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SOME FIXED-POINT RESULTS ON PARAMETRIC

Nb-METRIC SPACES

Nihal Taş and Nihal Yılmaz Özgür

Abstract. Our aim is to introduce the notion of a parametric Nb-metric

and study some basic properties of parametric Nb-metric spaces. We give
some fixed-point results on a complete parametric Nb-metric space. Some

illustrative examples are given to show that our results are valid as the
generalizations of some known fixed-point results. As an application of

this new theory, we prove a fixed-circle theorem on a parametric Nb-metric

space.

1. Introduction

Fixed-point theory has been studied by various methods. One of these meth-
ods is to change the contractive condition (see [2], [3], [6], [9], [10] and [15] for
more details). Another method for this purpose is to generalize the metric
space. For this reason, some generalized metric spaces have been introduced
(see [1], [4], [5], [12], [11], [13] and [14] for more details). For example, in [1],
the notion of a b-metric space was introduced as a generalization of a metric
space. Also the concepts of a parametric metric space and parametric b-metric
space were defined in [4] and [5], respectively. In [12], it was brought a dif-
ferent approach called S-metric, defined on a domain with three dimensions.
The notion of an S-metric space was expanded to the notions of an Sb-metric
space and a parametric S-metric space in [11] and [13], respectively. In [14],
the concept of an Ab-metric space was given as a generalization of an Sb-metric
space. An Ab-metric was defined on a domain with n dimensions.

In this paper, we define a new generalized metric space called a parametric
Nb-metric space. In Section 2, we present the concept of a parametric Nb-metric
space with some basic facts and study some relationships between the new
metric space and other metric spaces. In Section 3, we extend the well known
Ćirić’s fixed-point result using an appropriate contractive condition defined on
a complete parametric Nb-metric space. In Section 4, we give a new version
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of Kannan’s fixed-point result using the notion of a parametric Nb-metric. In
Section 5, we obtain a new generalization of the classical Chatterjea’s fixed-
point theorem. In Section 6, we prove a fixed-point theorem for a surjective
self-mapping using an expansive mapping on a complete parametric Nb-metric
space. In Section 7, we obtain some illustrative examples for the obtained
theorems. In Section 8, we get a new approach from fixed-point theory to
fixed-circle theory on a parametric Nb-metric space.

2. Parametric Nb-metric spaces

Before stating our main results we recall the definitions of an Sb-metric space
and a parametric S-metric space.

Definition 2.1 ([11]). Let X be a nonempty set and b ≥ 1 be a given real
number. A function Sb : X × X × X → [0,∞) is said to be Sb-metric if and
only if for all u1, u2, u3, a ∈ X the following conditions are satisfied:

(Sb1) Sb(u1, u2, u3) = 0 if and only if u1 = u2 = u3,
(Sb2) Sb(u1, u2, u3) ≤ b [Sb(u1, u1, a) + Sb(u2, u2, a) + Sb(u3, u3, a)].

Then the pair (X,Sb) is called an Sb-metric space.

Every S-metric is an Sb-metric with b = 1.

Definition 2.2 ([13]). Let X be a nonempty set and PS : X×X×X×(0,∞)→
[0,∞) be a function. PS is called a parametric S-metric on X, if

(PS1) PS(u1, u2, u3, t) = 0 if and only if u1 = u2 = u3,
(PS2) PS(u1, u2, u3, t) ≤ PS(u1, u1, a, t) + PS(u2, u2, a, t) + PS(u3, u3, a, t)

for each u1, u2, u3, a ∈ X and all t > 0. The pair (X,PS) is called a parametric
S-metric space.

Now we give a new definition.

Definition 2.3. Let X 6= ∅, b ≥ 1 be a given real number and N : X3 ×
(0,∞)→ [0,∞) be a function. N is called a parametric Sb-metric on X if

(P b
S1) N(u1, u2, u3, t) = 0 if and only if u1 = u2 = u3,

(P b
S2) N(u1, u2, u3, t) ≤ b [N(u1, u1, a, t) +N(u2, u2, a, t) +N(u3, u3, a, t)]

for each ui, a ∈ X (i ∈ {1, 2, 3}) and t > 0. Then the pair (X,N) is called a
parametric Sb-metric space.

From now on, we will denote N(u, u, . . . , (u)n−1, v, t) by Nu,v,t and define
the notion of a parametric Nb-metric space as a generalization of a parametric
Sb-metric space.

Definition 2.4. Let X 6= ∅, b ≥ 1 be a given real number, n ∈ N and N :
Xn × (0,∞)→ [0,∞) be a function. N is called a parametric Nb-metric on X
if

(N1) N(u1, u2, . . . , un−1, un, t) = 0 if and only if u1 = u2 = · · · = un−1 =
un,
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(N2) N(u1, u2, . . . , un−1, un, t) ≤ b[Nu1,a,t + Nu2,a,t + · · · + Nun−1,a,t +
Nun,a,t] for each ui, a ∈ X (i ∈ {1, 2, . . . , n}) and t > 0. In this case, the pair
(X,N) is called a parametric Nb-metric space.

We note that parametric Nb-metric spaces are a generalization of parametric
S-metric spaces because every parametric S-metric is a parametric Nb-metric
with b = 1 and n = 3.

Example 2.5. Let X = {f | f : (0,∞)→ R is a function}, n = 3 and the
function N : X3 × (0,∞)→ [0,∞) be defined by

N(f, g, h, t) =
1

9
(|f(t)− g(t)|+ |f(t)− h(t)|+ |g(t)− h(t)|)2

for each f, g, h ∈ X and all t > 0. Then (X,N) is a parametric Nb-metric space
with b = 4, but it is not a parametric S-metric space. Indeed, let us consider
the following functions for each u ∈ (0,∞),

f(u) = 7, g(u) = 9, h(u) = 11 and a(u) = 8.

Then the condition (PS2) is not satisfied.

Lemma 2.6. Let (X,N) be a parametric Nb-metric space. Then we have

Nu,v,t ≤ bNv,u,t and Nv,u,t ≤ bNu,v,t

for each u, v ∈ X and all t > 0.

Proof. Using conditions (N1) and (N2), we get

Nu,v,t ≤ b
[
Nu,u,t +Nu,u,t + · · ·+ (Nu,u,t)n−1 +Nv,u,t

]
= bNv,u,t

and similarly

Nv,u,t ≤ b
[
Nv,v,t +Nv,v,t + · · ·+ (Nv,v,t)n−1 +Nu,v,t

]
= bNu,v,t

for each u, v ∈ X and all t > 0. �

Lemma 2.7. Let (X,N) be a parametric Nb-metric space. Then we have

Nu,v,t ≤ b [(n− 1)Nu,z,t +Nv,z,t]

and

Nu,v,t ≤ b [(n− 1)Nu,z,t + bNz,v,t]

for each u, v, z ∈ X and all t > 0.

Proof. Using the condition (N2), we obtain

Nu,v,t ≤ b
[
Nu,z,t +Nu,z,t + · · ·+ (Nu,z,t)n−1 +Nv,z,t

]
= b [(n− 1)Nu,z,t +Nv,z,t](2.1)

for each u, v, z ∈ X and all t > 0. Using the inequality (2.1) and Lemma 2.6,
we get

Nu,v,t ≤ b [(n− 1)Nu,z,t + bNz,v,t] . �
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Lemma 2.8. Let (X,N) be a parametric Nb-metric space and the function
DN : (X ×X)

n × (0,∞)→ [0,∞) be defined by

DN ((u1, v1), (u2, v2), . . . , (un, vn), t) = N(u1, u2, . . . , un, t)+N(v1, v2, . . . , vn, t)

for each ui, vj ∈ X (i, j ∈ {1, 2, . . . , n}) and all t > 0. Then (X ×X,DN ) is a
parametric Nb-metric space on X ×X.

Proof. Let (ui, vi), (a, c) ∈ X×X. We use repeatedly condition (N1). We have

DN ((u1, v1), (u2, v2), . . . , (un, vn), t) = 0

if and only if

N(u1, u2, . . . , un, t) +N(v1, v2, . . . , vn, t) = 0

if and only if

N(u1, u2, . . . , un, t) = 0 and N(v1, v2, . . . , vn, t) = 0

if and only if

u1 = u2 = · · · = un and v1 = v2 = · · · = vn

if and only if

(u1, v1) = (u2, v2) = · · · = (un, vn).

This proves (N1). For condition (N2)

DN ((u1, v1), (u2, v2), . . . , (un, vn), t)

= N(u1, u2, . . . , un, t) +N(v1, v2, . . . , vn, t)

≤ b [Nu1,a,t +Nu2,a,t + · · ·+Nun,a,t] + b [Nv1,c,t +Nv2,c,t + · · ·+Nvn,c,t]

= b

 DN ((u1, v1), (u1, v1), . . . , (a, c), t)
+DN ((u2, v2), (u2, v2), . . . , (a, c), t)

+ · · ·+DN ((un, vn), (un, vn), . . . , (a, c), t)


and so

DN ((u1, v1), (u2, v2), . . . , (un, vn), t)

≤ b

 DN ((u1, v1), (u1, v1), . . . , (a, c), t)
+DN ((u2, v2), (u2, v2), . . . , (a, c), t)

+ . . .+DN ((un, vn), (un, vn), . . . , (a, c), t)

 .

Consequently, (X ×X,DN ) is a parametric Nb-metric space on X ×X. �

Remark 2.9. 1) If we take n = 3 in Lemma 2.8, then we have

DN ((u1, v1), (u2, v2), (u3, v3), t) = N(u1, u2, u3, t) +N(v1, v2, v3, t)

for each ui, vj ∈ X (i, j ∈ {1, 2, 3}) and all t > 0, and (X × X,DN ) is a
parametric Sb-metric space.

2) If we take n = 3 and b = 1 in Lemma 2.8, then we have

DN ((u1, v1), (u2, v2), (u3, v3), t) = PS(u1, u2, u3, t) + PS(v1, v2, v3, t)
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for each ui, vj ∈ X (i, j ∈ {1, 2, 3}) and all t > 0, and (X × X,DN ) is a
parametric S-metric space.

Definition 2.10. Let (X,N) be a parametric Nb-metric space and {uk} be a
sequence in X. Then

(1) {uk} converges to u in X if for each ε > 0, there exists n0 ∈ N such that
for all k ≥ n0, we have Nuk,u,t ≤ ε, that is, lim

k→∞
Nuk,u,t = 0. We will write

lim
k→∞

uk = u.

(2) {uk} is called a Cauchy sequence if for each ε > 0, there exists n0 ∈ N
such that for all k, l ≥ n0, we have Nuk,ul,t ≤ ε, that is, lim

k,l→∞
Nuk,ul,t = 0.

(3) (X,N) is called complete if every Cauchy sequence is a convergent se-
quence.

Lemma 2.11. Let (X,N) be a parametric Nb-metric space. If the sequence
{uk} in X converges to u, then u is unique.

Proof. Let {uk} converges to u and v with u 6= v. Then for each ε > 0, there
exist k1, k2 ∈ N such that for all k1, k2 ≥ n0,

Nuk,u,t <
ε

2b2(n− 1)
and Nuk,v,t <

ε

2b2

for all t > 0 and b ≥ 1. If we put n0 = max {k1, k2}, then using the conditions
(N1), (N2) and Lemma 2.7, for every k ≥ n0 we obtain

Nu,v,t ≤ b(n− 1)Nu,uk,t + bNv,uk,t ≤ b2(n− 1)Nuk,u,t + b2Nuk,v,t

< b2(n− 1)
ε

2b2(n− 1)
+ b2

ε

2b2
= ε

and we get Nu,v,t = 0, that is u = v. �

Lemma 2.12. Let (X,N) be a parametric Nb-metric space. If the sequence
{uk} in X converges to u, then {uk} is a Cauchy sequence.

Proof. Since the sequence {uk} in X converges to u then for each ε > 0 there
exist n1, n2 ∈ N such that for all k ≥ n1, l ≥ n2,

Nuk,u,t <
ε

2b(n− 1)
and Nul,u,t <

ε

2b

for all t > 0 and b ≥ 1. If we put n0 = max {n1, n2}, then for every k, l ≥ n0

we get

Nuk,ul,t ≤ b(n− 1)Nuk,u,t + bNul,u,t < ε.

Therefore {uk} is Cauchy. �

Lemma 2.13. Let (X,N) be a parametric Nb-metric space and {uk}, {vk} be
two convergent sequences to u and v, respectively. Then we have

1

b2
Nu,v,t ≤ lim inf

k→∞
Nuk,vk,t ≤ lim sup

k→∞
Nuk,vk,t ≤ b2Nu,v,t
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for all t > 0. In particular, if {vk} is a constant sequence such that vk = v,
then we get

1

b2
Nu,v,t ≤ lim inf

k→∞
Nuk,v,t ≤ lim sup

k→∞
Nuk,v,t ≤ b2Nu,v,t

for all t > 0. Also if u = v, then we have

lim
k→∞

Nuk,v,t = 0

for all t > 0.

Proof. Using the condition (N2), Lemmas 2.6 and 2.7, we obtain

Nu,v,t ≤ b(n− 1)Nu,uk,t + bNv,uk,t

≤ b(n− 1)Nu,uk,t + b2(n− 1)Nv,vk,t + b2Nuk,vk,t

≤ b2(n− 1)Nuk,u,t + b3(n− 1)Nvk,v,t + b2Nuk,vk,t(2.2)

and

Nuk,vk,t ≤ b(n− 1)Nuk,u,t + bNvk,u,t

≤ b(n− 1)Nuk,u,t + b2(n− 1)Nvk,v,t + b2Nu,v,t(2.3)

for all t > 0. Taking lower limit for k → ∞ in the inequality (2.2) and upper
limit for k →∞ in the inequality (2.3), we get

1

b2
Nu,v,t ≤ lim inf

k→∞
Nuk,vk,t ≤ lim sup

k→∞
Nuk,vk,t ≤ b2Nu,v,t

for all t > 0. If vk = v, then we find

(2.4) Nu,v,t ≤ b(n− 1)Nu,uk,t + bNv,uk,t ≤ b2(n− 1)Nuk,u,t + b2Nuk,v,t

and

(2.5) Nuk,v,t ≤ b(n− 1)Nuk,u,t + bNv,u,t ≤ b(n− 1)Nuk,u,t + bNu,v,t

for all t > 0. Taking lower limit for k → ∞ in the inequality (2.4) and upper
limit for k → ∞ in the inequality (2.5), we get the desired result. It can be
easily seen that u = v then we have

lim
k→∞

Nuk,v,t = 0.
�

Lemma 2.14. Let (X,N) be a parametric Nb-metric space. If there exist two
sequences {uk} and {vk} such that

lim
k→∞

Nuk,vk,t = 0,

whenever {uk} is a convergent sequence in X such that lim
k→∞

uk = u0 for some

u0 ∈ X, then we have lim
k→∞

vk = u0.
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Proof. Using the condition (N2), Lemmas 2.6 and 2.7, we have

Nvk,u0,t ≤ b(n− 1)Nvk,uk,t + bNu0,uk,t ≤ b2(n− 1)Nuk,vk,t + b2Nuk,u0,t

and so taking upper limit for k →∞ we get

lim sup
k→∞

Nvk,u0,t ≤ b2(n− 1)lim sup
k→∞

Nuk,vk,t + b2lim sup
k→∞

Nuk,u0,t

and so we obtain lim
k→∞

vk = u0. �

3. A new generalization of Ćirić’s fixed-point result

In this section we extend the known Ćirić’s fixed-point result [3] using an
appropriate contractive condition defined on a complete parametric Nb-metric
space. We prove the following theorem.

Theorem 3.1. Let (X,N) be a complete parametric Nb-metric space and T
be a self-mapping of X satisfying

(3.1) NTu,Tv,t ≤ hmax
{
Nu,v,t, NTu,u,t, NTv,v,t, NTv,u,t, NTu,v,t

}
for each u, v ∈ X, all t > 0 and some 0 ≤ h < 1

b+b2(n−1) . Then T has a unique

fixed point in X.

Proof. Let u0 ∈ X and the sequence {uk} be defined as

Tu0 = u1, Tu1 = u2,. . . , Tuk = uk+1, . . . .

Assume that uk 6= uk+1 for all k. Using the condition (3.1), we get

Nuk,uk+1,t = NTuk−1,Tuk,t

≤ hmax
{
Nuk−1,uk,t, Nuk,uk−1,t, Nuk+1,uk,t, Nuk+1,uk−1,t, Nuk,uk,t

}
= hmax

{
Nuk−1,uk,t, Nuk,uk−1,t, Nuk+1,uk,t, Nuk+1,uk−1,t

}
.(3.2)

By Lemma 2.7, we obtain

(3.3) Nuk+1,uk−1,t ≤ b(n− 1)Nuk+1,uk,t + bNuk−1,uk,t.

Using the inequalities (3.2), (3.3) and Lemma 2.6, we have

Nuk,uk+1,t ≤ hmax

{
Nuk−1,uk,t, bNuk−1,uk,t, bNuk,uk+1,t,
b2(n− 1)Nuk,uk+1,t + bNuk−1,uk,t

}
= hb2(n− 1)Nuk,uk+1,t + hbNuk−1,uk,t

and so

(1− hb2(n− 1))Nuk,uk+1,t ≤ hbNuk−1,uk,t,

which implies

(3.4) Nuk,uk+1,t ≤
hb

1− hb2(n− 1)
Nuk−1,uk,t.
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Let a = hb
1−hb2(n−1) . Then a < 1 since hb + hb2(n − 1) < 1. Notice that

1 − hb2(n − 1) 6= 0 since 0 ≤ h < 1
b+b2(n−1) . For k ∈ {1, 2, . . .}, using the

inequality (3.4) and mathematical induction, we find

(3.5) Nuk,uk+1,t ≤ akNu0,u1,t.

Now we show that the sequence {uk} is a Cauchy sequence. Then for all k, l ∈ N
with l > k, using the inequality (3.5), the condition (N2), Lemmas 2.6 and 2.7,
we get

Nuk,ul,t ≤ b(n− 1)Nuk,uk+1,t + bNul,uk+1,t ≤ b(n− 1)Nuk,uk+1,t + b2Nuk+1,ul,t

≤ b(n− 1)Nuk,uk+1,t + b3(n− 1)Nuk+1,uk+2,t + b3Nul,uk+2,t

≤ b(n− 1)Nuk,uk+1,t + b3(n− 1)Nuk+1,uk+2,t + b4Nuk+2,ul,t

≤ b(n− 1)Nuk,uk+1,t + b3(n− 1)Nuk+1,uk+2,t

+ b5(n− 1)Nuk+2,uk+3,t + b5Nul,uk+3,t

≤ b(n− 1)Nuk,uk+1,t + b3(n− 1)Nuk+1,uk+2,t

+ b5(n− 1)Nuk+2,uk+3,t + b7(n− 1)Nuk+3,uk+4,t

+ · · ·

+ b2l−2k−3(n− 1)Nul−2,ul−1,t + b2l−2k−2Nul−1,ul,t

≤ (n− 1)
[
bak + b3ak+1 + b5ak+2 + · · ·+ b2l−2k−3al−2

]
×Nu0,u1,t + b2l−2k−2al−1Nu0,u1,t

= (n− 1)bak
[
1 + b2a+ b4a2 + · · ·+ b2l−2k−4al−k−2

]
×Nu0,u1,t + bakb2l−2k−3al−k−1Nu0,u1,t

≤ (n− 1)bak
[
1 + b2a+ b4a2 + · · ·

]
Nu0,u1,t

≤ (n− 1)
bak

1− b2a
Nu0,u1,t.(3.6)

By the inequality (3.6), we have

lim
k,l→∞

Nuk,ul,t = 0

and so {uk} is a Cauchy sequence. From the completeness hypothesis, there
exists u ∈ X such that lim

k→∞
uk = u. Now we prove that u is a fixed point of T .

Suppose that u is not a fixed point of T , that is, Tu 6= u. Using the condition
(3.1), we get

Nuk,Tu,t = NTuk−1,Tu,t

≤ hmax
{
Nuk−1,u,t, Nuk,uk−1,t, NTu,u,t, NTu,uk−1,t, Nuk,u,t

}
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and so taking limit for k → ∞, using Lemma 2.6 and the condition (N1), we
have

Nu,Tu,t ≤ hmax {Nu,u,t, Nu,u,t, NTu,u,t, NTu,u,t, Nu,u,t}
= hNTu,u,t ≤ hbNu,Tu,t,

which implies Nu,Tu,t = 0 and Tu = u since 0 ≤ h < 1
b+b2(n−1) .

Finally we show that the fixed point u is unique. On the contrary, let u and
v be two fixed points of T , that is, Tu = u and Tv = v. Using the conditions
(3.1), (N1) and Lemma 2.6, we obtain

Nu,v,t = NTu,Tv,t

≤ hmax {Nu,v,t, Nu,u,t, Nv,v,t, Nv,u,t, Nu,v,t}
≤ hmax {Nu,v,t, bNu,v,t} = hbNu,v,t,

which implies Nu,v,t = 0, that is, u = v. Consequently, T has a unique fixed
point in X. �

Remark 3.2. If we take n = 3, b = 1 and set the function Nb : X ×X ×X →
[0,∞) in Theorem 3.1, then we get Corollary 2.21 given in [10] on page 123 on
a complete S-metric space. Since S-metric spaces are generalizations of metric
spaces, Theorem 3.1 is another generalization of the known Ćirić’s fixed-point
result.

4. A new generalization of Kannan’s fixed point result

In this section we introduce a new generalized version of Kannan’s fixed-
point result [6] using a parametric Nb-metric.

Theorem 4.1. Let (X,N) be a complete parametric Nb-metric space and T
be a self-mapping of X satisfying

(4.1) NTu,Tv,t ≤ h [Nu,Tu,t +Nv,Tv,t]

for each u, v ∈ X, all t > 0 and some 0 ≤ h < 1
2 . Then T has a unique fixed

point in X.

Proof. Let u0 ∈ X and the sequence {uk} be defined as

Tu0 = u1, Tu1 = u2, . . . , Tuk = uk+1, . . . .

Assume that uk 6= uk+1 for all k. Using the condition (4.1), we get

Nuk,uk+1,t = NTuk−1,Tuk,t ≤ h
[
Nuk−1,uk,t +Nuk,uk+1,t

]
and so

(1− h)Nuk,uk+1,t ≤ hNuk−1,uk,t,

which implies

(4.2) Nuk,uk+1,t ≤
h

1− h
Nuk−1,uk,t.
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Let a = h
1−h . Then a < 1 since 2h < 1. Notice that 1− h 6= 0 since 0 ≤ h < 1

2 .

For k ∈ {1, 2, . . .}, using the inequality (4.2) and mathematical induction, we
find

Nuk,uk+1,t ≤ akNu0,u1,t.

Using similar arguments as in the proof of Theorem 3.1, we can easily see that
the sequence {uk} is a Cauchy sequence. From the completeness hypothesis,
there exists u ∈ X such that lim

k→∞
uk = u. Now we prove that u is a fixed point

of T . Suppose that u is not a fixed point of T , that is, Tu 6= u. Using the
condition (4.1), we get

Nuk,Tu,t = NTuk−1,Tu,t ≤ h
[
Nuk−1,uk,t +Nu,Tu,t

]
and so taking limit for k →∞, using the condition (N1), we have

Nu,Tu,t ≤ hNu,Tu,t,

which implies Nu,Tu,t = 0 and Tu = u since h ∈
[
0, 1

2

)
.

Finally, we show that the fixed point u is unique. On the contrary, let u and
v be two fixed points of T , that is, Tu = u and Tv = v. Using the conditions
(4.1) and (N1), we obtain

Nu,v,t = NTu,Tv,t ≤ h [Nu,u,t +Nv,v,t] = 0,

which implies u = v. Consequently, T has a unique fixed point in X. �

Remark 4.2. If we take n = 3, b = 1 and set the function Nb : X ×X ×X →
[0,∞) in Theorem 4.1, then we get Corollary 2.8 given in [10] on page 118 on a
complete S-metric space. Hence Theorem 4.1 is another generalization of the
known Kannan’s fixed-point result.

5. A new generalization of Chatterjea’s fixed-point result

In this section we give a generalization of the classical Chatterjea’s fixed-
point theorem [2].

Theorem 5.1. Let (X,N) be a complete parametric Nb-metric space and T
be a self-mapping of X satisfying

(5.1) NTu,Tv,t ≤ h [Nu,Tv,t +Nv,Tu,t]

for each u, v ∈ X, all t > 0 and some 0 ≤ h < 1
(n−1)b+b2 . Then T has a unique

fixed point in X.

Proof. Let u0 ∈ X and the sequence {uk} be defined as

Tu0 = u1, Tu1 = u2, . . . , Tuk = uk+1, . . . .

Assume that uk 6= uk+1 for all k. Using the conditions (5.1), (N2) and Lemma
2.6, we get

Nuk,uk+1,t = NTuk−1,Tuk,t ≤ h
[
Nuk−1,uk+1,t +Nuk,uk,t

]
= hNuk−1,uk+1,t ≤ (n− 1)hbNuk−1,uk,t + hbNuk+1,uk,t
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≤ (n− 1)hbNuk−1,uk,t + hb2Nuk,uk+1,t,

which implies

(5.2) Nuk,uk+1,t ≤
(n− 1)hb

1− hb2
Nuk−1,uk,t.

Let a = (n−1)hb
1−hb2 . Then a < 1 since h((n−1)b+b2) < 1. Notice that 1−hb2 6= 0

since 0 ≤ h < 1
(n−1)b+b2 . For k ∈ {1, 2, . . .}, using the inequality (5.2) and

mathematical induction, we find

Nuk,uk+1,t ≤ akNu0,u1,t.

Using similar arguments as in the proof of Theorem 3.1, we can easily see that
the sequence {uk} is a Cauchy sequence. From the completeness hypothesis,
there exists u ∈ X such that lim

k→∞
uk = u. Now we prove that u is a fixed point

of T . Suppose that u is not a fixed point of T , that is, Tu 6= u. Using the
condition (5.1), we get

Nuk,Tu,t = NTuk−1,Tu,t ≤ h
[
Nuk−1,Tu,t +Nu,uk,t

]
and so taking limit for k →∞, using the condition (N1), we have

Nu,Tu,t ≤ hNu,Tu,t,

which implies Nu,Tu,t = 0 and Tu = u since h ∈
[
0, 1

(n−1)b+b2

)
.

Finally, we show that the fixed point u is unique. On the contrary, let u and
v be two fixed points of T , that is, Tu = u and Tv = v. Using the conditions
(5.1), (N1) and Lemma 2.6, we get

Nu,v,t = NTu,Tv,t ≤ h [Nu,v,t +Nv,u,t] ≤ h(1 + b)Nu,v,t,

which implies u = v since h(1 + b) < 1. Consequently, T has a unique fixed
point in X. �

Remark 5.2. If we take n = 3, b = 1 and set the function Nb : X ×X ×X →
[0,∞) in Theorem 5.1, then we get Corollary 2.15 given in [10] on page 121 on
a complete S-metric space. Therefore Theorem 5.1 is a new generalization of
the known Chatterjea’s fixed-point result.

6. A new fixed-point theorem for an expansive mapping

In this section we prove a fixed-point theorem for a surjective self-mapping
using an expansive mapping on a complete parametric Nb-metric space.

Theorem 6.1. Let (X,N) be a complete parametric Nb-metric space and T
be a surjective self-mapping of X satisfying the following condition:

There exist real numbers hi(i = 1, 2, 3) satisfying h1 > b2 and h2, h3 ≥ 0
such that

(6.1) NTu,Tv,t ≥ h1Nu,v,t + h2NTu,u,t + h3NTv,v,t

for each u, v ∈ X and all t > 0.
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Then T has a unique fixed point in X.

Proof. Using the condition (6.1), if we take Tu = Tv, then we get

0 = NTu,Tu,t = NTu,Tv,t ≥ h1Nu,v,t + h2NTu,u,t + h3NTv,v,t

for all t > 0 and so we have Nu,v,t = 0, that is, u = v since h1 > b2. Hence T
is an injective self-mapping of X.

Let F be the inverse mapping of T and u0 ∈ X. Let us define the sequence
{uk} as

Fuk = uk+1.

Assume that uk 6= uk+1 for all k. Using the condition (6.1), we obtain

Nuk−1,uk,t = NTT−1uk−1,TT−1uk,t

≥ h1NT−1uk−1,T−1uk,t+ h2NTT−1uk−1,T−1uk−1,t+ h3NTT−1uk,T−1uk,t

= h1NFuk−1,Fuk,t + h2Nuk−1,Fuk−1,t + h3Nuk,Fuk,t

= h1Nuk,uk+1,t + h2Nuk−1,uk,t + h3Nuk,uk+1,t

= (h1 + h3)Nuk,uk+1,t + h2Nuk−1,uk,t,

which implies

(6.2) Nuk,uk+1,t ≤
1− h2

h1 + h3
Nuk−1,uk,t,

since h1+h3 6= 0. If we put a = 1−h2

h1+h3
, then we have a < 1

b2 since h1+h2+h3 >

b2. Using the inequality (6.2), we get

(6.3) Nuk,uk+1,t ≤ akNu0,u1,t

for all t > 0.
Now we show that the sequence {uk} is a Cauchy sequence. For all k, l ∈ N

with l > k, using the inequality (6.3), the condition (N2) and Lemma 2.6, we
find

(6.4) Nuk,ul,t ≤
(n− 1)bak

1− b2a
Nu0,u1,t.

If we take limit for k, l→∞, we obtain

lim
k,l→∞

Nuk,ul,t = 0.

Hence {uk} is Cauchy. Using the completeness hypothesis, there exists u ∈ X
such that

lim
k→∞

uk = u.

From the surjectivity hypothesis, there exists a point x ∈ X such that Tx = u.
By the condition (6.1), we get

(6.5) Nuk,u,t = NTuk−1,Tx,t ≥ h1Nuk−1,x,t + h2Nuk,uk−1,t + h3Nu,x,t.

If we take limit for k →∞ in the inequality (6.5), we have

0 = Nu,u,t ≥ (h1 + h3)Nu,x,t,
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which implies u = x, that is, Tu = u. Now we show that the fixed point u is
unique. On the contrary, let v be another fixed point of T such that u 6= v.
Using the conditions (6.1) and (N1), we find

Nu,v,t = NTu,Tv,t ≥ h1Nu,v,t + h2Nu,u,t + h3Nv,v,t = h1Nu,v,t,

which implies u = v since h1 > 1. Consequently, T has a unique fixed point in
X. �

If we take h1 = h and h2 = h3 = 0 in Theorem 6.1, then we get the following
corollary.

Corollary 6.2. Let (X,N) be a complete parametric Nb-metric space and T
be a surjective self-mapping of X. If there exists a real number h > b2 such
that

NTu,Tv,t ≥ hNu,v,t

for each u, v ∈ X and all t > 0. Then T has a unique fixed point in X.

Remark 6.3. 1) If we take n = 3, b = 1 and set the function Nb : X ×X ×X ×
(0,∞)→ [0,∞) in Theorem 6.1, then we get Theorem 21 given in [13] on page
4 on a complete parametric S-metric space.

2) If we take n = 3, b = 1 and set the function Nb : X ×X ×X × (0,∞)→
[0,∞) in Corollary 6.2, then we get Corollary 25 given in [13] on page 5 on a
complete parametric S-metric space.

7. Some illustrative examples

In this section we give some illustrative examples of the obtained theorems.
Now we give an example of Theorem 3.1 and Theorem 4.1.

Example 7.1. Let X = R+ ∪ {0} and the function N : X4 × (0,∞)→ [0,∞)
be defined by

N(u1, u2, u3, u4, t) =

{
0 ; if u1 = u2 = u3 = u4

n(t) max {u1, u2, u3, u4} ; otherwise

for each u1, u2, u3, u4 ∈ X and t > 0, where n : (0,∞)→ (0,∞) is a continuous
function. Then (X,N) is a complete parametric Nb-metric space with b = 2.
Let us define the self-mapping T : X → X as

Tu =

{
u2

16 ; u ∈ [0, a)
u
15 ; u ∈ [a,∞)

for all u ∈ X with 1
4 < a < 1. Then T satisfies the inequality (3.1) with h = 1

15 .

Also T satisfies the inequality (4.1) with h = 1
2 . Therefore T has a unique fixed

point u = 0 in X.

In the following example we show a self-mapping satisfying the conditions
of Theorem 5.1.
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Example 7.2. Let X = R and the function N : X3 × (0,∞) → [0,∞) be
defined by

N(u1, u2, u3, t) = t3 (|u1 − u2|+ |u1 − u3|+ |u2 − u3|)2

for each u1, u2, u3 ∈ X and t > 0. Then (X,N) is a complete parametric
Nb-metric space with b = 4. Let us define the self-mapping T : X → X as

Tu = η

for all u ∈ X, where η is a constant. Then T satisfies the inequality (5.1) with
h = 1

25 . Therefore T has a unique fixed point u = η in X.

Finally, we give an example of an expansive mapping satisfying the condi-
tions of Theorem 6.1.

Example 7.3. Let X = R+∪{0} be the complete parametric Nb-metric space
with the parametric Nb-metric defined in Example 7.1. Let us define the self-
mapping T : X → X as

Tu = ηu

for all u ∈ R with η > 4. Then T satisfies the inequality (6.1) with h1 = η and
h2 = h3 = 0. Therefore T has a unique fixed point u = 0 in X.

8. An application to fixed-circle problem

In this section we present an approach to fixed-point theory on a parametric
Nb-metric space.

Definition 8.1. Let (X,N) be a parametric Nb-metric space and u0 ∈ X,
r ∈ (0,∞). We define the circle centered at u0 with radius r as

CNb
u0,r = {u ∈ X : Nu,u0,t = r} .

Example 8.2. Let X = R2, n = 3, the function g : (0,∞)→ (0,∞) be defined
as

g(t) = t2

and the function N : X3 × (0,∞)→ [0,∞) be defined as

N(u, v, w, t) = g(t)

2∑
i=1

(|arctanui − arctanwi|+ |arctan vi − arctanwi|)

for each u = (u1, u2), v = (v1, v2), w = (w1, w2) ∈ R2 and all t > 0. Then(
R2, N

)
is a parametric Nb-metric space with b = 4. If we choose u0 = 0 =

(0, 0) and r = 10, then we get

CNb
0,10 =

{
u = (u1, u2) ∈ R2 : N(u, u, 0, t) = 10

}
=

{
u ∈ R2 : |arctanu1|2 + |arctanu2|2 =

5

t2

}
,

as shown in Figure 1 which is plotted using Mathematica [16] for different t > 0.
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Figure 1. The curves of the circle CNb
0,10 for t = 2, 3, 4, 5, 6.

Definition 8.3. Let (X,N) be a parametric Nb-metric space, CNb
u0,r be a circle

on X and T : X → X be a self-mapping of X. If Tu = u for all u ∈ CNb
u0,r,

then the circle CNb
u0,r is called a fixed circle of T .

In the following theorem, we give an existence condition for a self-mapping
having a fixed circle.

Theorem 8.4. Let (X,N) be a parametric Nb-metric space and CNb
u0,r be any

circle on X. Let us define the mapping ϕ : X × (0,∞)→ [0,∞) as

ϕ(u, t) = Nu,u0,t

for all u ∈ X and t > 0. If there exists a self-mapping T : X → X satisfying

(8.1) Nu,Tu,t ≤ ϕ(u, t)− ϕ(Tu, t)

and

(8.2) NTu,u0,t ≥ r

for all u ∈ CNb
u0,r, then CNb

u0,r is a fixed circle of T .

Proof. Let u ∈ CNb
u0,r. Using the inequality (8.1), we get

(8.3) Nu,Tu,t ≤ ϕ(u, t)− ϕ(Tu, t) = Nu,u0,t −NTu,u0,t = r −NTu,u0,t.

Because of the inequality (8.2), the point Tu should lie on or the exterior of
the circle CNb

u0,r. If NTu,u0,t > r, then using the inequality (8.3) we have a
contradiction. Hence it should be NTu,u0,t = r. Using the inequality (8.3), we
obtain

Nu,Tu,t ≤ 0,

which implies Tu = u for all u ∈ CNb
u0,r. Consequently, CNb

u0,r is a fixed circle of
T . �
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Notice that the inequality (8.1) guarantees that Tu is not in the exterior
of the circle CNb

u0,r for each u ∈ CNb
u0,r. Similarly, the inequality (8.2) guar-

antees that Tu is not in the interior of the circle CNb
u0,r for each u ∈ CNb

u0,r.

Consequently, we get Tu ∈ CNb
u0,r for each u ∈ CNb

u0,r and T
(
CNb

u0,r

)
⊂ CNb

u0,r.
If we set n = 3 and b = 1 in Theorem 8.4, then we have a fixed-circle theorem

on an parametric S-metric space. On the other hand, the metric and S-metric
versions of Theorem 8.4 can be found in [7] and [8], respectively.

Now we give an example of a self-mapping which has a fixed circle on a
parametric Nb-metric space.

Example 8.5. Let X be any set which contains the interval (0,∞), (X,N)
be a parametric Nb-metric space and the function g : (0,∞) → (0,∞) be
defined as g(t) = t2 for all t > 0. Let us consider a circle CNb

u0,r and define the
self-mapping T : X → X as

Tu =


u ; u ∈ CNb

u0,r

g(u) ; u ∈ (0,∞) and u /∈ CNb
u0,r

u0 ; otherwise

for all u ∈ X. Then a direct computation shows that the inequalities (8.1) and
(8.2) are satisfied. Hence T fixes the circle CNb

u0,r.

We give an example of a self-mapping which satisfies the inequality (8.1)
and does not satisfy the inequality (8.2).

Example 8.6. Let (X,N) be a parametric Nb-metric space. Let us consider a
circle CNb

u0,r and define the self-mapping T : X → X as Tu = u0 for all u ∈ X.
Then T satisfies the inequality (8.1) but does not satisfy the inequality (8.2).
Clearly T does not fix the circle CNb

u0,r.

We give an example of a self-mapping which satisfies the inequality (8.2)
and does not satisfy the inequality (8.1).

Example 8.7. Let (X,N) be a parametric Nb-metric space. Let us consider
a circle CNb

u0,r and define the self-mapping T : X → X as Tu = c for all u ∈ X,
where c is an element of X such that

Nc,u0,t = 2r.

Then T satisfies the inequality (8.2) but does not satisfy the inequality (8.1).
Clearly T does not fix the circle CNb

u0,r.

We note that a self-mapping may have more than one fixed circle. For
example, let (X,N) be a parametric Nb-metric space and CNb

u0,r0 , CNb
u1,r1 be two

circles on X. Let us define the mappings ϕ1, ϕ2 : X × (0,∞)→ [0,∞) as

ϕ1(u, t) = Nu,u0,t and ϕ2(u, t) = Nu,u1,t

for all u ∈ X. If we define a self-mapping T as

Tu =

{
u ; u ∈ CNb

u0,r ∪ C
Nb
u1,r1

u0 ; otherwise
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for all u ∈ X, then T satisfies the inequalities (8.1) and (8.2) for the circles
CNb

u0,r0 and CNb
u1,r1 . Consequently, these circles are fixed circles of T .

Finally, we investigate the uniqueness conditions for the fixed circles in The-
orem 8.4 on a parametric Nb-metric space.

Theorem 8.8. Let (X,N) be a parametric Nb-metric space and CNb
u0,r be any

circle on X. Let T : X → X be a self-mapping which fixes the circle CNb
u0,r. If

the contractive condition (3.1) is satisfied for all u ∈ CNb
u0,r, v ∈ X \ CNb

u0,r by

T , then CNb
u0,r is the unique fixed circle of T .

Proof. Assume that there exist two fixed circles CNb
u0,r0 and CNb

u1,r1 of the self-

mapping T . Let u ∈ CNb
u0,r0 and v ∈ CNb

u1,r1 be arbitrary points with u 6= v.
Using the contractive condition (3.1) and Lemma 2.6, we obtain

NTu,Tv,t = Nu,v,t ≤ hmax {Nu,v,t, Nu,u,t, Nv,v,t, Nv,u,t, Nu,v,t} ≤ hbNu,v,t,

which implies u = v since 0 ≤ h < 1
b+b2(n−1) . Consequently, CNb

u0,r0 is the

unique fixed circle of T . �

In Theorem 8.8, if we use the contractive conditions (4.1) or (5.1) instead
of the contractive condition (3.1), we get new uniqueness theorems for a fixed
circle.
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