\right|^{2}$.

Lemma 4. Let $\alpha=a+F_{1} z+F_{2} z^{2}+\bar{f}_{1} \bar{z}+\bar{f}_{2} \bar{z}^{2}, \beta=b+G_{1} z+G_{2} z^{2}+\bar{g}_{1} \bar{z}+\bar{g}_{2} \bar{z}^{2}$ and $\phi=\alpha-\beta=c+A_{1} z+A_{2} z^{2}+\bar{B}_{1} \bar{z}+\bar{B}_{2} \bar{z}^{2}$. Suppose $S_{\alpha, \beta}$ is hyponormal. Then the following hold.
(1) If $A_{1}=A_{2}=0$, then $S_{\alpha, \beta}$ is nearly normal.
(2) If $B_{1}=B_{2}=0$, then $S_{\alpha, \beta}$ is nearly normal.
(3) If $A_{1}=B_{1}=0$, then $S_{\alpha, \beta}$ is nearly normal.
(4) If $A_{2}=B_{2}=0$, then $S_{\alpha, \beta}$ is nearly normal.
(5) If $A_{1}=B_{2}=0$, then $S_{\alpha, \beta}$ is nearly normal.
(6) If $A_{2}=B_{1}=0$, then $S_{\alpha, \beta}$ is nearly normal.

Proof. (1) Since $A_{1}=A_{2}=0,\left|\bar{F}_{1} u_{0}+\bar{F}_{2} u_{1}\right|^{2}-\left|\bar{G}_{1} u_{0}+\bar{G}_{2} u_{1}\right|^{2}+\left(\left|F_{2}\right|^{2}-\right.$ $\left.\left|G_{2}\right|^{2}\right)\left|u_{0}\right|^{2}=0$. Hence by Theorem $6, S_{\alpha, \beta}$ is nearly normal.
(2) Since $B_{1}=B_{2}=0,\left|g_{1} v_{1}+g_{2} v_{2}\right|^{2}-\left|f_{1} v_{1}+f_{2} v_{2}\right|^{2}+\left(\left|g_{2}\right|^{2}-\left|f_{2}\right|^{2}\right)\left|v_{1}\right|^{2}=0$. Hence by Theorem $6, S_{\alpha, \beta}$ is nearly normal.
(3) When $A_{1}=B_{1}=0$, by (1) and (2) we may assume $A_{2} B_{2} \neq 0$. By Theorem $6, G_{2}=\bar{c} G_{1}=f_{2}=f_{1}=0$. By Theorem 6

$$
\begin{aligned}
& \left\{\left(c \bar{G}_{1} u_{0}+c \bar{G}_{2} u_{1}+A_{1} \bar{G}_{2} u_{0}\right)-\bar{f}_{1}\left(\bar{c} u_{0}+\bar{A}_{1} u_{1}\right)-\bar{f}_{2}\left(\bar{c} u_{1}\right)\right\} v_{1} \\
& +\left(c G_{2} u_{0}+\bar{B}_{1} \bar{G}_{1} u_{0}+\bar{B}_{1} \bar{G}_{2} u_{1}\right) \bar{v}_{2}=0
\end{aligned}
$$

and hence $S_{\alpha, \beta}$ is nearly normal.
(4) When $A_{2}=B_{2}=0$ by (1) and (2) we may assume $A_{1} B_{1} \neq 0$. By Theorem $6 B_{1} G_{2}=A_{1} f_{2}=0$ and so $G_{2}=f_{2}=0$. By Theorem 6
$\left|\left\{\left(c \bar{G}_{1}-\bar{f}_{1} \bar{c}\right) u_{0}-\bar{f}_{1} \bar{A}_{1} u_{1}\right\} \bar{v}_{1}+\bar{B}_{1} \bar{G}_{1} u_{0} \bar{v}_{2}\right|^{2} \leq\left(\left|F_{1}\right|^{2}-\left|G_{1}\right|^{2}\right)\left(\left|g_{1}\right|^{2}-\left|f_{1}\right|^{2}\right)\left|u_{0}\right|^{2}\left|v_{1}\right|^{2}$. As $\left|v_{2}\right| \rightarrow \infty, B_{1} G_{1}=0$ and so $G_{1}=0$. Hence $\left|\left(\bar{f}_{1} \bar{c} u_{0}+\bar{f}_{1} \bar{A}_{1} u_{1}\right) \bar{v}_{1}\right|^{2} \leq$ $\left|F_{1}\right|^{2}\left(\left|g_{1}\right|^{2}-\left|f_{1}\right|^{2}\right)\left|u_{0}\right|^{2}\left|v_{1}\right|^{2}$. As $\left|u_{1}\right| \rightarrow \infty, f_{1} A_{1}=0$ and so $f_{1}=0$. Therefore by the definition $S_{\alpha, \beta}$ is nearly normal.
(5) When $A_{1}=B_{2}=0$, by (1) and (2) we may assume $A_{2} B_{1} \neq 0$. By Theorem $6 G_{2}=f_{2}=f_{1}=0$. By Theorem 6

$$
\left|c \bar{G}_{1} u_{0} \bar{v}_{1}+\bar{B}_{1} \bar{G}_{1} u_{0} \bar{v}_{2}\right|^{2} \leq\left(\left|\bar{F}_{1} u_{0}+\bar{F}_{2} u_{1}\right|^{2}-\left|\bar{G}_{1} u_{0}\right|^{2}\right)\left|g_{1} v_{1}\right|^{2} .
$$

As $\left|v_{2}\right| \rightarrow \infty, B_{1} G_{1}=0$ and so $G_{1}=0$. Hence by the definition $S_{\alpha, \beta}$ is nearly normal.
(6) When $A_{2}=B_{1}=0$ by (1), (2) and (4) we may assume $A_{1} B_{2} \neq 0$. By Theorem $6 G_{2}=\bar{c} G_{1}=f_{2}=0$.

By Theorem 6,

$$
\left|\bar{f}_{1}\left(\bar{c} u_{0}+\bar{A}_{1} u_{1}\right) \bar{v}_{1}\right|^{2} \leq\left|F_{1}\right|^{2}\left|g_{2}\right|^{2}\left|u_{0}\right|^{2}\left|v_{1}\right|^{2}
$$

As $\left|u_{1}\right| \rightarrow \infty, f_{1} A_{1}=0$ and so $f_{1}=0$. By the definition $S_{\alpha, \beta}$ is nearly normal.

Corollary 10. Let $\alpha=a+F_{1} z+F_{2} z^{2}+\bar{f}_{1} \bar{z}+\bar{f}_{2} \bar{z}^{2}, \beta=b+G_{1} z+G_{2} z^{2}+$ $\bar{g}_{1} \bar{z}+g_{2} \bar{z}^{2}$ and $\phi=\alpha-\beta=c+A_{1} z+A_{2} z^{2}+\bar{B}_{1} \bar{z}+\bar{B}_{2} \bar{z}^{2}$. Suppose $S_{\alpha, \beta}$ is hyponormal. When $c \neq 0$, if $A_{1} B_{1} A_{2} B_{2}=0$, then $S_{\alpha, \beta}$ is nearly normal. When $c=0$, if $B_{1} A_{2} B_{2}=0$, then $S_{\alpha, \beta}$ is nearly normal.

Proof. We will show that if $B_{1} A_{2} B_{2}=0$, then $S_{\alpha, \beta}$ is nearly normal. When $B_{1}=0$, by (2), (3) and (6) of Lemma 4 we may assume $A_{1} A_{2} B_{2} \neq 0$. By Theorem $6, G_{2}=\bar{c} G_{1}=f_{1}=f_{2}=0$. This shows that $S_{\alpha, \beta}$ is nearly normal by Theorem 6 .

When $A_{2}=0$, by (1), (4) and (6) of Lemma 4 we may assume $A_{1} B_{1} B_{2} \neq 0$. By Theorem $6, G_{2}=\bar{c} G_{1}=f_{2}=0$ and so Theorem 6 shows that
$\left|f_{1}\left(\bar{c} u_{0}+A_{1} u_{1}\right) \bar{v}_{1}+B_{1} G_{1} u_{0} \bar{v}_{2}\right|^{2} \leq\left(\left|F_{1}\right|^{2}-\left|G_{1}\right|^{2}\right)\left|u_{0}\right|^{2}\left(\left|g_{1} v_{1}+g_{2} v_{2}\right|^{2}-\left|f_{1} v_{1}\right|^{2}\right)$.

As $\left|u_{1}\right| \rightarrow \infty, f_{1} A_{1}=0$ and so $f_{1}=0$. Hence

$$
\left|B_{1} G_{1}\right|^{2}\left|v_{2}\right|^{2} \leq\left(\left|F_{1}\right|^{2}-\left|G_{1}\right|^{2}\right)\left|g_{1} v_{1}+g_{2} v_{2}\right|^{2}
$$

Choosing v_{1} and v_{2}, we can assume $g_{1} v_{1}+g_{2} v_{2}=0$. This shows $S_{\alpha, \beta}$ is nearly normal.

When $B_{2}=0$, by (2), (4) and (5) of Lemma 4 we may assume $A_{1} A_{2} B_{1} \neq 0$. By Theorem $6 G_{2}=f_{1}=f_{2}=0$ and so Theorem 6 shows that

$$
\begin{aligned}
& \left|c \bar{G}_{1} u_{0} \bar{v}_{1}+\bar{B}_{1} \bar{G}_{1} u_{0} \bar{v}_{2}\right|^{2} \\
\leq & \left\{\left|\bar{F}_{1} u_{0}+\bar{F}_{2} u_{1}\right|^{2}+\left(\left|F_{2}\right|^{2}-\left|G_{1}\right|^{2}\right)\left|u_{0}\right|^{2}\right\}\left(\left|g_{1} v_{1}+g_{2} v_{2}\right|^{2}+\left|g_{2}\right|\left|v_{1}\right|^{2}\right) .
\end{aligned}
$$

Since $B_{2}=0, g_{2}=0$ and so

$$
\left|c \bar{G}_{1} u_{0} \bar{v}_{1}+\bar{B}_{1} \bar{G}_{1} u_{0} \bar{v}_{2}\right|^{2} \leq\left\{\left|\bar{F}_{1} u_{0}+\bar{F}_{2} u_{1}\right|^{2}+\left(\left|F_{2}\right|^{2}-\left|G_{1}\right|^{2}\right)\left|u_{0}\right|^{2}\right\}\left|g_{1}\right|^{2}\left|v_{1}\right|^{2} .
$$

As $\left|v_{2}\right| \rightarrow \infty, B_{1} G_{1}=0$ and so $G_{1}=0$ because $B_{1} \neq 0$. This shows $S_{\alpha, \beta}$ is nearly normal.

We will show that if $A_{1}=0$ and $c \neq 0$, then $S_{\alpha, \beta}$ is nearly normal. By (1), (3) and (5) of Lemma 4 we may assume $A_{2} B_{1} B_{2} \neq 0$. By Theorem 6 $G_{2}=\bar{c} G_{1}=f_{1}=f_{2}=0$ and so Theorem 6 shows that

$$
\left|B_{1} G_{1} u_{0} v_{2}\right|^{2} \leq\left(\left|\bar{F}_{1} u_{0}+\bar{F}_{2} u_{1}\right|^{2}-\left|\bar{G}_{1}\right|^{2}\left|u_{0}\right|^{2}+\left|F_{2}\right|^{2}\left|u_{0}\right|^{2}\right)\left|g_{2}\right|^{2}\left(\left.v_{1}\right|^{2}+\left|v_{2}\right|^{2}\right) .
$$

Since $c \neq 0, G_{1}=0$ and so by Theorem $6 S_{\alpha, \beta}$ is nearly normal.
Remark. In this section, we consider only very special case, that is, α and β are polynomials. However we can prove a few results only when $\alpha-\beta$ is a polynomial.

References

[1] M. B. Abrahamse, Subnormal Toeplitz operators and functions of bounded type, Duke Math. J. 43 (1976), no. 3, 597-604.
[2] A. Brown and P. R. Halmos, Algebraic properties of Toeplitz operators, J. Reine Angew. Math. 213 (1963/1964), 89-102.
[3] C. C. Cowen, Hyponormality of Toeplitz operators, Proc. Amer. Math. Soc. 103 (1988), no. 3, 809-812.
[4] R. G. Douglas, On majorization, factorization, and range inclusion of operators on Hilbert space, Proc. Amer. Math. Soc. 17 (1966), 413-415.
[5] I. Gohberg and N. Krupnik, One-dimensional linear singular integral equations. Vol. II, translated from the 1979 German translation by S. Roch and revised by the authors, Operator Theory: Advances and Applications, 54, Birkhäuser Verlag, Basel, 1992.
[6] C. X. Gu, A generalization of Cowen's characterization of hyponormal Toeplitz operators, J. Funct. Anal. 124 (1994), no. 1, 135-148.
[7] I. S. Hwang, I. H. Kim, and W. Y. Lee, Hyponormality of Toeplitz operators with polynomial symbols, Math. Ann. 313 (1999), no. 2, 247-261.
[8] , Hyponormality of Toeplitz operators with polynomial symbols: an extremal case, Math. Nachr. 231 (2001), 25-38.
[9] I. S. Hwang and W. Y. Lee, Hyponormality of Toeplitz operators with polynomial and symmetric-type symbols, Integral Equations Operator Theory 50 (2004), no. 3, 363-373.
[10] T. Nakazi, Hyponormal Toeplitz operators and zeros of polynomials, Proc. Amer. Math. Soc. 136 (2008), no. 7, 2425-2428.
[11] T. Nakazi and K. Takahashi, Hyponormal Toeplitz operators and extremal problems of Hardy spaces, Trans. Amer. Math. Soc. 338 (1993), no. 2, 753-767.
[12] T. Nakazi and T. Yamamoto, Normal singular integral operators with Cauchy kernel on L^{2}, Integral Equations Operator Theory 78 (2014), no. 2, 233-248.
[13] D. Sarason, Generalized interpolation in H^{∞}, Trans. Amer. Math. Soc. 127 (1967), 179-203.
[14] K. H. Zhu, Hyponormal Toeplitz operators with polynomial symbols, Integral Equations Operator Theory 21 (1995), no. 3, 376-381.

TAKAHIKO NAKAZI
Hokkaido University
Sapporo 060-0810, Japan
Email address: tnakazi70@gmail.com

[^0]: Received April 7, 2017; Revised December 4, 2017; Accepted December 29, 2017.
 2010 Mathematics Subject Classification. 45E10, 47B35, 47B20.
 Key words and phrases. singular integral operator, Toeplitz operator, Hardy space, hyponormal operator.

