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NONRELATIVISTIC LIMIT OF CHERN-SIMONS GAUGED

FIELD EQUATIONS

Myeongju Chae and Jihyun Yim

Abstract. We study the nonrelativistic limit of the Chern-Simons-Dirac

system on R1+2. As the light speed c goes to infinity, we first prove that
there exists an uniform existence interval [0, T ] for the family of solutions

ψc corresponding to the initial data for the Dirac spinor ψc
0 which is

bounded in Hs for 1
2
< s < 1. Next we show that if the initial data

ψc
0 converges to a spinor with one of upper or lower component zero in

Hs, then the Dirac spinor field converges, modulo a phase correction, to

a solution of a linear Schrödinger equation in C([0, T ];Hs′ ) for s′ < s.

1. Introduction

In this paper we study the nonrelativistic limit of the Chern-Simons-Dirac
equations (CSD) on the Minkowski space R1+2. The (CSD) systems were
introduced in [6], [12] to deal with the electromagnetic phenomenon in planar
domains. Also see [7], [8] for more physical features. The Lagrangian density
for the system is given

L =
1

κ
εµνρAµFνρ + iψ̄γµDµψ −mψ̄ψ.(1.1)

Here, the real valued 1-form Aµ ∈ R is to be interpreted as defining a con-
nection; accordingly, Fµν = ∂µAν − ∂νAµ is the curvature 2-form, and Dµψ =

∂µψ − iAµc ψ is the associated covariant derivative. The spinor field ψ is repre-

sented by a column vector with 2 complex components, ψ : R+×R2 → C2. The
notation ψ† refers to the conjugate transpose of ψ. The totally skew symmetric
tensor εµνλ is given by ε012 = 1, κ > 0 is the Chern-Simons coupling constant
and m > 0 is the mass of the spinor field ψ. For the nonrelativistic limit we
consider the regime where both parameters grow linearly in c. In what follows
we let

κ = m = c.
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The Dirac gamma matrices γµ are C-valued 2× 2 matrices satisfying

(1.2) γµγν + γνγµ = −2(η−1)µν I2×2 ,

where η is the three dimensional Minkowski metric with signature (−1, 1, 1).
We will use the Minkowski metric to raise and lower the indices. The standard
representations of γµ are given by

γ0 =

(
1 0
0 −1

)
, γ1 =

(
0 1
−1 0

)
, γ2 =

(
0 −i
−i 0

)
.

Greek indices, such as µ, ν, refer to 0, 1, 2, whereas Latin indices i, j, k, l
to the spatial indices 1, 2. Moreover we will adopt the Einstein summation
convention of summing up repeated upper and lower indices.

The Euler-Lagrange equation for the Lagrangian density (1.1) reads that

iγµDµψ = cψ,

1

2
εµνρFνρ = −Jµ,

(1.3)

where Jµ = ψ†γ0γµψ is a current density.
The equation (1.3) is invariant under transforms

Aµ → Aµ + ∂µχ, ψ → ψei
χ
c ,

where χ ∈ R is a smooth real valued function, which is referred to the gauge
invariance in the literature. In this paper we choose the Coulomb gauge con-
dition

∂iAi = 0.

Due to (1.2) and DµDν −DνDµ = − i
cFµν we have

(iγµDµ)2 = ηµνDµDν +
i

2c
γµγνFµν .

So the first equation in (1.3) is written as

(1.4) (iγµDµ − cI)2ψ = ηµνDµDνψ +
i

2c
γµγνFµνψ − c2ψ = 0.

By the Coulomb gauge condition, (1.4) leads the Klein-Gordon equation

1

c2
∂t∂tψ − ∂j∂jψ + c2ψ(1.5)

=
2i

c
Aα∂αψ + i

1

c2
∂tA0ψ +

1

c2
AαA

αψ − i

2c
εαβµJ

µγαγβψ,

where relativistic coordinates x0 = ct and ∂0 = 1
c∂t is used. With the Coulomb

gauge condition, Aµ satisfies the following elliptic equations

∆Aj = εji∂iJ0,

∆A0 = 2εik∂iJ
k,

(1.6)
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where εij is antisymmetric, that is, εij = −εji, and ε12 = 1. It is often conve-
nient to use the original αi, β formulation of the Dirac operator. Define

β := γ0, α1 := γ0γ1 =

(
0 1
1 0

)
, α2 := γ0γ2 =

(
0 −i
i 0

)
,

and compute

βDψ = i
1

c
∂tψ + iαj∂jψ − cβψ.

Multiplying γ0 to the both hand sides of the (1.3), we have

(1.7) i∂tψ + icαj∂jψ − c2βψ +A0ψ − αjAjψ = 0.

Recently the local and global well-posedness of Chern-Simons system has
been investigated in [9], [10]. In particular, local well-posedness of the Chern-
Simons-Dirac equations with the Lorenz gauge condition ∂µA

µ = 0 for initial
data in Hs(s > 1

4 ) was shown by Huh and Oh [10]. This improves the earlier

work of Huh [9] where local well-posedness was obtained for s > 1
2 in the

Coulomb gauge, s > 5
8 in the Lorenz gauge, and s > 3

4 in the temporal gauge.
Bournaves showed in [3] that the Chern-Simons-Dirac system with the Coulomb
gauge is locally well-posed for s > 1

4 . This extends the results of [10] from the
Lorenz gauge to the Coulomb gauge.

For the nonrelativistic limit problem on the (CSD) equation we refer to the
following references. The behavior of solutions of the Dirac-Maxwell system in
the nonrelative limit c→∞ has been studied in [2] by Bechouche et al., where
c is speed of light. They proved that the solutions of Dirac-Maxwell system
converges in C([0, T ] : H1) to a solution of a Schrödinger-Poisson system.
The nonrelativistic limit from Klein-Gordon-Maxwell to Schrödinger-Poisson
was shown in [1], [11]. The semi-nonrelativistic limit of Chern-Simons-Higgs
system is studied in [4] by Chae and Huh.
Notations: Hs = Hs(R2) denotes the usual Sobolev spaces such that

‖f‖2Hs(R2) = ‖f‖2L2(R2) + ‖Λsf‖2L2 , Λs = (−∆)
s
2 .

The bracket 〈·〉 denotes
√

1 + | · |2 such that

〈∇〉 =
√

1 + |∇|2, 〈ξ〉 =
√

1 + |ξ|2.

Throughout the paper ψ, ψ±, ψ̃± denote C2 valued spinors. The upper and
lower components of spinors come with superscripts such as ψ±, which is C
valued. We often suppress the c dependence of Aµ, ψ for simplicity.

The followings are our main results.

Theorem 1. Let ψc0 be a C2- valued sequence in Hs for 1
2 < s < 1, namely,

ψc0 =

(
ψc0

+

ψc0
−

)
with ψc0

± ∈ Hs. If ‖ψc0‖Hs is bounded, there exists a uniform

existence interval [0, T ] such that the Chern-Simons-Drirac equation (1.6) and
(1.7) has a unique local solution in C([0, T ];Hs) with the initial data ψc0.
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In Theorem 2 we establish the nonrelativistic limif of (CSD) when the initial
data is asymptotically separated or, in other words, one of the component of
ψc0 converges to zero as c is going to infinity.

Theorem 2. Let ψc0 satisfy the same condition in Theorem 1. Moreover ψc0

converges to (i)

(
v+

0

0

)
or converges to (ii)

(
0
v−0

)
. Let ψc be the solution of

the (CSD) constructed in Theorem 1 and v± satisfy the the linear Schrödinger
equation

i∂tv± ∓
1

2
∆v± = 0(1.8)

with v+(·, 0) = v+
0 , v−(·, 0) = v−0 . Let M be a pseudodiffrential operator given

by M =
√
c4 − c2∆ and ψ̃± be defined by

ψ̃± =
1

2

(
ψ ± iM−1(ψt − iA0ψ

)
).

Then it holds that

ψ̃+ →
(
e−itc

2

v+

0

)
and ψ̃− →

(
0
0

)
in C([0, T ];Hs′)(1.9)

for (i) and

ψ̃+ →
(

0
0

)
and ψ̃− →

(
0

eitc
2

v−

)
in C([0, T ];Hs′)(1.10)

for (ii) with 1
2 < s′ < s as c is going to infinity.

Remark 1. (1) The convergence of the Dirac spinor to the linear Schröding-
er equation can be explained roughly as follows. After the highly os-

cillating part e±ic
2t subtracted, the left hand side of (1.5) converges to

the linear Schrödinger part, whereas the terms in right hand side has
enough 1

c factors to vanish except 2iA0∂tψ. By αi, β formulation we
write the A0 -equation in (1.6) as

∆A0 = 2∂1(ψ†α2ψ)− 2∂2(ψ†α1ψ).

Reflecting on the initial assumptions on ψc0, we may assume, for a

moment, ψc be of the form of

(
ψ+

0

)
or

(
0
ψ−

)
for some functions ψ±.

Then due to skew symmetry of α1 and α2, it holds that

ψ†α2ψ = ψ†α1ψ = 0,

hence A0 = 0, which implies that e±ic
2tψ converges to

(
v+

0

)
or

(
0
v−

)
respectively, where v± is the spinor solution of (1.8). We shall prove
this heuristic argument in Section 4.
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(2) The convergence of the associated gauge field Acµ follows immediately
by Theorem 2 and the estimate (3.9) in Section 3; Ac0 converges to zero

in C([0, T ] : W 1, 1
1−s′ ) in both cases and (Ac1, A

c
2) converges to (u,w) in

C([0, T ] : W 1, 1
1−s′ ) with 1

2 < s′ < s, where (u,w) satisfies

∆u = −∂2|v+|2, ∆w = ∂1|v+|2

for (i) and

∆u = −∂2|v−|2, ∆w = ∂1|v−|2

for (ii).

2. Preliminary

In this section we discuss the Duhamel formulae for two formulations of
the Dirac field equations, the first order equation (1.7) and the Klein-Gordon
equation (1.5).

Let us start with (1.7),

(2.1) i∂tψ + icαj∂jψ − c2βψ = F, ψ(x, 0) = ψ0,

where F = −A0ψ + ∂jAjψ. Let Qc(∇) = βI − i
cα

k∂j then (2.1) reads

(2.2) i∂tψ − c2Qc(∇)ψ = F.

The 2× 2 matrix Qc(ξ) = β + 1
cα

jξj has two eigenvalues

±λc(ξ) = ±
√

1 +
|ξ|2
c2

with the corresponding one dimensional eigenspace

V± = 〈(ξ1 − iξ2,−c(1∓ λc(ξ))〉.
The projection Πc

±(ξ) to V± satisfies Πc
+(ξ) + Πc

−(ξ) = I and Πc
+(ξ)−Πc

−(ξ) =
Qc(ξ)/〈ξ/c〉, so it is computed as

(2.3) Πc
±(ξ) =

1

2

(
I ± Qc(ξ)

〈ξ/c〉

)
=

1

2

I ± β + 1
cα

jξj√
1 + |ξ|2

c2

 .

In turn Qc(∇) is decomposed by

(2.4) Qc(∇) = Q(∇/c) = 〈∇/c〉Πc
+(∇)− 〈∇/c〉Πc

−(∇),

hence, if we let L(t)ψ0 the solution of the free Dirac equation (F = 0 in (2.2))
with the initial data ψ0, we have

(2.5) L(t)ψ0 := eic
2〈∇/c〉tΠc

+(∇)ψ0 + e−ic
2〈∇/c〉tΠc

−(∇)ψ0.

By Duhamel principle we write the solution of (2.1) by

(2.6) ψ(x, t) = L(t)ψ0 +

∫ t

0

L(t− s)F (s).
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Note that by the Taylor expansion it holds formally

c2〈∇/c2〉 ∼ c2
(

1 +
|∇|2

2c2

)
.

On the other hands Bechouhe et al. ([1,2]) observed that taking the limit c→∞
to symbols Πc

± yields

(2.7) Πc
+(ξ)→

(
1 0
0 0

)
, Πc

−(ξ)→
(

0 0
0 1

)
pointwise in ξ. Let ψ0 =

(
ψ+

0

ψ−0

)
. Due to the above two observations we predict

that L(t)ψ0 approaches to two Schrödinger waves multiplied by e±ic
2t, the

highly oscilating parts in c, as c going to infinity;

L(t)ψ0 → eic
2te−it

∆
2

(
ψ+

0

0

)
+ e−ic

2teit
∆
2

(
0
ψ−0

)
.

The separations of L(t)ψ0 to the upper and lower spinor is reflected in Theorem
2, which will be revisited in Section 4.

Next we turn to the Klein-Gordon equation (1.5),

1

c2
∂t∂tψ − ∂j∂jψ + c2ψ = G, ψ(x, 0) = ψ0, ∂tψ(x, 0) = ψ1,

where

G =
2i

c
Aα∂αψ + i

1

c2
∂tA0ψ +

1

c2
AαA

αψ − i

2c
εαβµJ

µγαγβψ.

It is useful to write the Klein-Gordon equation as a first order system

(2.8)
∂

∂t

(
ψ
ψt

)
=

(
0 I

c2∆− c4I 0

)(
ψ
ψt

)
+

(
0
G

)
,

and diagonalize the 2×2 (4×4 in fact) symbol by conjugating with the Fourier
transform. Let

M =
√
c4 − c2∆ = c2〈∇/c〉.

The 2 × 2 matrix has two eigenvalues, λ± = ∓iM . The projection to the
eigenspace corresponding to λ± are

P± =
1

2

(
I ±iM−1

∓iM I

)
respectively. We are then lead to the transform (ψ,ψt) → (ψ+, ψ−) and
(0, G)→ (G+, G−), where

ψ± = P±ψ :=
1

2

(
ψ ± iM−1ψt

)
, G± = ± i

2M
G.

We obtain the following diagonal first order system

∂

∂t

(
ψ+

ψ−

)
=

(
−iM 0

0 iM

)(
ψ+

ψ−

)
+

(
G+

G−

)
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or equivalently, the following pair of half-wave equations

(∂t ± iM)ψ± = ± i

2M
G.(2.9)

The half-waves ψ± are given by the Duhamel’s formula

ψ± = e±itMψ±,0 ±
i

2

∫ t

0

e±i(t−s)M
G

M
.

The non relativistic limit of the linear Klein-Gordon equation is the free
Schrödinger equation as formally seen below. Let us start with the symbol M .
As previous, it holds formally

M ∼ c2
(

1 +
|∇|2

2c2

)
,(2.10)

namely,

M − c2 ∼ −∆

2
.

Taking only the homogeneous part of (2.9), we would write

∂tψ± ± ic2ψ± = ∓i(M − c2)ψ±,

equivalently,

∂t

(
e±ic

2tψ±

)
= ∓i(M − c2)e±ic

2tψ±.

Note that formal limit of c→∞ yields to

(2.11) i∂t

(
e±ic

2tψ±

)
= ∓1

2
∆
(
e±ic

2tψ±

)
.

For the proofs of Theorem 2 we rely on the half-wave formulation of the
(CSD),

∂t

(
e±ic

2tψ±

)
= ∓i(M − c2)e±ic

2tψ± ±
i

2
e±ic

2tM−1G.

Let us look on the symbol M − c2 and M−1 further than (2.10). We have

M−1(ξ) =
1

c2
√

1 + |ξ|2
c2

,(2.12)

M(ξ)− c2 =
|ξ|2

1 +
√

1 + |ξ|2
c2

∼

{
|ξ|2/2 for |ξ| � c,

c|ξ| for |ξ| � c
(2.13)

by the taylor expansion in |ξ|/c� 1 and the observation

M(ξ)− c2 = c|ξ|
|ξ|
c

1 +
√

1 + |ξ|2
c2

∼ c|ξ| in |ξ|/c� 1.

We introduce the following bounds for operators M−1 and M−c2. All items
can be proved by Plancherel’s theorem. We omit the proof.

Lemma 3 (Lemma 3 in [1]). For all s ∈ R the following estimates hold.
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(1) ‖M−1‖L(Hs,Hs) = O(1/c2).

(2) ‖M−1‖L(Hs,Hs+1−δ) = O(1/c1+δ), 0 ≤ δ ≤ 1.

(3) ‖M − c2‖L(Hs+1,Hs) = O(c).

(4) ‖M − c2‖L(Hs+2,Hs) = O(1).

We introduce the high and low frequency parts of functions by projection
to {ξ||ξ| & c} and {ξ||ξ| . c}. Let χ be a smooth cut-off function on R2 such
that χ(ξ) = 1 for |ξ| ≤ 1 and χ(ξ) = 0 for |ξ| ≥ 2. We split functions f(x) into
low and high frequencies using χ(ξ/c):

f = fl + fh, f̂l(ξ) = χ(ξ/c)f̂(ξ), f̂h(ξ) = 1− f̂l(ξ).

Lemma 4. The following estimates hold on R2.

(1) ‖Mc2 fl‖Lp . ‖fl‖Lp for 1 ≤ p ≤ ∞.
(2) ‖fl‖H1+ε . cε‖fl‖H1 for ε > 0.
(3) ‖Mc2 fh‖L2 . 1

c‖fh‖Ḣ1 .

(4) ‖fh‖L2 . 1
c‖fh‖H1 .

Proof. M
c2 fl = ωc ∗ fl where ω̂c(ξ) = (1 + | ξc |

2)
1
2χ( ξ2c ), then ‖ωc‖L1 = O(1)

uniformly in c. By Young’s inequality we have the first item. The rest items
are by Plancherel’s theorem. �

3. Existence of an uniform local existence interval

In section 3 we show that there exists T > 0 independent of c such that the
Chern-Simons-Dirac system

i∂tψ + icαj∂jψ − c2βψ +A0ψ − αjAjψ = 0,

∆A0 = 2∂1(ψ†α2ψ)− 2∂2(ψ†α1ψ),

∆A1 = −∂2(ψ†ψ),

∆A2 = −∂1(ψ†ψ)

(3.1)

has a local solution up to [0, T ]. As in (2.6), the Dirac field equation can be
written by

ψ(x, t) = L(t)ψ0 +

∫ t

0

L(t− s)F (s)ds,

where

F = −A0ψ + αjAjψ,

L(t)ψ0 = eic
2〈∇/c〉tΠc

+(∇)ψ0 + e−ic
2〈∇/c〉tΠc

−(∇)ψ0

with Πc
±(∇) introduced in (2.3). Since Πc

±(∇) has the smooth and bounded
multiplier, it holds that, in particular,

(3.2) ‖Πc
±(∇)f‖L2(R2) ≤ C‖f‖L2(R2)

for a uniform constant C which dose not depend on c. The Hs estimate of ψ
follows immediately.
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Proposition 1. Let ψ be the solution to the Dirac equation (2.2) and let s ∈ R.
Then for any T > 0 there exists a uniform constant C > 0 such that

(3.3) sup
0≤t≤T

‖ψ(·, t)‖Hs(R2) ≤ C

(
‖ψ0‖Hs(R2) +

∫ T

0

‖F (·, τ)‖Hs(R2)dτ

)
.

Proof. The L2 estimate is straightforward by (3.2). Taking Λs to the both

sides of (2.2), the Ḣs estimate of ψ follows from the duhamel formula for Λsψ
and the L2 estimate. �

Let us define
‖ψ‖XsT = sup

t∈[0,T ]

‖ψ‖Hs .

Now the uniform existence of the local solution of (3.1) is obtained from the
following proposition.

Proposition 2. Let ψ and ψ′ be two solutions of the Chern-Simons-Dirac
equations (3.1) with initial data ψ0 and ψ′0 in C([0, T );Hs(R2)) for 1/2 < s <
1 and T > 0. Then there exist constants C independent of c such that the
following estimates holds.

(1)
∫ T

0
‖Aµψ‖Hs ≤ CT‖ψ‖3XsT .

(2) ‖ψ − ψ′‖XsT ≤ CT‖ψ‖XsT ‖ψ − ψ
′‖XsT + CT‖ψ − ψ′‖XsT ‖ψ‖XsT .

By the fixed point theorem and the continuity argument, Proposition 2
implies there exist T > 0 and a uniform constant C such that there exists a
unique local smooth solution of (3.1) in C([0, T ];Hs) for 1

2 < s < 1 satisfying

‖ψ‖XsT ≤ C‖ψ0‖Hs .(3.4)

Note that T and C will be chosen independent of c in the process of the proof.
Proposition 2 is proved in [9] (Propositions 4.2, 4.3) when c = 1 by using

the charge estimate (3.3) and the bound of ‖A‖Wk,p in terms of ‖ψ‖Hs . For
the latter, [9] relies only on the classical functional inequalities and the Sobolev
embeddings. Note that the constant in (3.3) is independent of c and further,
there is no c appearance in Aµ equations in (3.1), hence the same proof goes
through for Proposition 2. In the below we introduce the analysis in [9] for
completeness of the paper.

The Aµ equations in (1.6) can be written symbolically as

(3.5) ∆A = ∇J.
Using integral representation we may express

(3.6) A0 =
1

2π

∫
R2

(−x2 + y2, x1 − y1)

|x− y|2
J(y) dy,

where J = (J1, J2). Also (3.5) implies the integral representations we may
express

(3.7) Aj =
εij
2π

∫
R2

xi − yi
|x− y|2

J0(y) dy.
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For ‖Aµ‖Lp , we use the Hardy-Littlewood-Sobolev’s inequality for the frac-
tional integral operator Ir(r > 1),

Irf(x) =

∫
R2

f(y)

|x− y| 2r
dy for r > 1.

Lemma 5. Suppose r > 1, 1 < p < q < ∞ and 1/r = 1 − (1/p − 1/q). Then
there exists a constant C depending only on p and q such that

‖Irf‖Lq ≤ C‖f‖Lp .

Applying Hardy-Littlewood-Sobolev’s inequality to (3.6)–(3.7), we have

‖Aµ‖Lq ≤ C‖J‖Lp for 1/q = 1/p− 1/2, 1 < p < 2.

For ‖∂jAµ‖Lp we can apply the Calderon-Zygmund inequality to obtain

‖∂jAµ‖Lp ≤ C‖J‖Lp for 1 < p <∞.
Roughly we can assume |J | = |ψ|2. By the Sobolev embedding

Hs ↪→ Lr for 2 ≤ r ≤ 2

1− s
and H1 ↪→ Lr for 2 ≤ r <∞,

so

‖J‖Lp ≤ C‖ψ‖2Hs for 1 ≤ p ≤ 1

1− s
.

Also we have

‖Aµ‖
L

2p
2−p
≤ C‖J‖Lp ≤ C‖ψ‖2Hs 1 < p < 2 (1/2 ≤ s),

‖∇Aµ‖Lp ≤ C‖J‖Lp ≤ C‖ψ‖2Hs 1 < p ≤ 1

1− s
(0 < s < 1).

(3.8)

In particular we have

‖Aµ‖
W

1, 1
1−s
≤ C‖ψ‖2Hs ,

‖Aµ‖
W s, 2

s
≤ C‖ψ‖2Hs

(3.9)

when 1
2 < s < 1, which follow by

‖Aµ‖
L

1
1−s
≤ ‖J‖

L
2

3−2s
≤ C‖ψ‖2Hs ,

‖Aµ‖
Ẇ

1, 1
1−s
≤ C‖J‖2

L
1

1−s
≤ C‖ψ‖2

L
2

1−s
≤ C‖ψ‖2Hs ,

‖Aµ‖
L

2
s
≤ C‖J‖

L
2

1+s
≤ C‖ψ‖2Hs ,

‖Aµ‖
Ẇ 2, 2

s
= ‖ΛsAµ‖

L
2
s
≤ C‖J‖L2 ≤ ‖ψ‖2Hs .

(3.10)

Next we introduce the well known product lemma which generalizes the
Leibniz rule in the Sobolev space W s,p for s > 0.

Proposition 3. Let f ∈ Lp1 ∩W s,p3 , g ∈ Lp4 ∩W s,p2 , where s > 0, 1 < p <
∞, p1, p4 ∈ (1,+∞] and 1

p = 1
p1

+ 1
p2

= 1
p3

+ 1
p4

. Then

‖fg‖W s,p(R2) ≤ ‖f‖Lp1 (R2)‖g‖ws,p2 (R2) + ‖f‖W s,p3 (R2)‖g‖Lp4 (R2).
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Proof of Proposition 2. Applying Proposition 3 we have∫ T

0

‖Aµψ‖Hs .
∫ T

0

‖Aµ‖L∞‖ψ‖Hs +

∫ T

0

‖Aµ‖
W s, 2

s
‖ψ‖

L
2

1−s
.

By the embedding W 1, 1
1−s (R2) ↪→ L∞(R2) and (3.9) the both two terms are

bounded by CT‖ψ‖3XsT for some uniform constant C. For the second item we

apply Proposition 1 to have

‖ψ−ψ′‖XsT ≤ C‖ψ0−ψ′0‖Hs+

∫ T

0

‖Aµ(ψ−ψ′)‖Hs+

∫ T

0

‖(A′µ−Aµ)(ψ−ψ′)‖Hs ,

where Aµ and A′µ are the associated gauge field to ψ and ψ′ respectively.
Similarly in the first item the two terms are bounded by

CT‖ψ‖XsT ‖ψ − ψ
′‖XsT + CT‖ψ − ψ′‖XsT ‖ψ‖XsT . �

4. Convergence

In this section we prove Theorem 2. Let us remind that the Klein-Gordon
formulation of (CSD) obtained in (1.5) and (1.6),

1

c2
∂t∂tψ − ∂j∂jψ + c2ψ

=
2i

c
Aα∂αψ + i

1

c2
∂tA0ψ +

1

c2
AαA

αψ − i

2c
εαβµJ

µγαγβψ.

∆Aj = εji∂iJ0, i, j = 1, 2.

∆A0 = 2εik∂iJ
k, i, k = 1, 2.

(4.1)

As in (2.9) the first equation is equivalently written by

(4.2) ∂t

(
e±ic

2tψ±

)
= ∓i(M − c2)e±ic

2tψ± ±
i

2M
e±ic

2tG,

where

(4.3)

ψ± = P±ψ :=
1

2

(
ψ ± iM−1ψt

)
,

G = 2icAα∂αψ + i∂tA0ψ +AαA
αψ − ci

2
εαβµJ

µγαγβψ

= 2iA0∂tψ + 2ciAj∂jψ + i∂tA0ψ +AαA
αψ − ci

2
εαβµJ

µγαγβψ.

Following [1], we use the transform

ψ̃± =
1

2

(
ψ ± iM−1(ψt − iA0ψ

)
)(4.4)

instead of (4.3), which is mainly due to technical conveniences. Plugging in
(4.2)

ψ̃± = ψ± ±
1

2
M−1(A0ψ),
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we have

∂tψ̃± = ∂tψ± ±
1

2
M−1∂t(A0ψ)

= ∓iMψ± ±
i

2
M−1G± 1

2
M−1∂t(A0ψ)

= ∓iMψ̃± +
i

2
A0ψ ±

i

2
M−1G± 1

2
M−1∂t(A0ψ).

In the last two terms ± 1
2M

−1(∂tA0ψ) is cancelled out so that it is written by

± i

2
M−1G± 1

2
M−1∂t(A0ψ)

= ± 1

2
M−1(−A0∂tψ − 2cAj∂jψ + iAαA

αψ +
c

2
εαβµJ

µγαγβψ).

Converting

ψ = ψ̃+ + ψ̃−, ∂tψ = −iM(ψ̃+ − ψ̃−) + iA0ψ

we have

A0∂tψ = −iA0M(ψ̃+ − ψ̃−)

= −iMA0(ψ̃+ − ψ̃−)− i[A0,M ](ψ̃+ − ψ̃−) + iA2
0ψ.

Hence we have

∂tψ̃± ± iMψ̃± =
i

2
A0(ψ̃+ + ψ̃−)± i

2
A0(ψ̃+ − ψ̃−)︸ ︷︷ ︸

=iA0ψ̃±

± 1

2
M−1

(
i[A0,M ](ψ̃+ − ψ̃−)∓ iA2

0ψ + 2ciAj∂jψ

+AαA
αψ − ci

2
εαβµJ

µγαγβψ

)
.

Following the previous observation (2.11), we introduce φ± to subtract the rest
energy

φ± = e±ic
2tψ̃±.(4.5)

Finally we arrive at the system

i∂tφ± ∓ (M − c2)φ± = iA0φ± ± e±ic
2tR,(4.6)

where

R =
1

2
M−1(i[A0,M − c2](ψ̃+ − ψ̃−)∓ iA2

0ψ + 2ciAj∂jψ

+AαA
αψ − ci

2
εαβµJ

µγαγβψ),(4.7)

∆A0 = 2∂1(ψ†α2ψ)− 2∂2(ψ†α1ψ),

∆A1 = − ∂2(ψ†ψ),



NONRELATIVISTIC LIMIT OF CHERN-SIMONS GAUGED FIELD EQUATIONS 883

∆A2 = ∂1(ψ†ψ).

Let us recall the uniform estimate (3.4)

‖ψ‖XsT < C‖ψ0‖Hs

as well as (3.8) and (3.9), which in turn gives the uniform estimate

‖ψ̃±‖XsT < C‖ψ0‖Hs(4.8)

by the following way. The bound

(4.9) ‖M−1(Aµψ)‖Hs ≤ Cc−2‖ψ0‖3Hs

is straightforward from Lemma 3 and the aforementioned uniform estimates.
For the term M−1ψt we have by (2.2)

‖M−1ψt‖Hs ≤ ‖c2M−1(Qc(∇)ψ)‖Hs + ‖M−1(Aµψ)‖Hs .

By (2.4) and Πc
±(∇) being smooth and bounded, we estimate

‖c2M−1(Qc(∇)ψ)‖Hs ≤ ‖Πc
+(∇)ψ‖Hs + ‖Πc

−(∇)ψ‖Hs ≤ C‖ψ‖Hs .

In what follows we shall prove the convergence (1.9) and (1.10). First, in the
level of initial data the separation to the upper and lower spinor of the limits
is explained as follows. If ψ is the solution of the (CSD), two projections Πc

±ψ
and ψ± = P±ψ in (2.3) and (4.3) are related by

ψ± = P±ψ = Πc
±ψ ±

1

2
M−1(αjAjψ −A0ψ)

or

ψ̃± = Πc
±ψ ±

1

2
M−1(αjAjψ)

in Hs. So it holds that

(4.10) lim
c→∞

ψ̃c0± = lim
c→∞

Πc
±ψ

c
0

in Hs by (4.9) . Now due to (2.7) and the initial assumption on ψc0, we have

lim
c→∞

Πc
+ψ

c
0 = lim

c→∞

(
1 0
0 0

)
ψc0 =

(
v0+

0

)
, lim
c→∞

Πc
−ψ

c
0 = lim

c→∞

(
0 0
0 1

)
ψc0 =

(
0
0

)(4.11)

in Hs by Lebesgue Dominated Convergence Theorem (LDCT).
Let us introduce the linear group

U c±(t) = e±it(M(|∇|)−c2), S±(t) = e±
it
2 ∆.

We shall use that U c±(t) is unitary in Hs and it converges pointwise

U c±(t)f(x) −→ S±(t)f(x)
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for a sufficiently good function f when c→∞.

Let us show the case (i), that is ψc0 converges to

(
v+

0

0

)
for some v+

0 ∈ Hs.

The case (ii) can be proved similarly. Define

f(I) =

∥∥∥∥φ+ −
(
v+

0

)∥∥∥∥
L∞t H

σ(I×R2)

+ ‖φ−‖L∞t Hσx (I×R2) ,

where σ is 1/2 < σ < s and I = [0, T ] is the uniform existence interval obtained
in Theorem 1. Our goal is to show f(I) converges to zero as c is going to infinity
for some T > 0. We write

φc±(t) = U c±(t)φc0± +

∫ t

0

U c(t− s)(iA0φ
c
± ± e±ic

2sR)ds,

v+(t) = S(t)v0+,

where φ±, v±, φ
±
0 , v0± are given by (4.6) and (1.8). Then

φc+(t)−
(
v+

0

)
(t) = U c(t)

[
φ0
c
+ −

(
v0+

0

)]
+ [U c(t)− S(t)]

(
v0+

0

)
+

∫ t

0

U c(t− s)
[
iA0φ

c
+ + eic

2sR
]
ds

= I1 + I2 + I3.

(4.12)

In what follows we use the notation ac = o(1) if lim
c→∞

ac = 0 holds.

Note that φc0± = ψ̃c0±. By (4.10) it holds that

‖I1‖L∞t Hs(I×R2) ≤ C
∥∥∥∥φc0+ −

(
v0+

0

)∥∥∥∥ ≤ C ∥∥∥∥Πc
+ψ

c
0 −

(
v0+

0

)∥∥∥∥
Hs

as c becomes large. Then

‖I1‖L∞t Hs(I×R2) = o(1)

follows from (4.11). Also we have

‖I2‖L∞t Hs(I×R2) = o(1)

by LDCT and the initial assumption on v0+.
For I3 we claim that∥∥∥∥∫ t

0

U c(t− s) [iA0φ+] ds

∥∥∥∥
L∞t H

s(I×R2)

(4.13)

≤ CT

(∥∥∥∥φ+ −
(
v+

0

)∥∥∥∥
L∞t H

s(I×R2)

+ ‖φ−‖L∞t Hs(I×R2)

)
and ∥∥∥∥∫ t

0

U c(t− s)eic
2sR ds

∥∥∥∥
Hσ

= o(1) for 1/2 < σ < s.(4.14)
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As in the proof of Proposition 2 we have∫ T

0

‖A0φ+‖Hs dt ≤ C
∫ T

0

‖φ+‖Hs‖ A0‖L∞ dt+

∫ T

0

‖φ+‖
W s, 2

s
‖A0‖

L
2

1−s
dt

≤ C‖φ+‖L∞t Hs
∫ T

0

‖A0‖
W

1, 2
1−s

+ ‖A0‖
L

2
1−s

dt.

Let V =

(
e−ic

2tv+

0

)
then due to skew symmetry of α1 and α2, it holds that

V †α1V = V †α2V = 0.

Hence A0 equation in (4.7) reads that

∆A0 = 2∂1(ψ†α2ψ)− 2∂2(ψ†α1ψ)−
[
2∂1(V †α2V )− 2∂2(V †α1V )

]
.(4.15)

Since

ψ†α2ψ − V †α2V

= (ψ − V )†α2ψ + V †α2(ψ − V )

=

(
ψ̃+ + ψ̃− −

(
e−ic

2tv+

0

))†
α2ψ + V †α2

(
ψ̃+ + ψ̃− −

(
e−ic

2tv+

0

))
=

(
e−ic

2t

(
φ+ −

(
v+

0

))
+ eic

2tφ−

)†
α2ψ

+ V †α2

(
e−ic

2t

(
φ+ −

(
v+

0

))
+ eic

2tφ−

)
,

we write (4.15) symbolically as

∆A0 = ∂1

[(
|φ+ −

(
v+

0

)
|+ |φ−|

)
ψ

]
+ ∂2

[(
v+

0

)(
|φ+ −

(
v+

0

)
|+ |φ−|

)]
.

Then by the same estimates yielding to (3.9), we have

‖A0‖
W

1, 2
1−s

+ ‖A0‖
L

2
1−s

≤ C(‖ψ‖L∞t Hs(I×R2) + ‖v+‖L∞t Hs(I×R2))(∥∥∥∥φ+ −
(
v+

0

)∥∥∥∥
L∞t H

s(I×R2)

+ ‖φ−‖L∞t Hs(I×R2)

)

≤ C

(∥∥∥∥φ+ −
(
v+

0

)∥∥∥∥
L∞t H

s(I×R2)

+ ‖φ−‖L∞t Hs(I×R2)

)
.

The first claim (4.13) is proved. The restriction σ < s is only necessary for
estimating M−1(ciAj∂jψ) for the second claim. By Lemma 3 we have

‖M−1(ciAj∂jψ)‖Ḣσ . c
−δ‖Aj∂jψ‖Ḣσ−1+δ

for a sufficiently small δ. A product estimate in homegeneous Sobolev spaces
is given by the following.
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Lemma 6. Assume s1 + s2 + s3 = d
2 with sj + sk > 0 for j 6= k. Then it holds

that
‖fg‖Ḣ−s1 (Rd) . ‖f‖Ḣs2 (Rd)‖g‖Ḣs3 (Rd).

We write σ − 1 + δ = s − 1 − ε = −(1 − s)− by letting ε = s − σ − δ. By
plugging in Lemma 6, s1 = 1− s+ ε, s2 = 1− ε, s3 = s− 1 we have

‖A∇ψ‖Ḣs−1−ε . ‖A‖Ḣ1−ε‖∇ψ‖Ḣs−1 . ‖ψ‖3Hs
for a small ε. The second inequality holds by the third estimate in (3.8).

It remains to estimate ‖M−1(ciAj∂jψ)‖L2 . To do this, we need some elemen-
tary paracalculus technique. For notations used in the paragraph, see Chapter
2 in [5] for instance. Let us introduce the Littlewood-Paley decomposition

f = f−1 +

∞∑
q=0

fq,

f̂−1(ξ) = χ(ξ)f̂(ξ), f̂q = β(ξ/2q)f̂(ξ),

where χ and β are nonnegative smooth radial functions with compact supports
in {0 ≤ |ξ| < 4

3} and { 3
4 ≤ |ξ| ≤

8
3} respectively such that

χ(ξ) +
∑
q≥0

β(ξ/2q) = 0.

We decompose the product A∇ψ by

A∇ψ =
∑

p,q≥−1

Ap(∇ψ)q = P1 + P2 + P3,

where

P1 =
∑
q+2≤p

Ap(∇ψ)q, P2 =
∑
p+2≤q

Ap(∇ψ)q, P3 =
∑
|p−q|≤1

Ap(∇ψ)q.

The summand in P1 is supported in { 3·2p
4 ≤ |ξ| ≤ 8·2p

3 }, in P2 supported in

{ 3
42q ≤ |ξ| ≤ 8

32q}, and in P3 supported in {|ξ| ≤ 16
3 2p}. We have

‖M−1(ciAj∂jψ)‖L2

≤ ‖(c2 + |∇|2)−1/2(A∇ψ)‖L2

≤
∑
q+2≤p

∥∥∥∥ 2p√
c2 + 22p

Apψq

∥∥∥∥
L2

+
∑
p+2≤q

∥∥∥∥ 2q√
c2 + 22q

Apψq

∥∥∥∥
L2

+
∑
|p−q|≤1

∥∥∥∥ 2q√
c2 + 22q

Apψq

∥∥∥∥
L2

:= P1 + P2 + P3.

We estimate that for p, q ≥ −1

P1 . c
−ε

∑
q+2≤p

2−εp‖22εpAp‖Lr‖ψq‖Lr̃
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. c−ε

 ∑
q+2≤p

2−εp

 ‖A‖W 2ε,r‖ψ‖Lr̃ . c−ε‖A‖W 2ε,r‖ψ‖Lr̃ ,

P2 . c
−ε

∑
p+2≤q

2εq‖Ap‖Lr̃‖ψq‖Lr . c−ε
∑
p+2≤q

‖Ap‖Lr̃2εq‖ψq‖Hs′

. c−ε
∑
p+2≤q

‖Ap‖Lr̃2−(s−s′−ε)q‖ψq‖Hs

. c−ε

 ∑
p+2≤q

2−(s−s′−ε)q

 ‖A‖Lr̃‖ψ‖Hs . c−ε‖A‖Lr̃‖ψ‖Hs ,
P3 . c

−ε
∑
p∼q

2εq‖Ap‖Lr̃‖ψq‖Lr . c−ε
(∑

p

‖Ap‖2Lr̃

) 1
2
(∑

q

22εq‖ψq‖2Lr

) 1
2

. c−ε

‖A−1‖Lr̃ +
∑
p≥0

2δp‖Ap‖2L2

 1
2 (∑

q

22εq‖ψq‖2Hs′

) 1
2

. c−ε(‖A‖Lr̃ + ‖A‖Ẇ 1,2)

(∑
q

22εq‖ψq‖2Hs′

) 1
2

. c−ε‖ψ‖3Hs .

The pair r, r̃ satisfies 1/r + 1/r̃ = 1/2. In P2 and P3 we choose r, s′ such
that 2 < r ≤ 2

1−s′ and s′ < s − ε then use the Sobolev embedding. In P3

we use the Cauchy-Schwarz inequality and choose r̃ = 2
1−δ for 0 < δ < 1

then use (3.8). Now the estimates (3.8) and the Sobolev embedding lead that
‖M−1(ciAj∂jψ)‖L2 . c−ε. Hence we have proved the second claim (4.14)

The same estimates yields that

‖φ−‖L∞t Hσ ≤ o(1) + CT

(∥∥∥∥φ+ −
(
v+

0

)∥∥∥∥
L∞t H

s(I×R2)

+ ‖φ−‖L∞t Hs(I×R2)

)
.

(4.16)

Summed up, the above estimates (4.12)- (4.16) imply that

f(I) . o(1) + Tf(I),

which concludes f(I)→ 0 as c→∞ for some T > 0. Theorem 2 is proved.
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