UNITARILY INVARIANT NORM INEQUALITIES INVOLVING G_{1} OPERATORS

Mojtaba Bakherad

Abstract

In this paper, we present some upper bounds for unitarily invariant norms inequalities. Among other inequalities, we show some upper bounds for the Hilbert-Schmidt norm. In particular, we prove $$
\|f(A) X g(B) \pm g(B) X f(A)\|_{2} \leq\left\|\frac{(I+|A|) X(I+|B|)+(I+|B|) X(I+|A|)}{d_{A} d_{B}}\right\|_{2}
$$ where $A, B, X \in \mathbb{M}_{n}$ such that A, B are Hermitian with $\sigma(A) \cup \sigma(B) \subset$ \mathbb{D} and f, g are analytic on the complex unit disk $\mathbb{D}, g(0)=f(0)=1$, $\operatorname{Re}(f)>0$ and $\operatorname{Re}(g)>0$.

1. Introduction

Let $\mathbb{B}(\mathbf{H})$ be the C^{*}-algebra of all bounded linear operators on a separable complex Hilbert space \mathbf{H} with the identity I. In the case when $\operatorname{dim} \mathbf{H}=n$, we determine $\mathbb{B}(\mathbf{H})$ by the matrix algebra \mathbb{M}_{n} of all $n \times n$ matrices having associated with entries in the complex field. If $z \in \mathbb{C}$, then we write z instead of $z I$. For any operator A in the algebra $\mathbb{K}(\mathbf{H})$ of all compact operators, we denote by $\left\{s_{j}(A)\right\}$ the sequence of singular values of A, i.e., the eigenvalues $\lambda_{j}(|A|)$, where $|A|=\left(A^{*} A\right)^{\frac{1}{2}}$, enumerated as $s_{1}(A) \geq s_{2}(A) \geq \cdots$ in decreasing order and repeated according to multiplicity. If the rank A is n, we put $s_{k}(A)=$ 0 for any $k>n$. Note that $s_{j}(X)=s_{j}\left(X^{*}\right)=s_{j}(|X|)$ and $s_{j}(A X B) \leq$ $\|A\|\|B\| s_{j}(X)(j=1,2, \ldots)$ for all $A, B \in \mathbb{B}(\mathbf{H})$ and all $X \in \mathbb{K}(\mathbf{H})$.

A unitarily invariant norm is a map $\|\|\cdot\|\|: \mathbb{K}(\mathbf{H}) \longrightarrow[0, \infty]$ given by $\left\|\left||A| \|=g\left(s_{1}(A), s_{2}(A), \ldots\right)\right.\right.$, where g is a symmetric norming function. The set $\mathcal{C}_{\|||\cdot||}$ including $\{A \in \mathbb{K}(\mathbf{H}):|\|A \mid\|<\infty\}$ is a closed self-adjoint ideal \mathcal{J} of $\mathbb{B}(\mathbf{H})$ containing finite rank operators. It enjoys the property [6]:

$$
\begin{equation*}
|\|A X B \mid\| \leq\|A\|\|B\|\| \| X\| \| \tag{1}
\end{equation*}
$$

for $A, B \in \mathbb{B}(\mathbf{H})$ and $X \in \mathcal{J}$. Inequality (1) implies that $\|\|U X V\|\|=\|X\| \|$, where U and V are arbitrary unitaries in $\mathbb{B}(\mathbf{H})$ and $X \in \mathcal{J}$. In addition,

Received August 5, 2017; Accepted December 21, 2017.
2010 Mathematics Subject Classification. Primary 15A60; Secondary 30E20, 47A30, 47B10, 47B15.

Key words and phrases. G_{1} operator, unitarily invariant norm, commutator operator, the Hilbert-Schmidt, analytic function.
employing the polar decomposition of $X=W|X|$ with W a partial isometry and (1), we have $\||X|\|=\| \||X|\| \|$. An operator $A \in \mathbb{K}(\mathbf{H})$ is called Hilbert-Schmidt if $\|A\|_{2}=\left(\sum_{j=1}^{\infty} s_{j}^{2}(A)\right)^{1 / 2}<\infty$. The Hilbert-Schmidt norm is a unitarily invariant norm. For $A=\left[a_{i j}\right] \in \mathbb{M}_{n}$, it holds that $\|A\|_{2}=\left(\sum_{i, j=1}^{n}\left|a_{i, j}\right|^{2}\right)^{1 / 2}$. We use the notation $A \oplus B$ for the diagonal block matrix $\operatorname{diag}(A, B)$. Its singular values are $s_{1}(A), s_{1}(B), s_{2}(A), s_{2}(B), \ldots$. It is evident that

$$
\begin{gathered}
\left\|\left[\begin{array}{cc}
0 & A \\
B & 0
\end{array}\right]\right\|\|=\|\||A| \oplus|B|\|\|=\| A \oplus B\|\| \\
\|A \oplus B\|=\max \{\|A\|,\|B\|\} \quad \text { and } \quad\|A \oplus B\|_{2}=\left(\|A\|_{2}^{2}+\|B\|_{2}^{2}\right)^{\frac{1}{2}} .
\end{gathered}
$$

The inequalities involving unitarily invariant norms have been of special interest; see e.g., $[4,9]$ and references therein.

An operator $A \in \mathbb{B}(\mathbf{H})$ is called G_{1} operator if the growth condition

$$
\left\|(z-A)^{-1}\right\|=\frac{1}{\operatorname{dist}(z, \sigma(A))}
$$

holds for all z not in the spectrum $\sigma(A)$ of A, where $\operatorname{dist}(z, \sigma(A))$ denotes the distance between z and $\sigma(A)$. It is known that normal (more generally, hyponormal) operators are G_{1} operators (see e.g., [15]). Let $A \in \mathbb{B}(\mathbf{H})$ and f be a function which is analytic on an open neighborhood Ω of $\sigma(A)$ in the complex plane. Then $f(A)$ denotes the operator defined on \mathbf{H} by the RieszDunford integral as

$$
f(A)=\frac{1}{2 \pi i} \int_{C} f(z)(z-A)^{-1} d z
$$

where C is a positively oriented simple closed rectifiable contour surrounding $\sigma(A)$ in Ω (see e.g., [8, p. 568]). The spectral mapping theorem asserts that $\sigma(f(A))=f(\sigma(A))$. Throughout this note, $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$ denotes the unit disk, $\partial \mathbb{D}$ stands for the boundary of \mathbb{D} and $d_{A}=\operatorname{dist}(\partial \mathbb{D}, \sigma(A))$. In addition, we denote

$$
\mathfrak{A}=\{f: \mathbb{D} \rightarrow \mathbb{C}: f \text { is analytic, } \operatorname{Re}(f)>0 \text { and } f(0)=1\} .
$$

The Sylvester type equations $A X B \pm X=C$ have been investigated in matrix theory; see [5]. Several perturbation bounds for the norm of sum or difference of operators have been presented in the literature by employing some integral representations of certain functions; see $[3,11,12,16]$ and references therein.

In the recent paper [12], Kittaneh showed that the following inequality involving $f \in \mathfrak{A}$

$$
\|\|f(A) X-X f(B)\|\| \leq \frac{2}{d_{A} d_{B}}\|\mid A X-X B\| \|
$$

where $A, B, X \in \mathbb{B}(\mathbf{H})$ such that A and B are G_{1} operators with $\sigma(A) \cup \sigma(B) \subset$ \mathbb{D}. In [13], the authors extended this inequality for two functions $f, g \in \mathfrak{A}$ as follows

$$
\begin{equation*}
\left\|\left|f(A) X-X g(B)\| \| \leq \frac{2 \sqrt{2}}{d_{A} d_{B}}\|| | A X|+|X B|\| \|\right.\right. \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\left\|f(A) X+X g(B)\left|\left\|\leq \frac{2 \sqrt{2}}{d_{A} d_{B}}\right\|\||A X B|+|X|\| \|,\right.\right.\right. \tag{3}
\end{equation*}
$$

in which $A, B, X \in \mathbb{B}(\mathbf{H})$ such that A and B are G_{1} operators with $\sigma(A) \cup$ $\sigma(B) \subset \mathbb{D}$. They also showed that

$$
\begin{equation*}
\left\|\left|f(A) X g(B)-X\left\|\left.\left|\leq \frac{2 \sqrt{2}}{d_{A} d_{B}}\right|| ||A X|+|X B| \right\rvert\,\right\|\right.\right. \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\left\|f(A) X g(B)+X\left|\left\|\leq \frac{2 \sqrt{2}}{d_{A} d_{B}}|\||A X B|+|X|\| \|,\right.\right.\right.\right. \tag{5}
\end{equation*}
$$

where $A, B, X \in \mathbb{B}(\mathbf{H})$ such that A and B are G_{1} operators with $\sigma(A) \cup \sigma(B) \subset$ \mathbb{D}.

In this paper, by using some ideas from $[12,13]$ we present some upper bounds for unitarily invariant norms of the forms $\|\|f(A) X+X \bar{f}(A)\|\|$ and $\|\|f(A) X-X \bar{f}(A)\|\|$ involving G_{1} operator and $f \in \mathfrak{A}$. We also present the Hilbert-Schmidt norm inequality of the form

$$
\begin{aligned}
& \|f(A) X g(B) \pm g(B) X f(A)\|_{2} \\
\leq & \left\|\frac{(I+|A|) X(I+|B|)+(I+|B|) X(I+|A|)}{d_{A} d_{B}}\right\|_{2},
\end{aligned}
$$

where $A, B, X \in \mathbb{M}_{n}$ such that A and B are Hermitian matrices with $\sigma(A) \cup$ $\sigma(B) \subset \mathbb{D}$ and $f, g \in \mathfrak{A}$.

2. Main results

Our first result is some upper bounds for the Hilbert-Schmidt norm inequalities.

Theorem 2.1. Let $A, B \in \mathbb{M}_{n}$ be Hermitian matrices with $\sigma(A) \cup \sigma(B) \subset \mathbb{D}$ and $f, g \in \mathfrak{A}$. Then

$$
\begin{aligned}
& \|f(A) X+X g(B) \pm f(A) X g(B)\|_{2} \\
\leq & \left\|\frac{X+|A| X}{d_{A}}+\frac{X+X|B|}{d_{B}}+\frac{(I+|A|) X(I+|B|)}{d_{A} d_{B}}\right\|_{2}
\end{aligned}
$$

and

$$
\|f(A) X g(B) \pm g(B) X f(A)\|_{2} \leq\left\|\frac{(I+|A|) X(I+|B|)+(I+|B|) X(I+|A|)}{d_{A} d_{B}}\right\|_{2},
$$

where $X \in \mathbb{M}_{n}$.

Proof. Let $A=U \Lambda U^{*}$ and $B=V \Gamma V^{*}$ be the spectral decomposition of A and B such that $\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right), \Gamma=\operatorname{diag}\left(\gamma_{1}, \ldots, \gamma_{n}\right)$ and let $U^{*} X V:=\left[y_{j k}\right]$. It follows from $\left|e^{i \alpha}-\lambda_{j}\right| \geq d_{A}$ and $\left|e^{i \beta}-\gamma_{k}\right| \geq d_{B}$ that

$$
\begin{aligned}
& \|f(A) X+X g(B) \pm f(A) X g(B)\|_{2}^{2} \\
= & \sum_{j, k}\left|f\left(\lambda_{j}\right) y_{j, k}+y_{j, k} g\left(\gamma_{k}\right) \pm f\left(\lambda_{j}\right) y_{j, k} g\left(\gamma_{k}\right)\right|^{2} \\
= & \sum_{j, k}\left|f\left(\lambda_{j}\right) \pm f\left(\lambda_{j}\right) g\left(\gamma_{k}\right)+g\left(\gamma_{k}\right)\right|^{2}\left|y_{j, k}\right|^{2} \\
= & \sum_{j, k}\left|\int_{0}^{2 \pi} \int_{0}^{2 \pi} \frac{e^{i \alpha}+\lambda_{j}}{e^{i \alpha}-\lambda_{j}}+\frac{e^{i \beta}+\gamma_{k}}{e^{i \beta}-\gamma_{k}} \pm \frac{\left(e^{i \alpha}+\lambda_{j}\right)\left(e^{i \beta}+\gamma_{k}\right)}{\left(e^{i \alpha}-\lambda_{j}\right)\left(e^{i \beta}-\gamma_{k}\right)} d \mu(\alpha) d \mu(\beta)\right|^{2}\left|y_{j, k}\right|^{2} \\
\leq & \sum_{j, k}\left(\int_{0}^{2 \pi} \int_{0}^{2 \pi} \frac{\left|e^{i \alpha}+\lambda_{j}\right|}{\left|e^{i \alpha}-\lambda_{j}\right|}+\frac{\left.\left\lvert\, \frac{\left|e^{i \beta}+\gamma_{k}\right|}{\left|e^{i \beta}-\gamma_{k}\right|}+\frac{\left|e^{i \alpha}+\lambda_{j}\right|\left|e^{i \beta}+\gamma_{k}\right|}{\left|e^{i \alpha}-\lambda_{j}\right|\left|e^{i \beta}-\gamma_{k}\right|} d \mu(\alpha) d \mu(\beta)\right.\right)^{2}\left|y_{j, k}\right|^{2}}{\leq} \sum_{j, k}\left(\int_{0}^{2 \pi} \int_{0}^{2 \pi} \frac{1+\left|\lambda_{j}\right|}{d_{A}}+\frac{\left(1+\left|\lambda_{j}\right|\right)\left(1+\left|\gamma_{k}\right|\right)}{d_{A} d_{B}}+\frac{1+\left|\gamma_{k}\right|}{d_{B}} d \mu(\alpha) d \mu(\beta)\right)^{2}\left|y_{j, k}\right|^{2}\right. \\
\leq & \sum_{j, k}\left(\frac{1+\left|\lambda_{j}\right|}{d_{A}}+\frac{1+\left|\gamma_{k}\right|}{d_{B}}+\frac{\left(1+\left|\lambda_{j}\right|\right)\left(1+\left|\gamma_{k}\right|\right)}{d_{A} d_{B}}\right)^{2}\left|y_{j, k}\right|^{2} \\
= & \left\|\frac{X+|A| X}{d_{A}}+\frac{X+X|B|}{d_{B}}+\frac{(I+|A|) X(I+|B|)}{d_{A} d_{B}}\right\|_{2}^{2} .
\end{aligned}
$$

Then we get the first inequality. Similarly,

$$
\begin{aligned}
& \|f(A) X g(B) \pm g(B) X f(A)\|_{2}^{2} \\
= & \sum_{j, k}\left|f\left(\lambda_{j}\right) y_{j, k} g\left(\gamma_{k}\right) \pm g\left(\gamma_{j}\right) y_{j, k} f\left(\lambda_{k}\right)\right|^{2} \\
= & \sum_{j, k}\left|f\left(\lambda_{j}\right) g\left(\gamma_{k}\right) \pm g\left(\gamma_{j}\right) f\left(\lambda_{k}\right)\right|^{2}\left|y_{j, k}\right|^{2} \\
= & \sum_{j, k}\left|\int_{0}^{2 \pi} \int_{0}^{2 \pi} \frac{\left(e^{i \alpha}+\lambda_{j}\right)\left(e^{i \beta}+\gamma_{k}\right)}{\left(e^{i \alpha}-\lambda_{j}\right)\left(e^{i \beta}-\gamma_{k}\right)} \pm \frac{\left(e^{i \beta}+\gamma_{j}\right)\left(e^{i \alpha}+\lambda_{k}\right)}{\left(e^{i \beta}-\gamma_{j}\right)\left(e^{i \alpha}-\lambda_{k}\right)} d \mu(\alpha) d \mu(\beta)\right|^{2}\left|y_{j, k}\right|^{2} \\
\leq & \sum_{j, k}\left(\int_{0}^{2 \pi} \int_{0}^{2 \pi} \frac{\left|e^{i \alpha}+\lambda_{j}\right|\left|e^{i \beta}+\gamma_{k}\right|}{\left|e^{i \alpha}-\lambda_{j}\right|\left|e^{i \beta}-\gamma_{k}\right|}+\frac{\left|e^{i \beta}+\gamma_{j}\right|\left|e^{i \alpha}+\lambda_{k}\right|}{\left|e^{i \beta}-\gamma_{j}\right|\left|e^{i \alpha}-\lambda_{k}\right|} d \mu(\alpha) d \mu(\beta)\right)^{2}\left|y_{j, k}\right|^{2} \\
\leq & \sum_{j, k}\left(\int_{0}^{2 \pi} \int_{0}^{2 \pi} \frac{\left(1+\left|\lambda_{j}\right|\right)\left(1+\left|\gamma_{k}\right|\right)}{d_{A} d_{B}}+\frac{\left(1+\left|\gamma_{j}\right|\right)\left(1+\left|\lambda_{k}\right|\right)}{d_{A} d_{B}} d \mu(\alpha) d \mu(\beta)\right)^{2}\left|y_{j, k}\right|^{2} \\
\leq & \sum_{j, k}\left(\frac{\left(1+\left|\lambda_{j}\right|\right)\left(1+\left|\gamma_{k}\right|\right)}{d_{A} d_{B}}+\frac{\left(1+\left|\gamma_{j}\right|\right)\left(1+\left|\lambda_{k}\right|\right)}{d_{A} d_{B}}\right)^{2}\left|y_{j, k}\right|^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \leq \sum_{j, k}\left(\frac{\left(1+\left|\lambda_{j}\right|\right) y_{j, k}\left(1+\left|\gamma_{k}\right|\right)}{d_{A} d_{B}}+\frac{\left(1+\left|\gamma_{j}\right|\right) y_{j, k}\left(1+\left|\lambda_{k}\right|\right)}{d_{A} d_{B}}\right)^{2} \\
& =\left\|\frac{(I+|A|) X(I+|B|)+(I+|B|) X(I+|A|)}{d_{A} d_{B}}\right\|_{2} .
\end{aligned}
$$

Now, if we put $X=I$ in Theorem 2.1, then we get the next result.
Corollary 2.2. Let $A, B \in \mathbb{M}_{n}$ be Hermitian matrices with $\sigma(A) \cup \sigma(B) \subset \mathbb{D}$ and $f, g \in \mathfrak{A}$. Then

$$
\|f(A)+g(B) \pm f(A) g(B)\|_{2} \leq\left\|\frac{I+|A|}{d_{A}}+\frac{I+|B|}{d_{B}}+\frac{(I+|A|)(I+|B|)}{d_{A} d_{B}}\right\|_{2}
$$

and

$$
\|f(A) g(B) \pm g(B) f(A)\|_{2} \leq\left\|\frac{(I+|A|)(I+|B|)+(I+|B|)(I+|A|)}{d_{A} d_{B}}\right\|_{2}
$$

To prove the next results, the following lemma is required.
Lemma 2.3. Let $A, B, X, Y \in \mathbb{B}(\mathbf{H})$ such that X and Y are compact. Then
(a) $s_{j}(A X \pm Y B) \leq 2 \sqrt{\|A\|\|B\|} s_{j}(X \oplus Y)(j=1,2, \ldots)$;
(b) $\|\|(A X \pm Y B) \oplus 0|\|\leq 2 \sqrt{\|A\|\|B\|}\|\|X \oplus Y \mid\|$.

Proof. Using [11, Theorem 2.2] we have

$$
s_{j}(A X \pm Y B) \leq(\|A\|+\|B\|) s_{j}(X \oplus Y)(j=1,2, \ldots)
$$

If we replace A, B, X and Y by $t A, \frac{B}{t}, \frac{X}{t}$ and $t Y$, respectively, then we get

$$
s_{j}(A X \pm Y B) \leq\left(t\|A\|+\frac{\|B\|}{t}\right) s_{j}(X \oplus Y)(j=1,2, \ldots)
$$

It follows from $\min _{t>0}\left(t\|A\|+\frac{\|B\|}{t}\right)=2 \sqrt{\|A\|\|B\|}$ that we reach the first inequality. The second inequality can be proven by the first inequality and the Ky Fan dominance theorem [6, Theorme IV.2.2]; see also [1].

Now, by applying Lemma 2.3 we obtain the following result.
Theorem 2.4. Let $A, B, X, Y \in \mathbb{B}(\mathbf{H})$ and $f, g \in \mathfrak{A}$. Then

$$
\left\|\left\|\left.((f(A)-g(B)) X \pm Y(f(B)-g(A))) \oplus 0\left|\left\|\leq \frac{4 \sqrt{2}}{d_{A} d_{B}}\right\|\right| A|+|B|\| \|| X \oplus Y \right\rvert\,\right\|\right.
$$

and

$$
\left\|\left\|((f(A)+g(B)) X \pm Y(f(B)+g(A))) \oplus 0\left|\left\|\left|\leq \frac{4 \sqrt{2}}{d_{A} d_{B}}\|I+|A B|\|\right|\right\| X \oplus Y\right|\right\|\right.
$$

where X, Y are compact and A, B are G_{1} operators with $\sigma(A) \cup \sigma(B) \subset \mathbb{D}$.

Proof. Using Lemma 2.3 and inequalities (2) and (3) we have

$$
\begin{aligned}
& \||((f(A)-g(B)) X \pm Y(f(B)-g(A))) \oplus 0|\| \\
\leq & 2\|f(A)-g(B)\|^{\frac{1}{2}}\|f(B)-g(A)\|^{\frac{1}{2}}|\|X \oplus Y \mid\| \quad \text { (by Lemma 2.3) } \\
\leq & 2 \sqrt{\frac{2 \sqrt{2}}{d_{A} d_{B}}\||A|+|B|\|} \sqrt{\frac{2 \sqrt{2}}{d_{A} d_{B}}\||B|+|A|\||\|X \oplus Y \mid\|}
\end{aligned}
$$

(by inequality (2))

$$
\left.=\frac{4 \sqrt{2}}{d_{A} d_{B}}\||A|+|B|\|\||X \oplus Y|\| \right\rvert\, .
$$

Similarly,

$$
\begin{aligned}
&\|\|((f(A)+g(B)) X \pm Y(f(B)+g(A))) \oplus 0 \mid\| \\
& \leq 2\|f(A)+g(B)\|^{\frac{1}{2}}\|f(B)+g(A)\|^{\frac{1}{2}}\|| | X \oplus Y \mid\| \quad \text { (by Lemma 2.3) } \\
& \leq 2 \sqrt{\frac{2 \sqrt{2}}{d_{A} d_{B}}\|I+|A B|\|} \sqrt{\frac{2 \sqrt{2}}{d_{A} d_{B}}\|I+|A B|\| \|}\|X \oplus Y \mid\| \\
& \quad \quad \text { (by inequality (3)) } \\
&= \frac{4 \sqrt{2}}{d_{A} d_{B}}\|I+|A B|\||\|X \oplus Y \mid\| .
\end{aligned}
$$

Theorem 2.5. Let $A, B \in \mathbb{B}(\mathbf{H})$ be G_{1} operators with $\sigma(A) \cup \sigma(B) \subset \mathbb{D}$ and $f \in \mathfrak{A}$. Then for every $X \in \mathbb{B}(\mathbf{H})$

$$
\begin{equation*}
\left.\|\|f(A) X+X \bar{f}(B)\|\| \leq \frac{2}{d_{A} d_{B}}\| \| X-A X B^{*} \right\rvert\, \| \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\|\|f(A) X-X \bar{f}(B)\|\| \leq \frac{2 \sqrt{2}}{d_{A} d_{B}}\| \||A X|+\left|X B^{*}\right|\| \| . \tag{7}
\end{equation*}
$$

Proof. Using the Herglotz representation theorem (see e.g., [7, p. 21]) we have

$$
f(z)=\int_{0}^{2 \pi} \frac{e^{i \alpha}+z}{e^{i \alpha}-z} d \mu(\alpha)+i \operatorname{Im} f(0)=\int_{0}^{2 \pi} \frac{e^{i \alpha}+z}{e^{i \alpha}-z} d \mu(\alpha)
$$

where μ is a positive Borel measure on the interval $[0,2 \pi]$ with finite total mass $\int_{0}^{2 \pi} d \mu(\alpha)=f(0)=1$. Hence

$$
\bar{f}(z)=\overline{\int_{0}^{2 \pi}} \frac{e^{i \alpha}+z}{e^{i \alpha}-z} d \mu(\alpha)=\int_{0}^{2 \pi} \frac{e^{-i \alpha}+\bar{z}}{e^{-i \alpha}-\bar{z}} d \mu(\alpha)
$$

where \bar{f} is the conjugate function of f (i.e., $\bar{f} f=|f|^{2}$). So

$$
\begin{aligned}
& f(A) X+X \bar{f}(B) \\
= & \int_{0}^{2 \pi}\left(e^{i \alpha}+A\right)\left(e^{i \alpha}-A\right)^{-1} X+X\left(e^{-i \alpha}+B^{*}\right)\left(e^{-i \alpha}-B^{*}\right)^{-1} d \mu(\alpha)
\end{aligned}
$$

UNITARILY INVARIANT NORM INEQUALITIES INVOLVING G_{1} OPERATORS 895

$$
\begin{aligned}
& =\int_{0}^{2 \pi}\left(e^{i \alpha}-A\right)^{-1}\left[\left(e^{i \alpha}+A\right) X\left(e^{-i \alpha}-B^{*}\right)\right. \\
& \left.\quad+\left(e^{i \alpha}-A\right) X\left(e^{-i \alpha}+B^{*}\right)\right]\left(e^{-i \alpha}-B^{*}\right)^{-1} d \mu(\alpha) \\
& =2 \int_{0}^{2 \pi}\left(e^{i \alpha}-A\right)^{-1}\left(X-A X B^{*}\right)\left(e^{-i \alpha}-B^{*}\right)^{-1} d \mu(\alpha) .
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \|\|f(A) X+X \bar{f}(B)\|\| \\
= & \left\|\left\|\int_{0}^{2 \pi}\left(e^{i \alpha}+A\right)\left(e^{i \alpha}-A\right)^{-1} X+X\left(e^{-i \alpha}+B^{*}\right)\left(e^{-i \alpha}-B^{*}\right)^{-1} d \mu(\alpha)\right\|\right\| \\
= & 2\left\|\int_{0}^{2 \pi}\left(e^{i \alpha}-A\right)^{-1}\left(X-A X B^{*}\right)\left(e^{-i \alpha}-B^{*}\right)^{-1} d \mu(\alpha)\right\| \\
\leq & 2 \int_{0}^{2 \pi}\| \|\left(e^{i \alpha}-A\right)^{-1}\left(X-A X B^{*}\right)\left(e^{-i \alpha}-B^{*}\right)^{-1}\| \| d \mu(\alpha) \\
\leq & 2 \int_{0}^{2 \pi}\left\|\left(e^{i \alpha}-A\right)^{-1}\right\|\left\|\left(e^{i \alpha}-B\right)^{-1}\right\|\left\|X-A X B^{*} \mid\right\| d \mu(\alpha)
\end{aligned}
$$

(by inequality (1)).
Since A and B are G_{1} operators, it follows from $\left\|\left(e^{i \alpha}-A\right)^{-1}\right\|=\frac{1}{\operatorname{dist}\left(e^{i \alpha}, \sigma(A)\right)}$

$$
\left.\begin{array}{l}
\leq \frac{1}{\operatorname{dist}(\partial \mathbb{D}, \sigma(A))}=\frac{1}{d_{A}} \text { and }\left\|\left(e^{i \alpha}-B\right)^{-1}\right\| \leq \frac{1}{d_{B}} \text { that } \\
\|\|f(A) X+X \bar{f}(B)\|\|
\end{array}\right)\left(\frac{2}{d_{A} d_{B}} \int_{0}^{2 \pi} d \mu(\alpha)\right)\left\|\left\|X-A X B^{*}\right\|\right\| .
$$

Then we have the first inequality. Using the inequality

$$
\begin{aligned}
\left\|\left\|e^{-i \alpha} A X+e^{i \alpha} X B^{*}\right\|\right\|= & \left\|\left\|\left[\begin{array}{cc}
e^{-i \alpha} A X+e^{i \alpha} X B^{*} & 0 \\
0 & 0
\end{array}\right]\right\|\right\| \\
= & \left\|\left\|\left[\begin{array}{cc}
e^{-i \alpha} & e^{i \alpha} \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
A X & 0 \\
X B^{*} & 0
\end{array}\right]\right\|\right\| \\
\leq & \left\|\left[\begin{array}{cc}
e^{-i \alpha} & e^{i \alpha} \\
0 & 0
\end{array}\right]\right\|\left\|\left\|\left[\begin{array}{cc}
A X & 0 \\
X B^{*} & 0
\end{array}\right]\right\|\right\| \\
& \quad \text { by inequality }(1)) \\
= & \sqrt{2}\left\|\left\|\| \begin{array}{cc}
A X & 0 \\
X B^{*} & 0
\end{array}\right]\right\|\|\| \\
= & \sqrt{2}\left\|\left\|\left(|A X|^{2}+\left|X B^{*}\right|^{2}\right)^{\frac{1}{2}} \oplus 0\right\|\right\|
\end{aligned}
$$

$$
\begin{aligned}
\leq \sqrt{2} \| \mid & \left|\left(|A X|+\left|X B^{*}\right|\right) \oplus 0\right| \| \\
& \quad\left(\text { applying }[2, \text { p. } 775] \text { to the function } h(t)=t^{\frac{1}{2}}\right)
\end{aligned}
$$

the Ky Fan dominance theorem we have

$$
\begin{equation*}
\left\|\left|| e ^ { - i \beta } A X + e ^ { i \alpha } X B ^ { * } | \left\|\leq \sqrt{2}\left|\left\||A X|+\left|X B^{*}\right|\right\|\right|\right.\right.\right. \tag{8}
\end{equation*}
$$

It follows from (8) and the same argument of the proof of the first inequality that we have the second inequality and this completes the proof.

Remark 2.6. Let $f(x+y i)=u(x, y)+v(x, y) i$, where u, v are the real and imaginary parts of f, respectively. If $f, f \in \mathfrak{A}$, then the Cauchy-Riemann equations for complex analytic functions (i.e., $\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}$ and $\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}$) implies that $v(x, y)=k$ for some $k \in \mathcal{C}$. The condition $f(0)=1$ conclude that $v(x, y)=$ 0 . Hence, f is a real valued function. So, for arbitrary functions $f, g \in \mathfrak{A}$, we can not replace g by \bar{f} in inequalities (2) and (3). Thus, in Theorem 2.5 we have been established some upper bounds for $\|\|f(A) X+X \bar{f}(B)\|\|$ and $\|\| f(A) X-$ $X \bar{f}(B)||\mid$ in terms of $||\left|X-A X B^{*}\right||\mid$ and $|\left|\left||A X|+\left|X B^{*}\right|\right|\right| \mid$, respectively, that can not be derived from inequality (2) and (3) for an arbitrary function $f \in \mathfrak{A}$.

Remark 2.7. If $A, B \in \mathbb{B}(\mathbf{H})$ are G_{1} operators with $\sigma(A) \cup \sigma(B) \subset \mathbb{D}$ and $f \in \mathfrak{A}$, then with a similar argument in the proof of Theorem 2.5 we get the following inequalities

$$
\begin{equation*}
\|\mid \bar{f}(A) X+X f(B)\|\left\|\leq \frac{2}{d_{A} d_{B}}\right\|\left\|-A^{*} X B\right\| \| \tag{9}
\end{equation*}
$$

and

$$
\left\|\left\|\bar{f}(A) X-X f(B)\left|\left\|\leq \frac{2 \sqrt{2}}{d_{A} d_{B}}\right\|\left\|\left|A^{*} X\right|+|X B|\right\| \|,\right.\right.\right.
$$

where $X \in \mathbb{B}(\mathbf{H})$.
Remark 2.8. For an arbitrary operator $A \in \mathbb{B}(\mathbf{H})$, the numerical range is definition by $W(A)=\{\langle A x, x\rangle: x \in \mathbf{H},\|x\|=1\}$. It is well-known that $W(A)$ is a bounded convex subset of the complex plane \mathbb{C}. Its closure $\overline{W(A)}$ contains $\sigma(A)$ and is contained in $\{z \in \mathbb{C}:|z| \leq\|A\|\}$. In [10], it is shown

$$
\frac{1}{\operatorname{dist}(z, \sigma(A))} \leq\left\|(z-A)^{-1}\right\| \quad(z \notin \sigma(A))
$$

and

$$
\left\|(z-A)^{-1}\right\| \leq \frac{1}{\operatorname{dist}(z, \overline{W(A)})} \quad(z \notin \overline{W(A)}) .
$$

Now, if we replace the hypophysis G_{1} operators by the conditions $\overline{W(A)} \cup$ $\overline{W(B)} \subseteq \mathbb{D}$ in Theorem 2.5, then in inequalities (2)-(5), the constants d_{A} and d_{B} interchange to D_{A} and D_{B}, respectively, where $D_{A}=\operatorname{dist}(\partial \mathbb{D}, \overline{W(A)})$, $D_{B}=\operatorname{dist}(\partial \mathbb{D}, \overline{W(A)})$. Also inequalities (6) and (7) appear of the forms

$$
\|\|f(A) X+X \bar{f}(B)\|\| \leq \frac{2}{D_{A} D_{B}}\| \| X-A X B^{*}\| \|
$$

and

$$
\left|\left\|f(A) X-X \bar{f}(B)\left|\left\|\left|\leq \frac{2 \sqrt{2}}{D_{A} D_{B}}\right|\right\|\right| A X\left|+\left|X B^{*}\right|\right|\right\|\right.
$$

where $f \in \mathfrak{A}$. For example, for every contraction operator A (i.e., $A^{*} A \leq I$) and $0<\epsilon<1$, the operator ϵA has the property $\overline{W(\epsilon A)} \subseteq \mathbb{D}$.

If we take $X=I$ in Theorem 2.5, then we get the following result.
Corollary 2.9. Let $A, B \in \mathbb{B}(\mathbf{H})$ be normal operators with $\sigma(A) \cup \sigma(B) \subset \mathbb{D}$ and $f \in \mathfrak{A}$. Then for every $X \in \mathbb{B}(\mathbf{H})$

$$
\|\|f(A)+\bar{f}(B)\|\| \leq \frac{2}{d_{A} d_{B}}\left\|I-A B^{*}\right\| \|
$$

In particular, for $B=A$ we have

$$
\left|\left|| \operatorname { R e } (f (A)) | \left\|\leq \frac{1}{d_{A}^{2}}\left|\left\|I-A A^{*} \mid\right\| .\right.\right.\right.\right.
$$

For the next result we need the following lemma (see also [14]).
Lemma 2.10. If $A, B, X \in \mathbb{B}(\mathbf{H})$ such that A and B are self-adjoint and $0<m I \leq X$ for some positive real number m, then

$$
m\|\|A-B\|\| \leq\|A A X+X B\|
$$

Proof.

$$
\begin{aligned}
m\|\|A-B\|\| & \left.\leq \frac{1}{2}\| \|(A-B) X+X(A-B) \right\rvert\, \| \quad \quad(\text { by }[17, \text { Lemma } 3.1]) \\
& =\frac{1}{2}\| \| A X-X B+(X A-B X)\| \| \\
& \leq \frac{1}{2}(\| \| A X-X B\| \|+|\|X A-B X \mid\|) \\
& =\|\mid\| X-X B\| \| \quad\left(\text { since }\|A\|=\left\|A^{*}\right\|\right)
\end{aligned}
$$

Proposition 2.11. Let $A, B \in \mathbb{B}(\mathbf{H})$ be G_{1} operators with $\sigma(A) \cup \sigma(B) \subset \mathbb{D}$, let $X \in \mathbb{B}(\mathbf{H})$ such that $0<m I \leq X$ for some positive real number m and $f \in \mathfrak{A}$. Then

$$
\begin{equation*}
m \mid\|\operatorname{Re}(f(A))-\operatorname{Re}(f(B))\| \| \leq \frac{1}{d_{A} d_{B}}\left(\left\|\left|X-A X B^{*}\right|\right\|+\left\|X-A^{*} X B\right\|\right) \tag{10}
\end{equation*}
$$

In particular, if A and B are unitary operators, then

$$
m\left|\left\|\operatorname{Re}(f(A))-\operatorname{Re}(f(B))\left|\left\|\left|\leq \frac{2}{d_{A} d_{B}}\right|\right\| X-A X B^{*}\right|\right\|\right.
$$

Proof.

$$
\begin{aligned}
& m\|\|\operatorname{Re}(f(A))-\operatorname{Re}(f(B))\|\| \leq\|\operatorname{Re}(f(A)) X+X \operatorname{Re}(f(B))\| \| \\
& \quad \text { (by Lemma 2.10) } \\
& \left.=\frac{1}{2} \right\rvert\,\|f(A) X+X \bar{f}(B)+\bar{f}(A) X+X f(B)\| \| \\
& \leq \frac{1}{2}(\| \| f(A) X+X \bar{f}(B)\|\mid\|+\|\bar{f}(A) X+X f(B)\| \|) \\
& \leq \frac{1}{d_{A} d_{B}}\left(\| \| X-A X B^{*}\| \|+\left\|X-A^{*} X B\right\| \|\right)
\end{aligned}
$$

(by inequalities (6) and (9)).

Hence we get the first inequality. Especially, it follows from inequality (10) and equation

$$
\left\|\left\|X-A X B^{*}\right\|\right\|=\| \| A\left(A^{*} X B-X\right) B^{*}\| \|=\| \| A^{*} X B-X \mid\|=\|\left\|X-A^{*} X B\right\| \| .
$$

Remark 2.12. Using Lemma 2.3 we have

$$
\begin{aligned}
\|\|((f(A)+\bar{f}(B)) X & -Y(f(B)+\bar{f}(A))) \oplus 0 \mid \| \\
& \leq 2\|f(A)+\bar{f}(B)\|^{\frac{1}{2}}\|f(B)+\bar{f}(A)\|^{\frac{1}{2}}\| \| X \oplus Y\| \| \\
& =2\|f(A)+\bar{f}(B)\|\| \| X \oplus Y \mid \| .
\end{aligned}
$$

Now, if we apply inequality (6), then we reach

$$
\|f(A)+\bar{f}(B)\|\|\|X \oplus Y\|\| \leq \frac{2}{d_{A} d_{B}}\left\|I-A B^{*}\right\|\|X X Y \mid\|,
$$

whence

$$
\|\|((f(A)+\bar{f}(B)) X-Y(f(B)+\bar{f}(A))) \oplus 0\|\| \leq \frac{4}{d_{A} d_{B}}\left\|I-A B^{*}\right\|\|X \oplus Y \mid\| .
$$

Hence, if we put $B=A$, then we get

$$
\||\operatorname{Re}(f(A)) X-Y \operatorname{Re}(f(A)) \oplus 0|\| \leq \frac{2}{d_{A}^{2}}\left\|I-A A^{*}\right\|\| \|\|X \oplus Y\| \| .
$$

References

[1] R. Alizadeh and M. B. Asadi, An extension of Ky Fan's dominance theorem, Banach J. Math. Anal. 6 (2012), no. 1, 139-146.
[2] T. Ando and X. Zhan, Norm inequalities related to operator monotone functions, Math. Ann. 315 (1999), no. 4, 771-780.
[3] M. Bakherad and F. Kittaneh, Numerical radius inequalities involving commutators of G_{1} operators, Complex Anal. Oper. Theory 2017 (2017). https://doi.org/ 10.1007/s11785-017-0726-9.
[4] M. Bakherad and M. S. Moslehian, Reverses and variations of Heinz inequality, Linear Multilinear Algebra 63 (2015), no. 10, 1972-1980.
[5] L. Bao, Y. Lin, and Y. Wei, Krylov subspace methods for the generalized Sylvester equation, Appl. Math. Comput. 175 (2006), no. 1, 557-573.
[6] R. Bhatia, Matrix Analysis, Graduate Texts in Mathematics, 169, Springer-Verlag, New York, 1997.
[7] W. F. Donoghue, Jr., Monotone Matrix Functions and Analytic Continuation, SpringerVerlag, New York, 1974.
[8] N. Dunford and J. T. Schwartz, Linear Operators. Part II, With the assistance of William G. Bade and Robert G. Bartle, Interscience Publishers John Wiley \& Sons New York-London, 1963.
[9] J. I. Fujii, M. Fujii, T. Furuta, and M. Nakamoto, Norm inequalities equivalent to Heinz inequality, Proc. Amer. Math. Soc. 118 (1993), no. 3, 827-830.
[10] S. Hildebrandt, Über den numerischen Wertebereich eines Operators, Math. Ann. 163 (1966), 230-247.
[11] O. Hirzallah and F. Kittaneh, Singular values, norms, and commutators, Linear Algebra Appl. 432 (2010), no. 5, 1322-1336.
[12] \quad, Norm inequalities for commutators of G_{1} operators, Complex Anal. Oper. Theory 10 (2016), no. 1, 109-114.
[13] F. Kittaneh, M. S. Moslehian, and M. Sababheh, Unitarily invariant norm inequalities for elementary operators involving G_{1} operators, Linear Algebra Appl. 513 (2017), 8495.
[14] F. Kittaneh, M. S. Moslehian, and T. Yamazaki, Cartesian decomposition and numerical radius inequalities, Linear Algebra Appl. 471 (2015), 46-53.
[15] C. R. Putnam, Operators satisfying a G_{1} condition, Pacific J. Math. 84 (1979), no. 2, 413-426.
[16] A. Seddik, Rank one operators and norm of elementary operators, Linear Algebra Appl. 424 (2007), no. 1, 177-183.
[17] J. L. van Hemmen and T. Ando, An inequality for trace ideals, Comm. Math. Phys. 76 (1980), no. 2, 143-148.

Mojtaba Bakherad
Department of Mathematics
Faculty of Mathematics
University of Sistan and Baluchestan
Zahedan, Iran
Email address: mojtaba.bakherad@yahoo.com; bakherad@member.ams.org

