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BRÜCK CONJECTURE AND A LINEAR DIFFERENTIAL

POLYNOMIAL

Indrajit Lahiri and Bipul Pal

Abstract. In the paper we consider the uniqueness of a meromorphic

function and a linear differential polynomial when they share a small
function.

1. Introduction, definitions and results

Let f , g be nonconstant meromorphic functions defined in the open complex
plane C. For a ∈ C ∪ {∞} the functions f , g are said to share the value
a CM (counting multiplicities) if f , g have the same a-points with the same
multiplicities.

The standard definitions and notations of the value distribution theory are
available in [5]. We need the following in the paper.

Definition 1.1. For a meromorphic function f and for a ∈ C ∪ {∞} and for
a positive integer k

(i) N(k(r, a; f) (N (k(r, a; f)) denotes the counting function (reduced count-
ing function) of those a-points of f whose multiplicities are not less than
k;

(ii) Nk)(r, a; f) (Nk)(r, a; f)) denotes the counting function (reduced count-
ing function) of those a-points of f whose multiplicities are not greater
than k;

(iii) Nk(r, a; f) denotes the sum N(r, a; f) +
k∑
j=2

N (j(r, a; f).

Clearly Nk(r, a; f) ≤ kN(r, a; f).
Considering the uniqueness problem of an entire function sharing a single

value CM with its first derivative, R. Brück [3] proved the following theorem.
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Theorem A ([3]). Let f be a nonconstant entire function. If f and f ′ share
the value 1 CM and N(r, 0; f ′) = S(r, f), then f − 1 = c(f ′ − 1), where c is a
nonzero constant.

For a finite order entire function, L. Z. Yang [9] proved the following theorem.

Theorem B ([9]). Let f be a nonconstant entire function of finite order and
let a( 6= 0,∞) be a constant. If f and f (k) share the value a CM, then f − a =
c(f (k) − a), where c is a nonzero constant and k(≥ 1) is an integer.

R. Brück [3] proposed the following conjecture.

Brück Conjecture. Let f be a nonconstant entire function of finite noninte-
gral hyper-order. If f and f ′ share one finite value a CM, then f ′−a = c(f−a)
for some constant c( 6= 0).

Apart from Theorem A and Theorem B a number of results on Brück’s
conjecture are available in the literature. H. L. Qiu [8] extended Theorem A
to a linear differential polynomial.

A meromorphic function a is called a small function of a meromorphic func-
tion f if T (r, a) = S(r, f).

A. H. H. Al-khaladi [1] pointed out that in Theorem A one cannot replace the

value 1 by a small function by considering f(z) = 1 + exp(ez) and a(z) = ez

ez−1 .
He proved the following result.

Theorem C ([1]). Let f be a nonconstant entire function satisfying N(r, 0; f ′)
= S(r, f) and let a( 6≡ 0,∞) be a small function of f . If f − a and f ′ − a share
the value 0 CM, then f −a = (1 + c

a )(f ′−a), where 1 + c
a = eβ, c is a constant

and β is an entire function.

Extending Theorem C to a linear differential polynomial, J. F. Chen and G.
R. Wu [4] proved the following result.

Theorem D ([4]). Let f be a nonconstant entire function satisfying N(r, 0; f ′)

= S(r, f), a(6≡ 0,∞) be a small function of f and L = L(f) =
∑k
j=1 ajf

(j),

where k is a positive integer and a1, a2, . . . , ak(6≡ 0) are small entire functions
of f . If f − a and L − a share 0 CM, then f − a = (1 + c

a )(L − a), where

1 + c
a = eβ, c is a constant and β is an entire function.

A similar result of Theorem D is proved in [7] for meromorphic functions.
In the paper we investigate the following problem: Under which situation f−a
becomes a constant multiple of L − a even if a( 6≡ 0,∞) is a small function of
f?

Throughout the paper we denote by L = L(f) a linear differential polynomial
of the following form:

(1.1) L = L(f) = a1f
(1) + a2f

(2) + · · ·+ akf
(k),

where f is a nonconstant meromorphic function, a1, a2, . . . , ak(6= 0) are con-
stants and k is a positive integer.
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We prove in the paper the following theorems.

Theorem 1.1. Let f be a nonconstant meromorphic function with N(r, 0; f ′)+
N(r,∞; f) = S(r, f). Suppose that L, as defined by (1.1), is nonconstant and
k(≥ 2) is a positive integer. Let a(6≡ 0,∞) be a small function of f such that
N(r,∞; a) ≤ λT (r, a) +S(r, a), where 0 < λ < 1− 1

k . If f − a and L− a share
0 CM, then f ≡ L.

Theorem 1.2. Let f be a nonconstant meromorphic function with N(r, 0; f (2))
+N (2(r,∞; f) = S(r, f). Suppose that L, as defined by (1.1), is nonconstant,
where a1 = 0 and k(≥ 2) is a positive integer. Let a( 6≡ 0,∞) be a small function
of f such that N(r,∞; a) ≤ λT (r, a) + S(r, a), where 0 < λ < 1 − 1

k . If f − a
and L− a share 0 CM, then f − a ≡ c(L− a), where c(6= 0) is a constant.

2. Lemmas

In this section we present some necessary lemmas.

Lemma 2.1 ([2]). Let k(≥ 2) be a positive integer and f be a nonconstant
meromorphic function. If N(r, 0; f (k)) + N (2(r,∞; f) = S(r, f), then either

N1)(r,∞; f) = S(r, f) or f(z) = −(k+1)k+1

k!c{z+d(k+1)} + pk−1(z), where c(6= 0), d are

constants and pk−1(z) is a polynomial of degree at most k − 1.

Lemma 2.2. Let f be a nonconstant meromorphic function and k(≥ 2) be a
positive integer. Suppose that a( 6≡ 0,∞) is a small function of f , and L, as
given in Theorem 1.2, is nonconstant. If N(r, 0; f (2)) +N (2(r,∞; f) = S(r, f)

and f − a, L− a share 0 CM, then N(r,∞; f) = S(r, f).

Proof. If f(z) = −27
2c(z+3d) + p1(z), then a becomes a constant. Clearly, in this

case, f − a and L − a cannot share 0 CM. Therefore by Lemma 2.1 we get
N(r,∞; f) = S(r, f). �

Lemma 2.3 ([5, p. 47, Th. 2.5]). Let f be a nonconstant meromorphic function
and a1, a2, a3 be distinct meromorphic small functions of f . Then

T (r, f) ≤
3∑
j=1

N(r, 0; f − aj) + S(r, f).

Lemma 2.4 ([6]). Given a transcendental meromorphic function f and a con-
stant Γ > 1. Then there exists a set M(Γ) whose upper logarithmic density is
at most

δ(Γ) = min{(2eΓ−1 − 1)−1, (1 + e(Γ− 1)) exp(e(1− Γ))}

such that for every positive integer k,

lim sup
r→∞,r 6∈M(Γ)

T (r, f)

T (r, f (k))
≤ 3eΓ.



802 I. LAHIRI AND B. PAL

3. Proofs of the theorems

We prove Theorem 1.2 only, as Theorem 1.1 can be proved similarly.

Proof of Theorem 1.2. If f is not transcendental, then f must be a polynomial
because by Lemma 2.2 we have N(r,∞; f) = S(r, f). If deg(f) > 2, then
deg(L) = deg(f)−2 and if deg(f) ≤ 2, then deg(L) = 0, which is impossible as
L is nonconstant. Since in this case a is a constant, we see that f −a and L−a
cannot share the value 0 CM, a contradiction. Therefore f is a transcendental
meromorphic function.

Let h = f−a
L−a . Then h is entire and the poles of f are precisely the zeros of

h so that by the hypothesis and Lemma 2.2 we get

(3.1) N(r, 0;h) ≤ N(r,∞; f) = S(r, f).

Now differentiating

(3.2) f − a = hL− ah
twice we get

(3.3) f (2) − a(2) = (hL)(2) − (ah)(2).

We now consider the following cases.

Case I. Let a(2) 6≡ 0. We put

(3.4) W =
(hL)(2)

hf (2)
− (ha)(2)

ha(2)
.

First we suppose that W 6≡ 0. Let z0 be a zero of f (2) − a(2) and a(2)(z0) 6=
0,∞. Then from (3.3) we see that z0 is a zero of (hL)(2) − (ha)(2). Hence
W (z0) = 0. We see that

m(r,W ) ≤ m
(
r,

(hL)(2)

hf (2)

)
+m

(
r,

(ha)(2)

ha(2)

)
≤ m

(
r,

(hL)(2)

hL

)
+m

(
r,

L

f (2)

)
+m

(
r,

(ha)(2)

ha

)
+m

(
r,

a

a(2)

)
= S(r, f).

Therefore

(3.5)

N(r, 0; f (k) − a(k)) ≤ N(r, 0;W ) + S(r, f)

≤ T (r,W ) + S(r, f)

= N(r,W ) + S(r, f).

Let z1 be a pole of f with multiplicity p such that a(z1) 6= 0,∞ and a(2)(z1) 6=
0. Then z1 is a zero of h with multiplicity k. Hence z1 is a pole of (hL)(2)

with multiplicity p + 2. Also hf (2) has a pole at z1 of multiplicity p + 2 − k.

Therefore z1 is a pole of (hL)(2)

hf(2) with multiplicity (p+2)− (p+2−k) = k. Also
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z1 is a pole of (ha)(2)

ha(2)
with multiplicity 2 ≤ k. Therefore z1 is a pole of W with

multiplicity at most k.
Let z2 be a zero of f (2) with multiplicity q and a(z2) 6= 0,∞, a(2)(z2) 6= 0.

If q > k, then z2 is a zero of hL with multiplicity q − k + 2. So z2 is a zero of
(hL)(2) with multiplicity (q− k+ 2)− 2 = q− k. Hence z2 is a pole of W with
multiplicity at most q − (q − k) = k.

Therefore in view of Lemma 2.2 we get

(3.6)

N(r,W ) ≤ kN(r,∞; f) +Nk(r, 0; f (2)) +N(r, 0; f (2)) + S(r, f)

≤ kN(r,∞; f) + (1 + k)N(r, 0; f (2)) + S(r, f)

= S(r, f).

By (3.5) and (3.6) we get N(r, 0; f (2) − a(2)) = S(r, f). So by Lemma 2.3
and Lemma 2.2 we obtain

T (r, f (2)) ≤ N(r,∞; f (2)) +N(r, 0; f (2)) +N(r, 0; f (2) − a(2)) + S(r, f (2))

= S(r, f).(3.7)

Let M(Γ) be defined as in Lemma 2.4. Then by (3.7) there exists a sequence

rn → ∞, rn 6∈ M(Γ) such that T (rn,f
(2))

T (rn,f) → 0 as n → ∞. This contradicts

Lemma 2.4. Therefore W ≡ 0 and so from (3.3) and (3.4) we get (f (2) −
a(2))a(2) = (ha)(2)(f (2) − a(2)). Since f (2) 6≡ a(2), we obtain (ha)(2) = a(2).

Integrating twice we get ha = a+ αz + β and so h = 1 + αz+β
a , where α, β are

constants.
We again note that h is entire and the zeros of h are precisely the poles of

f . Also each zero of h is of multiplicity k. Let α 6= 0. Then T (r, h) = T (r, a) +
O(log r). Also N(r, 1;h) = N(r,∞; a) + O(log r) and N(r, 0;h) = 1

kN(r, 0;h).
Therefore by the second fundamental theorem and the hypothesis we get

T (r, h) ≤ N(r, 1;h) +N(r, 0;h) + S(r, h)

= N(r,∞; a) +
1

k
N(r, 0;h) +O(log r) + S(r, h)

≤ λT (r, a) +
1

k
T (r, h) +O(log r) + S(r, h)

= (λ+
1

k
)T (r, h) +O(log r) + S(r, h)

and so T (r, h) = O(log r) + S(r, h). This implies that h − 1 is a polynomial,
say P (z). If P (z) ≡ 0, then h ≡ 1 and we get the result. We suppose that

P (z) 6≡ 0. Then h = 1 + αz+β
a implies a = αz+β

P (z) .

We suppose that αz + β is a factor of P (z). Then a = 1
Q(z) , where P (z) =

(αz + β)Q(z). This implies that T (r, a) = (degQ) log r +O(1) = N(r,∞; a) +
O(1), a contradiction. So αz + β is not a factor of P (z). Then T (r, a) =
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max{degP, 1} log r + O(1) and N(r,∞; a) = (degP ) log r + O(1). By the hy-
pothesis we get degP ≤ λmax{degP, 1}. This implies degP = 0 and so

a = αz+β
d , where d(6= 0) is a constant. Hence h = 1 + d, a constant.

Let α = 0. Then h = a+β
a . Since h is entire and each zero of h is of

multiplicity k, we have N(r, 0; a) ≡ 0 and N(r, 0; a + β) ≤ 1
kN(r, 0; a + β).

Therefore, if β 6= 0, we get by the second fundamental theorem

T (r, a) ≤ N(r,∞; a) +N(r, 0; a) +N(r, 0; a+ β) + S(r, a)

≤ (λ+
1

k
)T (r, a) + S(r, a),

a contradiction. So β = 0 and h ≡ 1.

Case II. Let a(2) ≡ 0. Then a is a polynomial of degree at most 1. From (3.3)
we get f (2) = (hL)(2) − (ah)(2), which implies

(3.8)
1

h
=

(hL)(2)

hf (2)
− (ah)(2)

hf (2)
.

We put F = f (2), G = (hL)(2)

hf(2) and b = (ah)(2)

h . So from (3.8) we get

(3.9)
1

h
= G− b

F
.

Differentiating (3.9) we obtain

(3.10) − 1

h
· h
′

h
= G′ − b′

F
+
b

F
· F
′

F
.

From (3.9) and (3.10) we have

(3.11)
A

F
= G′ +G

h′

h
,

where A = bh
′

h + b′ − bF
′

F .
First we suppose that G ≡ 0. Then on integration we get hL = Q1, where

Q1 = Q1(z) is a polynomial of degree at most 1. Putting h = f−a
L−a we get

(3.12) (f − a)L = (L− a)Q1.

Since a is a polynomial, from (3.12) we see that f is an entire function.
Hence h is an entire function having no zero. We put h = eα, where α is an
entire function.

Now f = a + h(L − a) = a + Q1 − aeα and L = Q1e
−α. Also we see

from the definition of L that L = R(α′)eα, where R(α′)( 6≡ 0) is a differential
polynomial in α′ with polynomial coefficients. Therefore R(α′)eα = Q1e

−α and

so e2α = Q1

R(α′) . This shows that T (r, eα) = S(r, eα), a contradiction. Hence

G 6≡ 0.
If h is constant, then we achieve the result. So we suppose that h is noncon-

stant.
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Let b ≡ 0. Then on integration we get ah = P1, where P1 = P1(z) is a
polynomial of degree at most 1. Since h is entire and a is a polynomial of
degree at most 1, h = P1

a implies that a is a factor of P1 and hence

(3.13) h = Q∗1,

where Q∗1 = Q∗1(z) is a polynomial of degree at most 1. Since each pole of f is
a zero of h with multiplicity k(≥ 2), by (3.13) we see that f is entire. So h is
an entire function having no zero, which by (3.13) implies that h is a constant,
a contradiction. So b 6≡ 0.

Let A ≡ 0. Then from (3.11) we get G′

G + h′

h ≡ 0 and so on integration we
obtain Gh ≡ K so that

(3.14) (hL)(2) = Kf (2),

where K is a nonzero constant.
Again A

b = h′

h + b′

b −
F ′

F = 0 implies on integration that hb = MF and so

(3.15) (ah)(2) = Mf (2),

where M is a nonzero constant.
Since a is a polynomial and h is entire, from (3.15) we see that f is entire

and so h = eα, where α is an entire function.
Integrating (3.14) twice we get

(3.16) hL = Kf + P ∗1 ,

where P ∗1 = P ∗1 (z) is a polynomial of degree at most 1.
Since hL = f − a+ ah, we get from (3.16)

(3.17) (1−K)f = a(1− eα) + P ∗1 .

If K = 1, from (3.17) we get eα = 1 +
P∗1
a , a contradiction. Hence K 6= 1

and from (3.17) we obtain

(3.18) f =
aeα

K − 1
− a+ P ∗1
K − 1

.

From the definition of L we get by (3.18)

(3.19) L = R1(α′)eα,

where R1(α′)( 6≡ 0) is a differential polynomial in α′ with polynomial coeffi-
cients.

From (3.16) and (3.18) we get

(3.20) L =
Ka

K − 1
− a+ (2−K)P ∗1

K − 1
e−α.

From (3.19) and (3.20) we obtain

R1(α′)e2α =
Kaeα

K − 1
− a+ (2−K)P ∗1

K − 1
,

which implies T (r, eα) = S(r, eα), a contradiction. Therefore A 6≡ 0.
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Now A = b
(
h′

h + b′

b −
F ′

F

)
implies m(r,A) = S(r, f). Also the poles of A

are contributed by (i) the poles of b = (ah)(2)

h , (ii) the poles of h′

h and (iii) the

poles of F ′

F = f(3)

f(2) . Since h is entire and the zeros of h are precisely the poles

of f and each zero of h is of multiplicity k, we get

N(r,A) ≤ (k + 1)N(r,∞; f) +N(r, 0; f (2)) + S(r, f) = S(r, f),

by the hypothesis and Lemma 2.2. Therefore T (r,A) = S(r, f).
Now by (3.11) we get

(3.21)

m(r,
1

F
) ≤ m(r,

1

A
) +m(r,G′ +G

h′

h
)

≤ T (r,A) +m(r,G) +m(r,
G′

G
+
h′

h
)

= m(r,G) + S(r, f)

= m(r,
(hL)(2)

hL
· L

f (2)
) + S(r, f)

≤ m(r,
(hL)(2)

hL
) +m(r,

L

f (2)
) + S(r, f)

= S(r, f).

Again in view of (3.1) we get

(3.22)

T (r, b) = N(r, b) + S(r, f)

= N(r,
(ah)(2)

h
) + S(r, f)

≤ 2N(r, 0;h) + S(r, f)

= S(r, f).

Let z3 be a zero of F = f (2) with multiplicity q ≥ k+ 1 such that a(z0) 6= 0.
Then z3 is a zero of (hL)(2) with multiplicity at least q − (k − 2)− 2 = q − k.

So z3 is a zero of FG = (hL)(2)

h with multiplicity at least q − k. Hence z3 is a

zero of b = FG− F
h with multiplicity at least q − k.

Therefore by (3.22) we get

N(k+1(r, 0; f (2)) ≤ N(r, 0; b) + kN (k+1(r, 0; f (2)) = kN (k+1(r, 0; f (2)) + S(r, f).

Therefore

N(r,
1

F
) = N(r, 0; f (2))

= Nk)(r, 0; f (2)) +N(k+1(r, 0; f (2))

≤ kNk)(r, 0; f (2)) + kN (k+1(r, 0; f (2)) + S(r, f)

= kN(r, 0; f (2)) + S(r, f)
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= S(r, f).(3.23)

From (3.21), (3.23) and the first fundamental theorem we get T (r, f (2)) =
S(r, f), which is (3.7), and likewise we arrive at a contradiction. �

4. The counter-example of Al-Khaladi

As mentioned in the introduction A. H. H. Al-Khaladi, considering f(z) =

1 + exp(ez) and a(z) = ez

ez−1 , established that in Theorem A, the shared value
cannot be replaced by a shared small function. In stead, he proved Theorem
C.

In fact, the poles of a(z) = ez

ez−1 play the most crucial role. Here we note

that N(r,∞; a) = T (r, a) + S(r, a). On the other hand, we see that a small
function with relatively less number of poles can yield a rather impressive
output. For example, let N(r,∞; a) ≤ λT (r, a) + S(r, a), where 0 < λ < 1.
Since by Theorem C, eβ = 1 + c

a , clearly a and a+ c have no zero. So if c 6= 0,
by the second fundamental theorem we get

T (r, a) ≤ N(r,∞; a) + S(r, a) ≤ λT (r, a) + S(r, a),

a contradiction. Therefore c = 0 and f ≡ f ′.
Acknowledgement. Authors are thankful to the referee for valuable sugges-
tions towards the improvement of the paper.
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