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NORMALITY CRITERIA FOR A FAMILY OF

MEROMORPHIC FUNCTIONS WITH MULTIPLE ZEROS

Gopal Datt, Yuntong Li, and Poonam Rani

Abstract. In this article, we prove some normality criteria for a fam-

ily of meromorphic functions having zeros with some multiplicity. Our
main result involves sharing of a holomorphic function by certain differ-

ential polynomials. Our results generalize some of the results of Fang and
Zalcman [4] and Chen et al. [2] to a great extent.

1. Introduction and main results

One important aspect of the theory of complex analytic functions is to find
normality criteria for families of meromorphic functions. The notion of normal
families was introduced by Paul Montel in 1907. Let us begin by recalling
the definition. A family of meromorphic (holomorphic) functions defined on
a domain D ⊂ C is said to be normal in the domain, if every sequence in
the family has a subsequence which converges spherically uniformly on compact
subsets of D to a meromorphic (holomorphic) function or to ∞ [1,5,10,14,15].

In [9], Mues and Steinmetz proved a uniqueness theorem which says that:
If a non-constant meromorphic function f in the plane, shares three distinct
complex numbers a1, a2, a3 with its first order derivative f ′, then f ≡ f ′. Wil-
helm Schwick [11] was the first who gave a connection between normality and
shared values and proved a theorem related to above result of [9] which says
that: A family F of meromorphic functions on a domain D is normal, if f
and f ′ share a1, a2, a3 for every f ∈ F , where a1, a2, a3 are distinct complex
numbers.

Let us recall the definition of shared value. Let f be a meromorphic function
on a domain D ⊂ C. For p ∈ C, let

Ef (p) = {z ∈ D : f(z) = p}
and let

Ef (∞) = poles of f in D.

Received July 10, 2017; Accepted August 29, 2017.

2010 Mathematics Subject Classification. 30D45.
Key words and phrases. meromorphic functions, holomorphic functions, shared values,

normal families.

c©2018 Korean Mathematical Society

833



834 G. DATT, Y. T. LI, AND P. RANI

For p ∈ C ∪ {∞}, two meromorphic functions f and g of D share the value p
if Ef (p) = Eg(p).

In 2008, Fang and Zalcman [4] proved the following normality criteria:

Theorem A ([4]). Let F be a family of meromorphic functions on a domain
D, let n ≥ 2 be a positive integer, and a(6= 0), b ∈ C. If for each f ∈ F , all
zeros of f are multiple and f + a(f ′)n 6= b on D, then F is normal on D.

Related to the above result of [4], Wang [12] proved the following result on
normality and sharing value:

Theorem B ([12]). Let F be a family of meromorphic functions on the plane
domain D, let n ≥ 3 be a positive integer. Let a, b be two finite complex numbers
such that a 6= 0. If all zeros of f are multiple for each f ∈ F , and f + a(f ′)n

and g + a(g′)n share b in D for every pair of functions f, g ∈ F , then F is
normal in D.

Extending the result of [4], Xu, Wu and Liao [13] proved the following nor-
mality criteria:

Theorem C ([13]). Let F be a family of meromorphic functions on a plane
domain D, let a( 6= 0), b ∈ C, and n, k be two positive integers such that n ≥
k + 1. If for each f ∈ F , f has only zeros of multiplicity at least k + 1, and
f + a

(
f (k)

)n 6= b on D, then F is normal on D.

Related to the result of [13], Chen et al. [2] proved the following normality
criteria concerning shared values:

Theorem D ([2]). Let F be a family of meromorphic functions on the plane
domain D, let n, k be positive integers such that n ≥ k + 2, and a, b be two
finite complex numbers such that a 6= 0. If all zeros of f have multiplicity at
least k + 1 for each f ∈ F , and f + a

(
f (k)

)n
and g + a

(
g(k)

)n
share b in D

for every pair of functions f, g ∈ F , then F is normal in D.

It is evident from the following questions that the above theorem has not
been stated in its full generality:

Q.1. Can we weaken the condition on n?
Q.2. Can we replace value b by any holomorphic function?

In this paper, we try to give the answers to these questions and see that after
weakening the condition on n ≥ k + 2 to n > 2, the theorem is valid for the
case where multiplicities of zeros of f ∈ F are at least 2k + 1, and b is a
non-vanishing holomorphic function. Now we state our main result.

Theorem 1.1. Let α 6≡ 0 be a holomorphic function with zeros of multiplicity
at most m in D. Let a ∈ C be a non-zero constant, and n, k be positive integers
such that n > k + 1, and m < k. Let F be a family of meromorphic functions
in the domain D. Suppose that for each f ∈ F , all zeros of f have multiplicity
at least 2k + 2 and all poles (if exist) have multiplicity at least 2k + 3. If for
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each pair f, g in F , f + a
(
f (k)

)n
and g + a

(
g(k)

)n
share α in D, then F is

normal in D.

When α is non-vanishing holomorphic function in D, we get the following
strengthened result:

Theorem 1.2. Let α 6= 0 be a holomorphic function with zeros of multiplicity
at most m in D. Let a be a non-vanishing holomorphic function in D and n, k
be positive integers such that n > 2. Let F be a family of meromorphic functions
in the domain D. Suppose that for each f ∈ F , all zeros of f have multiplicity
at least 2k+ 1. If for each pair f, g in F , f + a

(
f (k)

)n
and g+ a

(
g(k)

)n
share

α in D, then F is normal in D.

We give the following example in support of Theorem 1.2.

Example. Let D = {z ∈ C : 0 < |z| < 1}, n = 3 and k = 1. Consider the
family F = {jz3 : j ∈ N} and a(z) = 1/z3, α(z) = z3. Clearly F satisfies all
the conditions of F and F is normal in D.

We also improved Theorem C in the following manner:

Theorem 1.3. Let F be a family of meromorphic functions on a domain D,
let n, k be positive integers such that n > 2. Let b be a non-zero finite complex
number and a be a non-vanishing holomorphic function. If for each function
f ∈ F , all zeros of f have multiplicity at least 2k+ 1, and f +a

(
f (k)

)n− b has
at most one zero in D, then F is normal in D.

Also we prove a theorem on the value distribution of a transcendental mero-
morphic function. The following theorem on value distribution of a zero-free
transcendental meromorphic function is due to Li [8] (also see [7]).

Theorem E. Let f be a transcendental meromorphic function with f 6= 0,
let a be non-zero finite complex number, and let n ≥ 2 and k be two positive
integers. Then f + a

(
f (k)

)n
assumes each value b ∈ C infinitely often.

In the following theorem, we prove above result for the case where f 6≡ 0.

Theorem 1.4. Let f 6≡ 0 be a transcendental meromorphic function, let a
be non-zero finite complex number, and let n ≥ 3 be a positive integer. Then
f + a

(
f (k)

)n
assumes each value b ∈ C infinitely often.

2. Some notations and results of Nevanlinna theory

Let ∆ = {z : |z| < 1} be the unit disk and ∆(z0, r) := {z : |z− z0| < r}. We
use the following standard functions of value distribution theory, namely

T (r, f),m(r, f), N(r, f) and N(r, f).

We denote by S(r, f) any function satisfying

S(r, f) = o
(
T (r, f)

)
as r → +∞,

possibly outside of a set with finite measure.
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Second Fundamental Theorem. Suppose f(z) is meromorphic in the finite
plane and non-degenerate into a constant. If aν(ν = 1, 2, . . . , q) are q(≥ 3)
distinct complex numbers (one of them may be infinity), then

(2.1) (q − 2)T (r, f) ≤
q∑

ν=1

N

(
r,

1

f − aν

)
+ S(r, f).

3. Some lemmas

In order to prove our results we need the following lemmas. The well known
Zalcman Lemma is a very important tool in the study of normal families. The
following is a new version due to Zalcman [17] (also see [16], p. 814).

Lemma 3.1. Let F be a family of meromorphic functions in the unit disk ∆,
with the property that for every function f ∈ F , the zeros of f are of multiplicity
at least l and the poles of f are of multiplicity at least k. If F is not normal
at z0 in ∆, then for −l < α < k, there exist

(1) a sequence of complex numbers zn → z0, |zn| < r < 1,
(2) a sequence of functions fn ∈ F ,
(3) a sequence of positive numbers ρn → 0,

such that gn(ζ) = ραnfn(zn + ρnζ) converges to a non-constant meromorphic
function g on C with g#(ζ) ≤ g#(0) = 1. Moreover, g is of order at most two.

Here, g#(z) = |g′(z)|
1+|g(z)|2 is the spherical derivative of g.

Let f be a non-constant meromorphic function in C. A differential polyno-

mial P of f is defined by P (z) :=
∑n
i=1 αi(z)

∏p
j=0

(
f (j) (z)

)Sij
, where Sij ’s

are non-negative integers and αi(z) 6≡ 0 are small functions of f , that is
T (r, αi) = o

(
T (r, f)

)
. The lower degree of the differential polynomial P is

defined by

d(P ) := min
1≤i≤n

p∑
j=0

Sij .

The following result was proved by Dethloff et al. in [3].

Lemma 3.2. Let a1, . . . , aq be distinct non-zero complex numbers. Let f be
a non-constant meromorphic function and let P be a non-constant differential
polynomial of f with d(P ) ≥ 2. Then

T (r, f) ≤
(
qθ(P ) + 1

qd(P )− 1

)
N

(
r,

1

f

)
+

1

qd(P )− 1

q∑
j=1

N

(
r,

1

P − aj

)
+ S (r, f)

for all r ∈ [1,+∞) excluding a set of finite Lebesgue measure, where θ(P ) :=
max1≤i≤n

∑p
j=0 jSij .

Moreover, in the case of an entire function, we have

T (r, f) ≤
(
qθ(P ) + 1

qd(P )

)
N

(
r,

1

f

)
+

1

qd(P )

q∑
j=1

N

(
r,

1

P − aj

)
+ S(r, f)
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for all r ∈ [1,+∞) excluding a set of finite Lebesgue measure.

This result was proved by Hinchliffe in [6] for q = 1.
We now prove some lemmas to establish our results in the next section.

Lemma 3.3. Let f be a transcendental meromorphic function in C. If all
zeros of f(z) has multiplicity at least 2k + 1, then for a positive integer n > 2,(
f (k)

)n
assumes every non-zero finite value b infinitely often.

Proof. Suppose on the contrary that
(
f (k)

)n
assumes the value b only finitely

many times. Then

(3.1) N

(
r,

1(
f (k)

)n − b
)

= O (log r) = S(r, f).

Without loss of generality we may assume b = 1. Let P =
(
f (k)

)n
. It is

easy to see that

d(P ) = n and θ(P ) = nk.

Clearly d(P ) > 2. So by Lemma 3.2, we get

T (r, f) ≤
(
nk + 1

n− 1

)
N

(
r,

1

f

)
+

(
1

n− 1

)
N

(
r,

1

P − 1

)
+ S(r, f),

and this gives

T (r, f) ≤
(

nk + 1

(n− 1)(2k + 1)

)
N (r, f) + S(r, f),

and so (
(n− 2)(k + 1)

(n− 1)(2k + 1)

)
T (r, f) ≤ S(r, f).

But this is a contradiction and hence establishes the lemma. �

Lemma 3.4. Let f be a non-constant rational function in C and n > 2 be a
positive integer. If all zeros of f(z) has multiplicity at least 2k+1 then

(
f (k)

)n
has at least two distinct b-points, where b is a non-zero complex number.

Proof. On the contrary, assume that
(
f (k)

)n
has at most one b-point. Now

there are two cases to consider.
Case 1. Let

(
f (k)

)n − b = 0 has exactly one zero and let this zero be at z0.

First we assume that f is a non-constant polynomial. Set
(
f (k)(z)

)n − b =

A(z− z0)l, where A is a non-zero constant and l is a positive integer such that

l ≥ 2(k + 1). Then
((
f (k)(z)

)n)′
= Al(z − z0)l−1. This shows that z0 is the

only zero of
((
f (k)(z)

)n)′
. Since zeros of

(
f (k)(z)

)n
are multiple, we deduce

that z0 is a zero of
(
f (k)(z)

)n
, which is a contradiction, since b 6= 0.
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Now suppose that f is a non-polynomial rational function with zeros of
multiplicity at least 2k + 1. Clearly, f (k)(z) is non-constant. Let b1, b2, . . . , bn
be n distinct zeros of wn = b. Let w = f (k)(z) then we obtain(

f (k) − b1
)(

f (k) − b2
)
· · ·
(
f (k) − bn

)
= 0.

Since z0 is a zero of
(
f (k)

)n − b = 0, so for one j ∈ {1, 2, . . . , n}, f (k)(z0) = bj
and f (k)(z0) 6= bi for i(6= j) ∈ {1, 2, . . . , n}. Thus we have

(3.2) f (k)(z) = bj +
A(z − z0)l

Q(z)
≡ bi +

B

Q(z)
,

where A,B are non-zero constants. By (3.2) we obtain

(3.3) (bi − bj)Q(z) +B = A(z − z0)l.

From (3.3) we get l ≥ k + 1, since zeros of Q(z) are of multiplicity at least
k + 1. Again from (3.3), we obtain Q(z0) 6= 0. After differentiating (3.2), we
have

(3.4) f (k+1)(z) =
A(z − z0)l−1Q(z)−A(z − z0)lQ′(z)

Q2(z)
≡ −BQ

′(z)

Q2(z)
,

which gives, A(z − z0)l−1 (Q(z)− (z − z0)Q′(z)) = −BQ′(z). Since Q(z) is a
polynomial of degree l ≥ k+ 1, whose zeros are other than z0. This shows that
Q(z) − (z − z0)Q′(z) is a non-constant polynomial. Thus we observe that the
degree of Q′(z) is at least l. This is a contradiction to the fact that the degree
of Q(z) is l.

Case 2. Let
(
f (k)

)n 6= b. Let b1, b2, . . . , bn be n(≥ 3) distinct solutions of
wn = b. By Nevanlinna’s second fundamental theorem,

T
(
r, f (k)

)
≤

n∑
ν=1

N

(
r,

1

f (k) − bν

)
+ S

(
r, f (k)

)
.

It follows that T (r, f (k)) = S(r, f (k)), which is a contradiction. This completes
the proof of lemma. �

Lemma 3.5 ([13]). Let n ≥ 2, k be positive integers, let p be a non-zero
constant and let P (z) be a polynomial. Then the solution of the differential

equation p
(
W (k)(z)

)n
+W (z) = P (z) must be a polynomial.

Lemma 3.6. Let f be a transcedental meromorphic function on the complex
plane C, let a(6= 0) be a complex number and let n,m, k be three positive integers
such that n ≥ k + 1 and m < k.

(1) If n ≥ k + 2, then

(n− 1)T (r, f (k)) ≤ (k2 + k + 1)N(r, f) + (k + 1)2N

(
r,

1

f + a(f (k))n − zm

)
+ S(r, f (k)).
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(2) If n = k + 1, then

kT (r, f (k)) ≤ (k2 + 1)N(r, f) + (k2 + k)N

(
r,

1

f + a(f (k))n − zm

)
+S(r, f (k)).

Proof. Let

(3.5) g = f + a(f (k))− zm,

and

(3.6) h =
g(k)

g
.

Then h 6≡ 0. Otherwise, if h ≡ 0, then g(k) ≡ 0, so we conclude that g is a
polynomial with degree at most k− 1. Noting that n = k+ 1 ≥ 2, we conclude
from (3.5) that f must be a polynomial, which is a contradiction. By simple
calculation we have

g(k) = f (k) + a(f (k))(k) = f (k)(1 + P (f (k))),

where

P (f (k)) = a
(
f (k)

)
n−k−1 ×

(
n!

(n− k)!

(
f (k+1)

)k
+ · · ·+ n

(
f (k)

)k−1
f (2k)

)
,

and P (f (k)) is a homogeneous differential equation in f (k) of degree n−1. Then

(3.7) gh = f (k)(1 + P (f (k)).

It follows from (3.5) that T (r, g) ≤ O(T (r, f)), and so S(r, g) = S(r, f). This
and (3.6) gives

(3.8) m(r, h) = S(r, f).

Using(3.6)-(3.8) and Nevanlinna’s first fundamental theorem, we obtain

N

(
r,

1

f (k)

)
+N

(
r,

1

P (f (k)) + 1

)
≤ N

(
r,

1

h

)
+N

(
r,

1

g

)
≤ N(r, h) +N

(
r,

1

g

)
+ S(r, f)(3.9)

≤ kN(r, f) + (k + 1)N

(
r,

1

g

)
+ S(r, f).

On the other hand, by Nevanlinna’s first fundamental theorem, we get

m

(
r,

1

(f (k))n−1

)
+m

(
r,

1

P (f (k)) + 1

)
≤ m

(
r,

P (f (k))

(f (k))n−1

)
+m

(
r,

1

P (f (k))

)
+m

(
r,

1

P (f (k)) + 1

)
(3.10)

≤ m

(
r,

1

P (f (k))

)
+m

(
r,

1

P (f (k)) + 1

)
+ S(r, f)
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≤ m

(
r,

1

P (f (k))
+

1

P (f (k)) + 1

)
+ S(r, f)

≤ m

(
r,

1

[P (f (k))]′

)
+m

(
r,

[P (f(k))]′

P (f (k))
+

[P (f(k))]′ + 1

P (f (k)) + 1

)
+ S(r, f)

≤ m

(
r,

1

[P (f (k))]′

)
+ S(r, f)

= T (r, [P (f (k))]′)−N
(
r,

1

[P (f (k))]′

)
+ S(r, f).

We deduce from (3.10) and Nevanlinna’s first fundamental theorem that

(n− 1)T (r, f (k)) ≤ N(r, f) + (n− 1)N

(
r,

1

f (k)

)
+N

(
r,

1

P (f (k)) + 1

)
−N

(
r,

1

[P (f (k))]′

)
+ S(r, f).(3.11)

If n = k + 1, from (3.10) and (3.11), we have

kT (r, f (k)) ≤ (k2 + 1)N(r, f) + (k2 + k)N

(
r,

1

g

)
+ S(r, f).

This prove second part of the lemma. If n ≥ k + 2 and supposing that z0 is a
zero of f (k) of multiplicity l, we see that z0 is a zero of [P (f (k))]′ of multiplicity
at least (n− 1)l − k − 1. This gives

(n− 1)N

(
r,

1

f (k)

)
+N

(
r,

1

P (f (k)) + 1

)
−N

(
r,

1

[P (f (k))]′

)
≤ (k + 1)N

(
r,

1

f (k)

)
+N

(
r,

1

P (f (k)) + 1

)
.(3.12)

Sustituting (3.12) in (3.11), we have

(n− 1)T (r, f (k)) ≤ N(r, f) + (k + 1)N

(
r,

1

f (k)

)
+N

(
r,

1

P (f (k)) + 1

)
,

which, together with (3.9) leads to

(n− 1)T (r, f (k)) ≤ (k2 + k + 1)N(r, f) + (k + 1)2N

(
r,

1

g

)
+ S(r, f).

This completes the proof of the lemma. �

Lemma 3.7. Let f be a transcendental meromorphic function on the complex
palne C, let a be a non-zero finite complex number and let n, k and m be three
positive integers such that n ≥ k + 1 and m < k then f + af (k) − zm assumes
infinitely many zeros.
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Proof. Suppose that f + af (k) − zm has finitely many zeros. Since f is tran-
scendental, we have

(3.13) N

(
r,

1

f + a(f (k))n − zm

)
= O(log r) = S(r, f).

If n = k + 1. It follows from (3.13) and first part of Lemma 3.6 that

kT (r, f (k)) ≤ (k2 + 1)N(r, f) + S(r, f)

≤ k2 + 1

k + 1
N(r, f (k)) + S(r, f)

≤ k2 + 1

k + 1
T (r, f (k)) + S(r, f),

that is,

k − 1

k + 1
T (r, f (k)) ≤ S(r, f (k)).

This contradicts the fact that f is transcendental. If n ≥ k + 2, then using
(3.13) and second part of Lemma 3.6, we obtain

(k + 1)T (r, f (k)) ≤ (n− 1)T (r, f (k))

≤ (k2 + k + 1)N(r, f) + S(r, f)

≤ k2 + k + 1

k + 1
N(r, f (k)) + S(r, f)

≤ k2 + k + 1

k + 1
T (r, f (k)) + S(r, f).

Then T (r, f (k)) ≤ S(r, f (k)). But this is impossible since f is transcendental.
Hence lemma is proved. �

Lemma 3.8. Let f be a non-constant rational function and let n,m, k be three
positive integers such that n > 2 and m < k. Suppose that every zero of f has
multiplicity at least 2k + 2 and every pole (if exists) of f has multiplicity at

least 2k + 3. Then f +
(
f (k)

)n − zm has at least two distinct zeros.

Proof. Let us assume that D(f)(z) − zm := f +
(
f (k)

)n − zm has atmost one
zero. Now we consider the following cases:

Case 1. D(f)(z)− zm has exactly one zero z0 with multiplicity l.
Case 1.1. Suppose that f is a non constant polynomial, then we set

(3.14) f(z) = A(z − α1)m1 · · · (z − αs)ms ,

where A is a non-zero constant, mi ≥ 2k + 2 are integers. Now differentiating
(3.14) k-times, we get

(3.15) f (k)(z) = (z − α1)m1−k · · · (z − αs)ms−kh1(z),
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where h1 is a non zero polynomial with deg(h1) ≤ k(s − 1). From (3.14) and
(3.15), we see that

D(f)(z)− zm = f(z) + (f (k))n(z)

= A(z − α1)m1 · · · (z − αs)ms

+ (z − α1)n(m1−k) · · · (z − αs)n(ms−k)hn1 (z)− zm.(3.16)

Now, differentiating (3.16) m+ 1-times we get

(D(f)(z))(m+1) = (z − α1)m1−m−1 · · · (z − αs)ms−m−1

· [1 + (z − α1)(n−1)m1−nk · · · (z − αs)(n−1)ms−nkg1(z)]

= (z − α1)m1−m−1 · · · (z − αs)ms−m−1h2(z),(3.17)

where h2 is a non zero polynomial.
As D(f)(z)− zm has only one zero then from (3.17), we get a contradiction.
Case 1.2. Suppose that f(z) is a non-polynomial rational function defined

as

(3.18) f(z) = A
(z − α1)m1 · · · (z − αs)ms

(z − β1)n1 · · · (z − βt)nt
,

whereA is a non-zero constant, mi ≥ 2k+2 (i = 1, 2, . . . , s) and nj ≥ 2k+3 (j =
1, 2, . . . , t).

Let us define

(3.19)

s∑
i=1

mi = M ≥ (2k + 2)s and

t∑
j=1

nj = N ≥ (2k + 3)t.

From (3.18), it follows that

(3.20) f (k)(z) = A
(z − α1)m1−k · · · (z − αs)ms−k

(z − β1)n1+k · · · (z − βt)nt+k
g1(z),

where g1 is a non zero polynomial with deg(g1) ≤ k(s+ t− 1) from (3.18) and
(3.20), then

(3.21) D(f) =
(z − α1)m1 · · · (z − αs)ms

(z − β1)n(n1+k) · · · (z − βt)n(nt+k)
g(z),

where g is a non zero polynomial and

(3.22) deg(g) ≤ max{(n− 1)N + nkt, (n− 1)M − nks+ ndeg(g1)}.
Since D(f)(z)− zm has exactly one zero at z0 with multiplicity l, we have

(3.23) D(f(z)) = zm +
B(z − z0)l

(z − β1)n(n1+k) · · · (z − βt)n(nt+k)
,

where B is a non-zero constant and l is a positive integer. On differentiating
(3.21) and (3.23) m+ 1 times, we get

(3.24) (D(f))(m+1) =
(z − α1)m1−m−1 · · · (z − αs)ms−m−1h1(z)

(z − β1)n(n1+k)+m+1 · · · (z − βt)n(nt+k)+m+1
,
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where h1 is a polynomial with deg h1 ≤ (m+ 1)(s+ t− 1) + deg(g). And

(3.25) (D(f))(m+1) =
(z − z0)l−m−1h2(z)

(z − β1)n(n1+k)+m+1 · · · (z − βt)n(nt+k)+m+1
,

where h2 is a polynomial with deg h2 ≤ (m+ 1)t.
Since αi 6= z0 for i = 1, 2, . . . , s, it follows from (3.24) and (3.25) that

M − (m+ 1)s ≤ deg(h2) ≤ (m+ 1)t,

which implies that

M ≤ (m+ 1)(s+ t) < (k + 1)(s+ t) ≤ (k + 1)

(
M

2k + 2
+

N

2k + 3

)
.

Hence we deduce that

(3.26) M < N.

Now we discuss the following two subcases.
Case 1.1.1 If l 6= m+ nN + nkt. It follows from (3.21) that

(3.27) nN + nkt ≤M + deg(g).

If deg(g) ≤ (n − 1)N + nkt, we thus from (3.21) obtain that nq + nkt ≤
M + (n − 1)N + nkt, which implies that N ≤ M < N by (3.26). This is
impossible.

If deg(g) ≤ (n− 1)M − nks+ ndeg(g1), since deg(g1) ≤ k(s+ t− 1), hence
nN + nkt ≤ (n− 1)M − nks+ nk(s+ t− 1), we have N ≤M − 1 < N − 1 by
(3.26). We thus arrive at a contradiction.

Case 1.1.2 When l = m + nN + nkt. It is obtained from (3.24) and (3.25)
that

(3.28) l −m− 1 ≤ deg(h1) ≤ (m+ 1)(s+ t− 1) + deg(g).

If deg(g) ≤ (n− 1)N + nkt, we thus from (3.28) obtain that

l ≤ (m+ 1)(s+ t) + deg(g),

which implies that

m+ nN + nkt ≤ (m+ 1)(s+ t) + (n− 1)N + nkt.

We have,

N ≤ (m+ 1)(s+ t) < (k + 1)

(
M

2k + 2
+

N

2k + 3)

)
< M,

which is a contradiction.
If

deg(g) ≤ (n− 1)M − nks+ ndeg(g1) ≤ (n− 1)M − nks+ nk(s+ t− 1).

By (3.28), we obtain that

m+ nN + nkt ≤ (m+ 1)(s+ t) + (n− 1)M − nks+ nk(s+ t− 1).
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This gives that

nN ≤ (m+1)(s+t)+(n−1)M−nk < (k+1)

(
M

2k + 2
+

N

2k + 3

)
+(n−1)M−nk.

Which gives N < M − 1 < N − 1, this is a contradiction.
Case 2. Let D(f)(z) − zm has no zero. Then f can not be a polynomial.

Hence f is non polynomial rational function. Now putting l = 0 in (3.23) and
proceeding as in Case 1.1 of lemma, we have a contradiction. �

4. Proof of main results

First we give the proof of Theorem 1.2.

Proof of Theorem 1.2. Since normality is a local property, we assume that D =
∆. Suppose that F is not normal in ∆. Then there exists at least one point z0
such that F is not normal at the point z0 in ∆. Without loss of generality, we
may assume that z0 = 0. By Lemma 3.1, there exist

(1) a sequence of complex numbers zj → 0, |zj | < r < 1,
(2) a sequence of functions fj ∈ F ,
(3) a sequence of positive numbers ρj → 0,

such that gj(ζ) = ρ−kj fj(zj + ρjζ) converges to a non-constant meromorphic

function g(ζ) on C with g#(ζ) ≤ g#(0) = 1. Moreover, g is of order at most
two.

We see that

(4.1)
fj(zj + ρjζ) + a(zj + ρjζ)

(
f
(k)
j (zj + ρjζ)

)n
− α(zj + ρjζ)

→ a(0)
(
g(k)(ζ)

)n
− α(0),

locally uniformly with respect to spherical metric on every compact subset of
C which contains no poles of g.

Clearly a(0)
(
g(k)(ζ)

)n − α(0) 6≡ 0. Therefore by Lemma 3.3 and Lemma

3.4, we know that a(0)
(
g(k)(ζ)

)n − α(0) has at least two distinct zeros. Now

we claim that a(0)
(
g(k)(ζ)

)n − α(0) has only one zero.

Contrary to this, let a(0)
(
g(k)(ζ)

)n − α(0) has two distinct zeros at ζ0 and
ζ1. Now choose a small positive number δ such that ∆(ζ0, δ) ∩ ∆(ζ1, δ) = ∅
and a

(
g(k)(ζ)

)n − b has no other zeros in ∆(ζ0, δ) ∪ ∆(ζ1, δ). By Hurwitz’s
theorem, there exist two sequences {ζj} ⊂ ∆(ζ0, δ), {ζ1j} ⊂ ∆(ζ1, δ) converging
to ζ0, and ζ1 respectively and from (4.1), for sufficiently large j, we have

fj(zj + ρjζj) + a(zj + ρjζj)
(
f
(k)
j (zj + ρjζj)

)n
− α(zj + ρjζj) = 0,

fj(zj + ρjζ1j ) + a(zj + ρjζ1j )
(
f
(k)
j (zj + ρjζ1j )

)n
− α(zj + ρjζ1j ) = 0.
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Since f + a
(
f (k)

)n
and g + a

(
g(k)

)n
share α in ∆, therefore for any positive

integer m, we have

fm(zj + ρjζj) + a(zj + ρjζj)
(
f (k)m (zj + ρjζj)

)n
− α(zj + ρjζj) = 0,

fm(zj + ρjζ1j ) + a(zj + ρjζ1j )
(
f (k)m (zj + ρjζ1j )

)n
− α(zj + ρjζ1j ) = 0.

Fix m and take j →∞, then we get zj + ρjζj → 0, zj + ρjζ1j → 0 and

(4.2) fm(0) + a(0)
(
f (k)m (0)

)n
− α(0) = 0.

Since the zeros are isolated, so for large values of j, we have zj + ρjζj = 0 =
zj + ρjζ1j . Hence

(4.3) ζj = − zj
ρj
, ζ1j = − zj

ρj
.

Which contradicts the fact that ∆(ζ0, δ) ∩∆(ζ1, δ) = ∅. �

Proof of Theorem 1.1. As in the proof of Theorem 1.2 assume D = ∆ and
z0 = 0.

Case 1. When α(0) 6= 0, then there exists r > 0 such that F is normal in
|z| < r by Theorem 1.2.

Case 2. When α(0) = 0. So, we can write α(z) = zmβ(z), where m is a
positive integer and β(z) is a holomorphic function in D such that β(0) 6= 0.
Again assuming that F is not normal at 0, then by Lemma 3.1, there exist

(1) a sequence of complex numbers zj → 0, |zj | < r < 1,
(2) a sequence of functions fj ∈ F ,
(3) a sequence of positive numbers ρj → 0,

such that gj(ζ) = ρ
− nk

n−1

j fj(zj + ρjζ) converges compactly to a non-constant

meromorphic function g(ζ). Again, we have two cases to consider:
Subcase 2.1. If zj/ρj →∞. Then we consider the following family

(4.4) G :=

{
Gj(ζ) = z

− nk
n−1

j fj(zj(1 + ζ)) : fj ∈ F
}

defined on D. From (4.4), we obtain

G
(k)
j = z

− k
n−1

j f
(k)
j (zj(1 + ζ)).

Let us define D(f)(z) = f(z) + a
(
f (k)

)n
(z), then we have

D(fj)(zj(1 + ζ)) = fj(zj(1 + ζ)) + a
{
f
(k)
j (zj(1 + ζ))

}n
= z

nk
n−1

j Gj(ζ) + z
nk
n−1

j a
{
G

(k)
j (ζ)

}n
= z

nk
n−1

j D(Gj)(ζ).
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Now, by the hypothesis for each pair f1, f2 in F ,

(D(f1)− α)(zj(1 + ζ)) = 0 if and only if (D(f2)− α)(zj(1 + ζ)) = 0.

This gives that

z
nk
n−1

j D(G1)(ζ)−α(zj(1+ζ)) = 0 if and only if z
nk
n−1

j D(G2)(ζ)−α(zj(1+ζ)) = 0.

This means

D(G1)(ζ) = z
m− nk

n−1

j (1 + ζ)mβ(zj(1 + ζ))

if and only if

D(G2)(ζ) = z
m− nk

n−1

j (1 + ζ)mβ(zj(1 + ζ)).

Since z
m− nk

n−1

j (1 + ζ)mβ(zj(1 + ζ)) 6= 0 at the origin therefore by the previous

case G is normal in D, hence there exists a subsequence {Gj} (after renumber-
ing) in G such that Gj → G, compactly in D.

Now, if G(0) 6= 0, then we have

gj(ζ) = ρ
− nk

n−1

j fj(zj + ρjζ) =

(
zj
ρj

) nk
n−1

Gj

(
ρj
zj
ζ

)
which converges to∞ compactly on C, which is a contradiction. Thus we must
have G(0) = 0 and G(2k+1)(0) 6=∞.

And for each ζ ∈ C, we have

g
(2k+1)
j (ζ) =

(
ρj
zj

) (n−2)k+n−1
n−1

G
(2k+1)
j

(
ρj
zj
ζ

)
→ 0.

This implies g(2k+1)(ζ)→ 0, since all zeros of g have multiplicity at least 2k+2,
so g is a constant.

Subcase 2.2. If zj/ρj → w0, where w0 is a finite complex number. Then we
see that

Hj(ζ) = ρ
− nk

n−1

j fj(ρjζ) = gj

(
ζ − zj

ρj

)
→ g(ζ − w0) := H(ζ)

compactly on C.
Also from Lemma 3.7 and Lemma 3.8, we have D(H)(ζ) − ζm has at least

two zeros. Now we proceed as in the proof of Theorem 1.2. �

Proof of Theorem 1.3. We again assume that D = ∆. Suppose that F is not
normal in ∆. Then there exists at least one point z0 such that F is not normal
at the point z0 in ∆. Without loss of generality, we may assume that z0 = 0.
Then by Lemma 3.1, there exist

(1) a sequence of complex numbers zj → 0, |zj | < r < 1,
(2) a sequence of functions fj ∈ F ,
(3) a sequence of positive numbers ρj → 0,
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such that gj(ζ) = ρ−kj fj(zj + ρjζ) converges to a non-constant meromorphic

function g on C with g#(ζ) ≤ g#(0) = 1. Moreover, g is of order at most two.
We see that

(4.5) fj(zj + ρjζ) + a(zj + ρjζ)
(
f
(k)
j (zj + ρjζ)

)n
− b→ a(0)

(
g(k)(ζ)

)n
− b,

locally uniformly with respect to spherical metric on every compact subsets of
C which contains no poles of g.

Now we claim that a(0)
(
g(k)(ζ)

)n − b has at most one zero IM. Suppose on

contrary, let a(0)
(
g(k)(ζ)

)n−b has two distinct zeros at ζ0 and ζ1. Now choose a

small positive number δ such that ∆(ζ0, δ)∩∆(ζ1, δ) = ∅ and a(0)
(
g(k)(ζ)

)n−b
has no other zeros in ∆(ζ0, δ)∪∆(ζ1, δ). By Hurwitz’s theorem, there exist two
sequences {ζj} ⊂ ∆(ζ0, δ), {ζ1j} ⊂ ∆(ζ1, δ) converging to ζ0 and ζ1 respectively
and from (4.1), for sufficiently large j, we have

fj(zj + ρjζj) + a(zj + ρjζj)
(
f
(k)
j (zj + ρjζj)

)n
− b = 0,

fj(zj + ρjζ1j ) + a(zj + ρjζ1j )
(
f
(k)
j (zj + ρjζ1j )

)n
− b = 0.

For large values of j, zj + ρjζj ∈ ∆(ζ0, δ) and zj + ρjζ1j ∈ ∆(ζ1, δ), so

fj + a
(
f
(k)
j

)n
− b has two distinct zeros, which contradicts the fact that fj +

a
(
f
(k)
j

)n
−b has at most one zero. But Lemma 3.3 and Lemma 3.4 confirm the

non-existence of such non-constant meromorphic function g. This contradiction
shows that F is normal in ∆ and this proves the theorem. �

The proof of Theorem 1.4 is same as the proof of Theorem E with little
changes in the last lines. For completeness we give the proof of Theorem 1.4.

Proof of Theorem 1.4. Suppose f + a
(
f (k)

)n
assumes each value b ∈ C only

finitely many times. This means

(4.6) N

(
r,

1

f + a
(
f (k)

)n − b
)

= o(log r) = S(r, f).

Let us define

(4.7) F := f + a
(
f (k)

)n
− b,

(4.8) φ :=
F ′

F
,

(4.9) ψ := n
f (k+1)

f (k)
− F ′

F
.

Now, we claim that φψ 6≡ 0. If φ ≡ 0, then F ′ ≡ 0. We can deduce that F ≡ c,
where c is finite complex number. From (4.7) and Lemma 3.5, we get that f
must be a polynomial, which is a contradiction.
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Next, if ψ ≡ 0, from (4.9), we get

(4.10) c
(
f (k)

)n
= f + a

(
f (k)

)n
− b,

where c ∈ C. From (4.10), we get

(4.11) (a− c)
(
f (k)

)n
+ f = b.

If a − c = 0, we get that f ≡ b, which is contradiction. Otherwise, we con-
clude from (4.11) and Lemma 3.5 that f must be a polynomial, which is a
contradiction.

From (4.7), we have T (r, F ) = O(T (r, f)), thus from (4.8) and (4.9), we have

(4.12) m(r, φ) = S(r, f) and m(r, ψ) = S(r, f).

From (4.6), (4.8), (4.9) and Nevanlinna’s First Fundamental Theorem, we
get

N

(
r,

1

φ

)
≤ m(r, φ) +N(r, φ)−m

(
r,

1

φ

)
+O(1)

≤ N(r, φ) + S(r, f) ≤ N(r, f) + S(r, f),(4.13)

N

(
r,

1

ψ

)
≤ m(r, ψ) +N(r, ψ)−m

(
r,

1

ψ

)
+O(1)

≤ N(r, ψ) + S(r, f) ≤ N
(
r,

1

f (k)

)
+ S(r, f).(4.14)

Again, by (4.8) and (4.9), we get

(4.15) (f − b)φ− f ′ = a
(
f (k)

)n
ψ.

So, we get from (4.6), (4.12) and (4.13)

T (r, (f − b)φ− f ′) = T
(
r, (f − b)

(
φ− f ′

f−b

))
≤ T (r, f − b) + T

(
r, φ− f ′

f−b

)
+ S(r, f)(4.16)

≤ m(r, f − b) +N(r, f − b) +m(r, φ− f ′

f−b )

+N
(
r, φ− f ′

f−b

)
+ S(r, f)

≤ m(r, f) +N(r, f) +m(r, φ) +m(r, f ′

f−b )

+N
(
r, φ− f ′

f−b

)
+ S(r, f)

≤ T (r, f) +N(r, f) + S(r, f).

It follows from (4.12)-(4.16) that

nT
(
r, f (k)

)
≤ T (r, ψ) + T (r, φ(f − b)− f ′) + S(r, f)
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≤ m(r, ψ) +N(r, ψ) + T (r, f) +N(r, f) +N

(
r,

1

F

)
+ S(r, f)

≤ N

(
r,

1

f (k)

)
+N

(
r,

1

F

)
+m

(
r,

1

f

)
+N

(
r,

1

f

)
+N(r, f) + S(r, f)(4.17)

≤ N

(
r,

1

f (k)

)
+ 2N

(
r,

1

F

)
+m

(
r,

1

f (k)

)
+N

(
r,

1

f

)
+N(r, f) + S(r, f)

≤ T

(
r,

1

f (k)

)
+ 2N

(
r,

1

F

)
+N

(
r,

1

f

)
+N(r, f) + S(r, f)

≤ T
(
r, f (k)

)
+ 2N

(
r,

1

F

)
+N

(
r,

1

f

)
+N(r, f) + S(r, f).

Therefore, we have from (4.6),

(4.18) (n− 1)T
(
r, f (k)

)
≤ N

(
r,

1

f

)
+N(r, f) + S(r, f).

Also, we have

(4.19) (n−1)T
(
r, f (k)

)
≥ (n−1)N

(
r, f (k)

)
≥ (n−1)N(r, f)+(n−1)N(r, f).

Thus by (4.18) and (4.19), we have

(n− 1)N(r, f) + (n− 1)N(r, f) ≤ N
(
r,

1

f

)
+N(r, f) + S(r, f)

≤ T (r, f) +N(r, f) + S(r, f).

This gives

(n− 2)N(r, f) + (n− 2)N(r, f) ≤ S(r, f).

So, we get

(4.20) N(r, f) = S(r, f).

Therefore from (4.18), we get

(n− 1)T
(
r, f (k)

)
≤ N

(
r,

1

f

)
+N(r, f) + S(r, f),

≤ T (r, f) + S(r, f).

And this gives

(n− 2)T
(
r, f (k)

)
+ T

(
r, f (k)

)
− T (r, f) ≤ S(r, f).

Now, by (4.20), we get

(4.21) T
(
r, f (k)

)
≤ S(r, f),
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which is a contradiction. So f + a
(
f (k)

)n
assumes each value b ∈ C infinitely

often. �
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