BRÜCK CONJECTURE AND A LINEAR DIFFERENTIAL POLYNOMIAL

Indrajit Lahiri and Bipul Pal

Abstract

In the paper we consider the uniqueness of a meromorphic function and a linear differential polynomial when they share a small function.

1. Introduction, definitions and results

Let f, g be nonconstant meromorphic functions defined in the open complex plane \mathbb{C}. For $a \in \mathbb{C} \cup\{\infty\}$ the functions f, g are said to share the value a CM (counting multiplicities) if f, g have the same a-points with the same multiplicities.

The standard definitions and notations of the value distribution theory are available in [5]. We need the following in the paper.

Definition 1.1. For a meromorphic function f and for $a \in \mathbb{C} \cup\{\infty\}$ and for a positive integer k
(i) $N_{(k}(r, a ; f)\left(\bar{N}_{(k}(r, a ; f)\right)$ denotes the counting function (reduced counting function) of those a-points of f whose multiplicities are not less than k;
(ii) $N_{k)}(r, a ; f)\left(\bar{N}_{k)}(r, a ; f)\right)$ denotes the counting function (reduced counting function) of those a-points of f whose multiplicities are not greater than k;
(iii) $N_{k}(r, a ; f)$ denotes the sum $\bar{N}(r, a ; f)+\sum_{j=2}^{k} \bar{N}_{(j}(r, a ; f)$.

Clearly $N_{k}(r, a ; f) \leq k \bar{N}(r, a ; f)$.
Considering the uniqueness problem of an entire function sharing a single value CM with its first derivative, R. Brück [3] proved the following theorem.

[^0]Theorem A ([3]). Let f be a nonconstant entire function. If f and f^{\prime} share the value $1 C M$ and $N\left(r, 0 ; f^{\prime}\right)=S(r, f)$, then $f-1=c\left(f^{\prime}-1\right)$, where c is a nonzero constant.

For a finite order entire function, L. Z. Yang [9] proved the following theorem.
Theorem B ([9]). Let f be a nonconstant entire function of finite order and let $a(\neq 0, \infty)$ be a constant. If f and $f^{(k)}$ share the value a $C M$, then $f-a=$ $c\left(f^{(k)}-a\right)$, where c is a nonzero constant and $k(\geq 1)$ is an integer.
R. Brück [3] proposed the following conjecture.

Brück Conjecture. Let f be a nonconstant entire function of finite nonintegral hyper-order. If f and f^{\prime} share one finite value a $C M$, then $f^{\prime}-a=c(f-a)$ for some constant $c(\neq 0)$.

Apart from Theorem A and Theorem B a number of results on Brück's conjecture are available in the literature. H. L. Qiu [8] extended Theorem A to a linear differential polynomial.

A meromorphic function a is called a small function of a meromorphic function f if $T(r, a)=S(r, f)$.
A. H. H. Al-khaladi [1] pointed out that in Theorem A one cannot replace the value 1 by a small function by considering $f(z)=1+\exp \left(e^{z}\right)$ and $a(z)=\frac{e^{z}}{e^{z}-1}$. He proved the following result.
Theorem C ([1]). Let f be a nonconstant entire function satisfying $N\left(r, 0 ; f^{\prime}\right)$ $=S(r, f)$ and let $a(\not \equiv 0, \infty)$ be a small function of f. If $f-a$ and $f^{\prime}-a$ share the value $0 C M$, then $f-a=\left(1+\frac{c}{a}\right)\left(f^{\prime}-a\right)$, where $1+\frac{c}{a}=e^{\beta}$, c is a constant and β is an entire function.

Extending Theorem C to a linear differential polynomial, J. F. Chen and G. R. Wu [4] proved the following result.

Theorem D ([4]). Let f be a nonconstant entire function satisfying $N\left(r, 0 ; f^{\prime}\right)$ $=S(r, f), a(\not \equiv 0, \infty)$ be a small function of f and $L=L(f)=\sum_{j=1}^{k} a_{j} f^{(j)}$, where k is a positive integer and $a_{1}, a_{2}, \ldots, a_{k}(\not \equiv 0)$ are small entire functions of f. If $f-a$ and $L-a$ share $0 C M$, then $f-a=\left(1+\frac{c}{a}\right)(L-a)$, where $1+\frac{c}{a}=e^{\beta}, c$ is a constant and β is an entire function.

A similar result of Theorem D is proved in [7] for meromorphic functions. In the paper we investigate the following problem: Under which situation $f-a$ becomes a constant multiple of $L-a$ even if $a(\not \equiv 0, \infty)$ is a small function of f ?

Throughout the paper we denote by $L=L(f)$ a linear differential polynomial of the following form:

$$
\begin{equation*}
L=L(f)=a_{1} f^{(1)}+a_{2} f^{(2)}+\cdots+a_{k} f^{(k)}, \tag{1.1}
\end{equation*}
$$

where f is a nonconstant meromorphic function, $a_{1}, a_{2}, \ldots, a_{k}(\neq 0)$ are constants and k is a positive integer.

We prove in the paper the following theorems.
Theorem 1.1. Let f be a nonconstant meromorphic function with $\bar{N}\left(r, 0 ; f^{\prime}\right)+$ $\bar{N}(r, \infty ; f)=S(r, f)$. Suppose that L, as defined by (1.1), is nonconstant and $k(\geq 2)$ is a positive integer. Let $a(\not \equiv 0, \infty)$ be a small function of f such that $\bar{N}(r, \infty ; a) \leq \lambda T(r, a)+S(r, a)$, where $0<\lambda<1-\frac{1}{k}$. If $f-a$ and $L-a$ share $0 C M$, then $f \equiv L$.

Theorem 1.2. Let f be a nonconstant meromorphic function with $\bar{N}\left(r, 0 ; f^{(2)}\right)$ $+\bar{N}_{(2}(r, \infty ; f)=S(r, f)$. Suppose that L, as defined by (1.1), is nonconstant, where $a_{1}=0$ and $k(\geq 2)$ is a positive integer. Let $a(\not \equiv 0, \infty)$ be a small function of f such that $N(r, \infty ; a) \leq \lambda T(r, a)+S(r, a)$, where $0<\lambda<1-\frac{1}{k}$. If $f-a$ and $L-a$ share $0 C M$, then $f-a \equiv c(L-a)$, where $c(\neq 0)$ is a constant.

2. Lemmas

In this section we present some necessary lemmas.
Lemma 2.1 ([2]). Let $k(\geq 2)$ be a positive integer and f be a nonconstant meromorphic function. If $\bar{N}\left(r, 0 ; f^{(k)}\right)+\bar{N}_{(2}(r, \infty ; f)=S(r, f)$, then either $N_{1)}(r, \infty ; f)=S(r, f)$ or $f(z)=\frac{-(k+1)^{k+1}}{k!c\{z+d(k+1)\}}+p_{k-1}(z)$, where $c(\neq 0)$, d are constants and $p_{k-1}(z)$ is a polynomial of degree at most $k-1$.

Lemma 2.2. Let f be a nonconstant meromorphic function and $k(\geq 2)$ be a positive integer. Suppose that $a(\not \equiv 0, \infty)$ is a small function of f, and L, as given in Theorem 1.2, is nonconstant. If $\bar{N}\left(r, 0 ; f^{(2)}\right)+\bar{N}_{(2}(r, \infty ; f)=S(r, f)$ and $f-a$, $L-a$ share $0 C M$, then $\bar{N}(r, \infty ; f)=S(r, f)$.
Proof. If $f(z)=\frac{-27}{2 c(z+3 d)}+p_{1}(z)$, then a becomes a constant. Clearly, in this case, $f-a$ and $L-a$ cannot share 0 CM. Therefore by Lemma 2.1 we get $\bar{N}(r, \infty ; f)=S(r, f)$.

Lemma 2.3 ([5, p. 47, Th. 2.5]). Let f be a nonconstant meromorphic function and a_{1}, a_{2}, a_{3} be distinct meromorphic small functions of f. Then

$$
T(r, f) \leq \sum_{j=1}^{3} \bar{N}\left(r, 0 ; f-a_{j}\right)+S(r, f)
$$

Lemma 2.4 ([6]). Given a transcendental meromorphic function f and a constant $\Gamma>1$. Then there exists a set $M(\Gamma)$ whose upper logarithmic density is at most

$$
\delta(\Gamma)=\min \left\{\left(2 e^{\Gamma-1}-1\right)^{-1},(1+e(\Gamma-1)) \exp (e(1-\Gamma))\right\}
$$

such that for every positive integer k,

$$
\limsup _{r \rightarrow \infty, r \notin M(\Gamma)} \frac{T(r, f)}{T\left(r, f^{(k)}\right)} \leq 3 e \Gamma
$$

3. Proofs of the theorems

We prove Theorem 1.2 only, as Theorem 1.1 can be proved similarly.
Proof of Theorem 1.2. If f is not transcendental, then f must be a polynomial because by Lemma 2.2 we have $\bar{N}(r, \infty ; f)=S(r, f)$. If $\operatorname{deg}(f)>2$, then $\operatorname{deg}(L)=\operatorname{deg}(f)-2$ and if $\operatorname{deg}(f) \leq 2$, then $\operatorname{deg}(L)=0$, which is impossible as L is nonconstant. Since in this case a is a constant, we see that $f-a$ and $L-a$ cannot share the value 0 CM , a contradiction. Therefore f is a transcendental meromorphic function.

Let $h=\frac{f-a}{L-a}$. Then h is entire and the poles of f are precisely the zeros of h so that by the hypothesis and Lemma 2.2 we get

$$
\begin{equation*}
\bar{N}(r, 0 ; h) \leq \bar{N}(r, \infty ; f)=S(r, f) \tag{3.1}
\end{equation*}
$$

Now differentiating

$$
\begin{equation*}
f-a=h L-a h \tag{3.2}
\end{equation*}
$$

twice we get

$$
\begin{equation*}
f^{(2)}-a^{(2)}=(h L)^{(2)}-(a h)^{(2)} . \tag{3.3}
\end{equation*}
$$

We now consider the following cases.
CASE I. Let $a^{(2)} \not \equiv 0$. We put

$$
\begin{equation*}
W=\frac{(h L)^{(2)}}{h f^{(2)}}-\frac{(h a)^{(2)}}{h a^{(2)}} . \tag{3.4}
\end{equation*}
$$

First we suppose that $W \not \equiv 0$. Let z_{0} be a zero of $f^{(2)}-a^{(2)}$ and $a^{(2)}\left(z_{0}\right) \neq$ $0, \infty$. Then from (3.3) we see that z_{0} is a zero of $(h L)^{(2)}-(h a)^{(2)}$. Hence $W\left(z_{0}\right)=0$. We see that

$$
\begin{aligned}
m(r, W) & \leq m\left(r, \frac{(h L)^{(2)}}{h f^{(2)}}\right)+m\left(r, \frac{(h a)^{(2)}}{h a^{(2)}}\right) \\
& \leq m\left(r, \frac{(h L)^{(2)}}{h L}\right)+m\left(r, \frac{L}{f^{(2)}}\right)+m\left(r, \frac{(h a)^{(2)}}{h a}\right)+m\left(r, \frac{a}{a^{(2)}}\right) \\
& =S(r, f) .
\end{aligned}
$$

Therefore

$$
\begin{align*}
\bar{N}\left(r, 0 ; f^{(k)}-a^{(k)}\right) & \leq N(r, 0 ; W)+S(r, f) \\
& \leq T(r, W)+S(r, f) \tag{3.5}\\
& =N(r, W)+S(r, f)
\end{align*}
$$

Let z_{1} be a pole of f with multiplicity p such that $a\left(z_{1}\right) \neq 0, \infty$ and $a^{(2)}\left(z_{1}\right) \neq$ 0 . Then z_{1} is a zero of h with multiplicity k. Hence z_{1} is a pole of $(h L)^{(2)}$ with multiplicity $p+2$. Also $h f^{(2)}$ has a pole at z_{1} of multiplicity $p+2-k$. Therefore z_{1} is a pole of $\frac{(h L)^{(2)}}{h f^{(2)}}$ with multiplicity $(p+2)-(p+2-k)=k$. Also
z_{1} is a pole of $\frac{(h a)^{(2)}}{h a^{(2)}}$ with multiplicity $2 \leq k$. Therefore z_{1} is a pole of W with multiplicity at most k.

Let z_{2} be a zero of $f^{(2)}$ with multiplicity q and $a\left(z_{2}\right) \neq 0, \infty, a^{(2)}\left(z_{2}\right) \neq 0$. If $q>k$, then z_{2} is a zero of $h L$ with multiplicity $q-k+2$. So z_{2} is a zero of $(h L)^{(2)}$ with multiplicity $(q-k+2)-2=q-k$. Hence z_{2} is a pole of W with multiplicity at most $q-(q-k)=k$.

Therefore in view of Lemma 2.2 we get

$$
\begin{align*}
N(r, W) & \leq k \bar{N}(r, \infty ; f)+N_{k}\left(r, 0 ; f^{(2)}\right)+\bar{N}\left(r, 0 ; f^{(2)}\right)+S(r, f) \\
& \leq k \bar{N}(r, \infty ; f)+(1+k) \bar{N}\left(r, 0 ; f^{(2)}\right)+S(r, f) \tag{3.6}\\
& =S(r, f)
\end{align*}
$$

By (3.5) and (3.6) we get $\bar{N}\left(r, 0 ; f^{(2)}-a^{(2)}\right)=S(r, f)$. So by Lemma 2.3 and Lemma 2.2 we obtain

$$
\begin{align*}
T\left(r, f^{(2)}\right) & \leq \bar{N}\left(r, \infty ; f^{(2)}\right)+\bar{N}\left(r, 0 ; f^{(2)}\right)+\bar{N}\left(r, 0 ; f^{(2)}-a^{(2)}\right)+S\left(r, f^{(2)}\right) \\
& =S(r, f) \tag{3.7}
\end{align*}
$$

Let $M(\Gamma)$ be defined as in Lemma 2.4. Then by (3.7) there exists a sequence $r_{n} \rightarrow \infty, r_{n} \notin M(\Gamma)$ such that $\frac{T\left(r_{n}, f^{(2)}\right)}{T\left(r_{n}, f\right)} \rightarrow 0$ as $n \rightarrow \infty$. This contradicts Lemma 2.4. Therefore $W \equiv 0$ and so from (3.3) and (3.4) we get $\left(f^{(2)}-\right.$ $\left.a^{(2)}\right) a^{(2)}=(h a)^{(2)}\left(f^{(2)}-a^{(2)}\right)$. Since $f^{(2)} \not \equiv a^{(2)}$, we obtain $(h a)^{(2)}=a^{(2)}$. Integrating twice we get $h a=a+\alpha z+\beta$ and so $h=1+\frac{\alpha z+\beta}{a}$, where α, β are constants.

We again note that h is entire and the zeros of h are precisely the poles of f. Also each zero of h is of multiplicity k. Let $\alpha \neq 0$. Then $T(r, h)=T(r, a)+$ $O(\log r)$. Also $\bar{N}(r, 1 ; h)=\bar{N}(r, \infty ; a)+O(\log r)$ and $\bar{N}(r, 0 ; h)=\frac{1}{k} N(r, 0 ; h)$. Therefore by the second fundamental theorem and the hypothesis we get

$$
\begin{aligned}
T(r, h) & \leq \bar{N}(r, 1 ; h)+\bar{N}(r, 0 ; h)+S(r, h) \\
& =\bar{N}(r, \infty ; a)+\frac{1}{k} N(r, 0 ; h)+O(\log r)+S(r, h) \\
& \leq \lambda T(r, a)+\frac{1}{k} T(r, h)+O(\log r)+S(r, h) \\
& =\left(\lambda+\frac{1}{k}\right) T(r, h)+O(\log r)+S(r, h)
\end{aligned}
$$

and so $T(r, h)=O(\log r)+S(r, h)$. This implies that $h-1$ is a polynomial, say $P(z)$. If $P(z) \equiv 0$, then $h \equiv 1$ and we get the result. We suppose that $P(z) \not \equiv 0$. Then $h=1+\frac{\alpha z+\beta}{a}$ implies $a=\frac{\alpha z+\beta}{P(z)}$.

We suppose that $\alpha z+\beta$ is a factor of $P(z)$. Then $a=\frac{1}{Q(z)}$, where $P(z)=$ $(\alpha z+\beta) Q(z)$. This implies that $T(r, a)=(\operatorname{deg} Q) \log r+O(1)=N(r, \infty ; a)+$ $O(1)$, a contradiction. So $\alpha z+\beta$ is not a factor of $P(z)$. Then $T(r, a)=$
$\max \{\operatorname{deg} P, 1\} \log r+O(1)$ and $N(r, \infty ; a)=(\operatorname{deg} P) \log r+O(1)$. By the hypothesis we get $\operatorname{deg} P \leq \lambda \max \{\operatorname{deg} P, 1\}$. This implies $\operatorname{deg} P=0$ and so $a=\frac{\alpha z+\beta}{d}$, where $d(\neq 0)$ is a constant. Hence $h=1+d$, a constant.

Let $\alpha=0$. Then $h=\frac{a+\beta}{a}$. Since h is entire and each zero of h is of multiplicity k, we have $\bar{N}(r, 0 ; a) \equiv 0$ and $\bar{N}(r, 0 ; a+\beta) \leq \frac{1}{k} N(r, 0 ; a+\beta)$. Therefore, if $\beta \neq 0$, we get by the second fundamental theorem

$$
\begin{aligned}
T(r, a) & \leq \bar{N}(r, \infty ; a)+\bar{N}(r, 0 ; a)+\bar{N}(r, 0 ; a+\beta)+S(r, a) \\
& \leq\left(\lambda+\frac{1}{k}\right) T(r, a)+S(r, a),
\end{aligned}
$$

a contradiction. So $\beta=0$ and $h \equiv 1$.
Case II. Let $a^{(2)} \equiv 0$. Then a is a polynomial of degree at most 1. From (3.3) we get $f^{(2)}=(h L)^{(2)}-(a h)^{(2)}$, which implies

$$
\begin{equation*}
\frac{1}{h}=\frac{(h L)^{(2)}}{h f^{(2)}}-\frac{(a h)^{(2)}}{h f^{(2)}} \tag{3.8}
\end{equation*}
$$

We put $F=f^{(2)}, G=\frac{(h L)^{(2)}}{h f^{(2)}}$ and $b=\frac{(a h)^{(2)}}{h}$. So from (3.8) we get

$$
\begin{equation*}
\frac{1}{h}=G-\frac{b}{F} \tag{3.9}
\end{equation*}
$$

Differentiating (3.9) we obtain

$$
\begin{equation*}
-\frac{1}{h} \cdot \frac{h^{\prime}}{h}=G^{\prime}-\frac{b^{\prime}}{F}+\frac{b}{F} \cdot \frac{F^{\prime}}{F} . \tag{3.10}
\end{equation*}
$$

From (3.9) and (3.10) we have

$$
\begin{equation*}
\frac{A}{F}=G^{\prime}+G \frac{h^{\prime}}{h} \tag{3.11}
\end{equation*}
$$

where $A=b \frac{h^{\prime}}{h}+b^{\prime}-b \frac{F^{\prime}}{F}$.
First we suppose that $G \equiv 0$. Then on integration we get $h L=Q_{1}$, where $Q_{1}=Q_{1}(z)$ is a polynomial of degree at most 1. Putting $h=\frac{f-a}{L-a}$ we get

$$
\begin{equation*}
(f-a) L=(L-a) Q_{1} . \tag{3.12}
\end{equation*}
$$

Since a is a polynomial, from (3.12) we see that f is an entire function. Hence h is an entire function having no zero. We put $h=e^{\alpha}$, where α is an entire function.

Now $f=a+h(L-a)=a+Q_{1}-a e^{\alpha}$ and $L=Q_{1} e^{-\alpha}$. Also we see from the definition of L that $L=R\left(\alpha^{\prime}\right) e^{\alpha}$, where $R\left(\alpha^{\prime}\right)(\not \equiv 0)$ is a differential polynomial in α^{\prime} with polynomial coefficients. Therefore $R\left(\alpha^{\prime}\right) e^{\alpha}=Q_{1} e^{-\alpha}$ and so $e^{2 \alpha}=\frac{Q_{1}}{R\left(\alpha^{\prime}\right)}$. This shows that $T\left(r, e^{\alpha}\right)=S\left(r, e^{\alpha}\right)$, a contradiction. Hence $G \not \equiv 0$.

If h is constant, then we achieve the result. So we suppose that h is nonconstant.

Let $b \equiv 0$. Then on integration we get $a h=P_{1}$, where $P_{1}=P_{1}(z)$ is a polynomial of degree at most 1. Since h is entire and a is a polynomial of degree at most $1, h=\frac{P_{1}}{a}$ implies that a is a factor of P_{1} and hence

$$
\begin{equation*}
h=Q_{1}^{*} \tag{3.13}
\end{equation*}
$$

where $Q_{1}^{*}=Q_{1}^{*}(z)$ is a polynomial of degree at most 1 . Since each pole of f is a zero of h with multiplicity $k(\geq 2)$, by (3.13) we see that f is entire. So h is an entire function having no zero, which by (3.13) implies that h is a constant, a contradiction. So $b \not \equiv 0$.

Let $A \equiv 0$. Then from (3.11) we get $\frac{G^{\prime}}{G}+\frac{h^{\prime}}{h} \equiv 0$ and so on integration we obtain $G h \equiv K$ so that

$$
\begin{equation*}
(h L)^{(2)}=K f^{(2)}, \tag{3.14}
\end{equation*}
$$

where K is a nonzero constant.
Again $\frac{A}{b}=\frac{h^{\prime}}{h}+\frac{b^{\prime}}{b}-\frac{F^{\prime}}{F}=0$ implies on integration that $h b=M F$ and so

$$
\begin{equation*}
(a h)^{(2)}=M f^{(2)} \tag{3.15}
\end{equation*}
$$

where M is a nonzero constant.
Since a is a polynomial and h is entire, from (3.15) we see that f is entire and so $h=e^{\alpha}$, where α is an entire function.

Integrating (3.14) twice we get

$$
\begin{equation*}
h L=K f+P_{1}^{*} \tag{3.16}
\end{equation*}
$$

where $P_{1}^{*}=P_{1}^{*}(z)$ is a polynomial of degree at most 1 .
Since $h L=f-a+a h$, we get from (3.16)

$$
\begin{equation*}
(1-K) f=a\left(1-e^{\alpha}\right)+P_{1}^{*} . \tag{3.17}
\end{equation*}
$$

If $K=1$, from (3.17) we get $e^{\alpha}=1+\frac{P_{1}^{*}}{a}$, a contradiction. Hence $K \neq 1$ and from (3.17) we obtain

$$
\begin{equation*}
f=\frac{a e^{\alpha}}{K-1}-\frac{a+P_{1}^{*}}{K-1} \tag{3.18}
\end{equation*}
$$

From the definition of L we get by (3.18)

$$
\begin{equation*}
L=R_{1}\left(\alpha^{\prime}\right) e^{\alpha} \tag{3.19}
\end{equation*}
$$

where $R_{1}\left(\alpha^{\prime}\right)(\not \equiv 0)$ is a differential polynomial in α^{\prime} with polynomial coefficients.

From (3.16) and (3.18) we get

$$
\begin{equation*}
L=\frac{K a}{K-1}-\frac{a+(2-K) P_{1}^{*}}{K-1} e^{-\alpha} \tag{3.20}
\end{equation*}
$$

From (3.19) and (3.20) we obtain

$$
R_{1}\left(\alpha^{\prime}\right) e^{2 \alpha}=\frac{K a e^{\alpha}}{K-1}-\frac{a+(2-K) P_{1}^{*}}{K-1}
$$

which implies $T\left(r, e^{\alpha}\right)=S\left(r, e^{\alpha}\right)$, a contradiction. Therefore $A \not \equiv 0$.

Now $A=b\left(\frac{h^{\prime}}{h}+\frac{b^{\prime}}{b}-\frac{F^{\prime}}{F}\right)$ implies $m(r, A)=S(r, f)$. Also the poles of A are contributed by (i) the poles of $b=\frac{(a h)^{(2)}}{h}$, (ii) the poles of $\frac{h^{\prime}}{h}$ and (iii) the poles of $\frac{F^{\prime}}{F}=\frac{f^{(3)}}{f^{(2)}}$. Since h is entire and the zeros of h are precisely the poles of f and each zero of h is of multiplicity k, we get

$$
N(r, A) \leq(k+1) \bar{N}(r, \infty ; f)+\bar{N}\left(r, 0 ; f^{(2)}\right)+S(r, f)=S(r, f),
$$

by the hypothesis and Lemma 2.2. Therefore $T(r, A)=S(r, f)$.
Now by (3.11) we get

$$
\begin{align*}
m\left(r, \frac{1}{F}\right) & \leq m\left(r, \frac{1}{A}\right)+m\left(r, G^{\prime}+G \frac{h^{\prime}}{h}\right) \\
& \leq T(r, A)+m(r, G)+m\left(r, \frac{G^{\prime}}{G}+\frac{h^{\prime}}{h}\right) \\
& =m(r, G)+S(r, f) \\
& =m\left(r, \frac{(h L)^{(2)}}{h L} \cdot \frac{L}{f^{(2)}}\right)+S(r, f) \tag{3.21}\\
& \leq m\left(r, \frac{(h L)^{(2)}}{h L}\right)+m\left(r, \frac{L}{f^{(2)}}\right)+S(r, f) \\
& =S(r, f)
\end{align*}
$$

Again in view of (3.1) we get

$$
\begin{align*}
T(r, b) & =N(r, b)+S(r, f) \\
& =N\left(r, \frac{(a h)^{(2)}}{h}\right)+S(r, f) \tag{3.22}\\
& \leq 2 \bar{N}(r, 0 ; h)+S(r, f) \\
& =S(r, f) .
\end{align*}
$$

Let z_{3} be a zero of $F=f^{(2)}$ with multiplicity $q \geq k+1$ such that $a\left(z_{0}\right) \neq 0$. Then z_{3} is a zero of $(h L)^{(2)}$ with multiplicity at least $q-(k-2)-2=q-k$. So z_{3} is a zero of $F G=\frac{(h L)^{(2)}}{h}$ with multiplicity at least $q-k$. Hence z_{3} is a zero of $b=F G-\frac{F}{h}$ with multiplicity at least $q-k$.

Therefore by (3.22) we get
$N_{(k+1}\left(r, 0 ; f^{(2)}\right) \leq N(r, 0 ; b)+k \bar{N}_{(k+1}\left(r, 0 ; f^{(2)}\right)=k \bar{N}_{(k+1}\left(r, 0 ; f^{(2)}\right)+S(r, f)$.
Therefore

$$
\begin{aligned}
N\left(r, \frac{1}{F}\right) & =N\left(r, 0 ; f^{(2)}\right) \\
& =N_{k)}\left(r, 0 ; f^{(2)}\right)+N_{(k+1}\left(r, 0 ; f^{(2)}\right) \\
& \leq k \bar{N}_{k)}\left(r, 0 ; f^{(2)}\right)+k \bar{N}_{(k+1}\left(r, 0 ; f^{(2)}\right)+S(r, f) \\
& =k \bar{N}\left(r, 0 ; f^{(2)}\right)+S(r, f)
\end{aligned}
$$

$$
\begin{equation*}
=S(r, f) \tag{3.23}
\end{equation*}
$$

From (3.21), (3.23) and the first fundamental theorem we get $T\left(r, f^{(2)}\right)=$ $S(r, f)$, which is (3.7), and likewise we arrive at a contradiction.

4. The counter-example of Al-Khaladi

As mentioned in the introduction A. H. H. Al-Khaladi, considering $f(z)=$ $1+\exp \left(e^{z}\right)$ and $a(z)=\frac{e^{z}}{e^{z}-1}$, established that in Theorem A, the shared value cannot be replaced by a shared small function. In stead, he proved Theorem C.

In fact, the poles of $a(z)=\frac{e^{z}}{e^{z}-1}$ play the most crucial role. Here we note that $\bar{N}(r, \infty ; a)=T(r, a)+S(r, a)$. On the other hand, we see that a small function with relatively less number of poles can yield a rather impressive output. For example, let $\bar{N}(r, \infty ; a) \leq \lambda T(r, a)+S(r, a)$, where $0<\lambda<1$. Since by Theorem C, $e^{\beta}=1+\frac{c}{a}$, clearly a and $a+c$ have no zero. So if $c \neq 0$, by the second fundamental theorem we get

$$
T(r, a) \leq \bar{N}(r, \infty ; a)+S(r, a) \leq \lambda T(r, a)+S(r, a)
$$

a contradiction. Therefore $c=0$ and $f \equiv f^{\prime}$.
Acknowledgement. Authors are thankful to the referee for valuable suggestions towards the improvement of the paper.

References

[1] A. H. H. Al-Khaladi, On entire functions which share one small function CM with their first derivative, Kodai Math. J. 27 (2004), no. 3, 201-205.
[2] , Meromorphic functions that share one small function with their $k^{\text {th }}$ derivative, Analysis (Berlin) 31 (2011), no. 4, 341-354.
[3] R. Brück, On entire functions share one value CM with their first derivative, Results Math. 30 (1996), no. 1-2, 21-24.
[4] J. F. Chen and G. R. Wu, On an entire function sharing one small function CM, Southeast Asian Bull. Math. 34 (2010), no. 1, 51-57.
[5] W. K. Hayman, Meromorphic Functions, The Clarendon Press, Oxford, 1964.
[6] W. K. Hayman and J. Miles, On the growth of a meromorphic function and its derivatives, Complex Variables Theory Appl. 12 (1989), no. 1-4, 245-260.
[7] I. Lahiri and B. Pal, Brück conjecture for a linear differential polynomial, J. Contemporary Math. Anal. 52 (2017), no. 1, 54-60.
[8] H. L. Qiu, Uniqueness of an entire function and its differential polynomial sharing one value, J. Nanjing Normal Univ. 25 (2002), 97-104.
[9] L. Z. Yang, Solution of a differential equation and its applications, Kodai Math. J. 22 (1999), no. 3, 458-464.

Indrajit Lahiri
Department of Mathematics
University of Kalyani
West Bengal 741235, India
Email address: ilahiri@hotmail.com

Bipul Pal
Department of Mathematics
University of Kalyani
West Bengal 741235, India
Email address: palbipul86@gmail.com

[^0]: Received June 7, 2017; Revised August 9, 2017; Accepted August 18, 2017.
 2010 Mathematics Subject Classification. 30D35.
 Key words and phrases. meromorphic function, differential polynomial, sharing small function.

 The work of the second author was supported by NBHM fellowship.

