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Abstract. Fuzzy linear regression model has been widely studied with

many successful applications but there have been only a few studies on
the fuzzy regression model with monotonic response function as a gener-

alization of the linear response function. In this paper, we propose the
fuzzy regression model with the monotonic response function and the al-

gorithm to construct the proposed model by using α-level set of fuzzy

number and the resolution identity theorem. To estimate parameters of
the proposed model, the least squares (LS) method and the least absolute

deviation (LAD) method have been used in this paper. In addition, to

evaluate the performance of the proposed model, two performance mea-
sures of goodness of fit are introduced. The numerical examples indicate

that the fuzzy regression model with the monotonic response function

is preferable to the fuzzy linear regression model when the fuzzy data
represent the non-linear pattern.

1. Introduction

Regression analysis is a statistical technique for estimating relationship be-
tween explanatory variables and response variables by inducing a mathematical
model. One of purposes of regression analysis is to predict the statistical re-
lationship between input and output variables. However, in the real world,
input-output variables have a vague relationship and can often be observed in
imprecise and vague data. In the presence of vague data and structure, a new
approach is needed for performing the data analysis and drawing statistical in-
ference. For those reasons, the fuzzy set theory was introduced by Zadeh [22,23]
and the fuzzy linear regression model based on fuzzy set theory was proposed
by Tanaka [18, 19]. Also, the applications and the estimating method of the
fuzzy linear regression model have been studied by many authors [4,5,9,13–16].
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However, a linear response function may not be enough to explain the causal
relationship between the variables represented by the fuzzy number. In fuzzy
regression model, the monotonic response function may be more effective than
the linear response function when the dependent variable increases or decreases
drastically with respect to the independent variable. Even if several authors
have studied the fuzzy regression model with S-curve or non-linear as the re-
sponse function, there have been only a few studies on fuzzy regression model
with nonlinear response function until now [1, 2, 8, 15]. Aside from statistical
methods, only numerical analysis or other approaches using fuzzy logic have
been applied so far to analyze a nonlinear fuzzy regression model [24]. The
reason is that it is difficult to represent the non-linear function using the mode
and the spread with respect to fuzzy number. Since the monotonic response
functions have served as a useful model for describing various physical and
biological systems, it is necessary to study a fuzzy regression model with the
monotonic response function to explain the causal relationship represented by
fuzzy number occurring in many fields.

In this paper, we construct the fuzzy regression model with the monotonic
response function by using definition of α-level set for monotonic function of
fuzzy number and the resolution identity theorem. We propose a fuzzy regres-
sion model with the monotonic response function such as exponential function,
power function, or reciprocal function. We also propose an algorithm to con-
struct the proposed model using the α-level sets of fuzzy variables. We use
the LS method and the LAD method to estimate the proposed model. The
effectiveness of the proposed model is illustrated by numerical examples using
the exponential response function.

The remainder of the paper is organized as follows. In Section 2, we review
some preliminary concepts of fuzzy sets and briefly describe regression model
and the fuzzy regression model. Construction of proposed model are intro-
duced in Section 3. In Section 4, we illustrate the proposed model through the
numerical examples and compare it with linear regression model. Section 5 is
the conclusion.

2. Preliminaries

The fuzzy set theory provides a suitable framework for dealing with imprecise
data. Following [6] and [20], we introduce some definitions regarding the fuzzy
sets and the fuzzy numbers.

A fuzzy set A in R is a set of ordered pairs

A = {(x, µA(x)) : x ∈ R},
where µA : R→ [0, 1] is a membership function of x in A.

For any α ∈ [0, 1], the crisp set A(α) = {x ∈ R |µA(x) ≥ α} is called an
α-level set of a fuzzy set A. The support of a fuzzy set A, suppA, is the crisp
set of all x ∈ R such that µA(x) > 0. A fuzzy number A is a fuzzy set A of
the real line R such that (i) A is normal, i.e., µA(x0) = 1 for some x0 ∈ R (ii)
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µA(x) is convex. As a special case, a fuzzy number A is said to be an LR-fuzzy
number if its membership function is defined by

µA(x) =


LA

(
a− x
la

)
for 0 ≤ a− x ≤ la,

RA

(
x− a
ra

)
for 0 ≤ x− a ≤ ra,

0 for otherwise,

where a is the mode, and la and ra are called the left and the right spreads, re-
spectively. Symbolically, an LR-fuzzy number A is denoted by A=(a, la, ra)LR.
LA and RA are functions verifying the properties of the class of fuzzy sets such
that LA(0) = RA(0) = 1 and LA(x) = RA(x) = 0, x ∈ R\[0, 1). In particular,
if LA(x) = RA(x) = 1− x, then A is called a triangular fuzzy number and de-
noted by A = (a, la, ra)T . A fuzzy number A is said to be positive if µA(x) = 0
for all x ≤ 0.

An α-level set of the fuzzy number is given by the closed interval

A(α) = [lA(α), rA(α)] = [α− laL−1A (α), α+ raR
−1
A (α)],

where lA(α) and rA(α) are the left end point and right end point of A(α). The
resolution identity theorem proposed by Zadeh [23] states that a fuzzy set can
be represented either by its α-level sets or by its membership function. Let
A be a fuzzy number with the membership function µA and α-level set A(α).
Then we have

µA(x) = sup{α · IA(α)(x) : α ∈ [0, 1]},
where sup stands for supremum (that is, for the least upper bound) and an
indicator function of the set A(α), denoted by IA(α)(·), is defined as follows:

IA(α)(x) =

{
1 x ∈ A(α),

0 x /∈ A(α).

Let f be a continuous real valued function on R, D(f) be a domain of f , and
I = [a, b](⊆ D(f) ⊆ R) be a closed and bounded interval. The image of a subset
I ⊆ D(f) under f is a subset f(I) ⊆ R defined by f(I) = {y | y = f(x), x ∈ I}.
Let A be a positive fuzzy number on R and f be a monotonic(strictly increasing
or decreasing) function. Then an α-level set of f(A) is defined by the following:

f(A)(α) =

{
[f(lA(α)), f(rA(α))], f :↗,
[f(rA(α)), f(lA(α))], f :↘,

where ↗ and ↘ stand for an increasing function and a decreasing function,
respectively. Using the above definition and simple algebra on interval, we can
show that α-level set of fuzzy number f(A) is equal to the value of function f
on α-level set of fuzzy number A. The proof of this, which can be completed
similarly to the method introduced by Ruoning [21], is omitted in this paper.
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We can define the α-level set of the monotonic function with respect to fuzzy
number as follows:

(1) f(A)(α) = f(A(α)).

From (1), we can define the α-level sets of the monotonic functions with respect
to fuzzy number such as exponential, power, and reciprocal functions as follows:

(i) exp(A)(α) = [exp(lA(α)), exp(rA(α))],

(ii) XA(α) = [exp(lA(α) ln lX(α)), exp(rA(α) ln rX(α))],

(iii) A−1(α) =

[
1

rA(α)
,

1

lA(α)

]
.

(2)

Also, the membership function µf(A) can be obtained by the set f(A)(α) in
(1) and the resolution identity theorem.

We often encounter the vague relationship among variables and/or impre-
cisely observed data in the regression analysis. In addition, we often see that the
increasing or decreasing pattern between dependent variable and independent
variable is represented by monotonic function rather than by linear function.
Using (1) and (2), we deal with the fuzzy regression model with monotonic
response function to reflect these cases in the next section.

3. Fuzzy regression with monotonic response function

In this section, we propose a method for estimating a fuzzy regression model
with monotonic response function. In addition, we estimate the fuzzy regression
coefficients for proposed method by using the LS method and the LAD method.
Let F be a known strictly monotonic function on R. Then the fuzzy regression
model with monotonic response function is given by

(3) Y (Xi) = F (A,Xi)⊕ Ei,
where Xi = (Xij)(1×(p+1)) is the fuzzy input, A = (Aj)(1×(p+1)) is the fuzzy
coefficients, F (A,Xi) is the response function, Y (Xi) is the fuzzy output, ⊕
denotes the addition of fuzzy numbers, and Ei is the fuzzy error associated
with the fuzzy regression model. In addition, the left and the right end points
of α-level set for the proposed fuzzy regression model are represented by

lYi(α) = fl(lA(α), lXi(α)) + lEi(α)

and
rYi(α) = fr(rA(α), rXi(α)) + rEi(α),

respectively, where fl and fr are the real valued functions and lEi
and rEi

are
the left and the right end points of α-level set of the error term Ei, respectively.

Now, we propose an algorithm to construct the proposed fuzzy regression
model with monotonic response function represented by α-level set. The most
common method for estimating the parameters in the fuzzy regression model
(3) is the minimization of the difference between the observed values and the
predicted value. That is to estimate the parameters by using the fitting method
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that the predicted values best represent the pattern of the observed values. For
this, we have to define the distance d(Yi, Ŷi) between the observed value Yi and

the predicted value Ŷi. In this paper, we estimate the model (3) by using the
LS method to minimize the square of the difference between a value and the
estimate and the LAD methods to minimize the absolute difference between a
value and the estimate. In addition, we apply the resolution identity theorem
to α-level set for the estimated fuzzy regression model to obtain the predicted
fuzzy number. First, we consider the set

C = {αj : j = 1, . . . , s, 0 ≤ αj ≤ 1}.

Then the following five steps are used to estimate the monotonic response
function based on the set

{(lYi(α), lXi(α)) : i = 1, . . . , n} or {(rYi(α), rXi(α)) : i = 1, . . . , n} for α ∈ C.

Algorithm to construct the fuzzy regression model by using α-level
set

Step 1.
The set C, ranked in ascending order, is represented by C = {α(1), . . . , α(s)}.

Choose the minimum value α(1) and estimate l̂Yi(α(1)) by minimizing the ob-
jective function

n∑
i=1

d(lYi(α(1)), fl(lA(α(1)), lXi(α(1)))).

Step 2.
For j = 2, 3, . . . , s, estimate the intermediate estimator l̄Yi(α(j)) based on

{(lYi(α(j)), lXi(α(j))) : i = 1, . . . , n} by minimizing the objective function

n∑
i=1

d(lYi(α(j)), fl(lA(α(j)), lXi(α(j)))).

Step 3.

For j = 2, 3, . . . , s, estimate l̂Yi(α(j)) based on

l̂Yi(α(j)) = max{l̄Yi(α(j)), l̂Yi(α(j−1))}.

Step 4.
Estimate the membership function LŶi

(·) based on {(l̂Yi(αj), αj) : j=1, . . . , s}
by minimizing the objective function

s∑
j=1

d(αj , LYi(l̂Yi(αj))) subject to LYi
(l̂Yi(1)) = 1.

Step 5.
The left reference function LŶi

(·) for the predicted fuzzy number Ŷi is defined
from Step 1 and Step 4.
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In the above steps, the symbol d(a, b) stands for the distance between a
and b. In this paper, we use two distances to estimate the parameter of fuzzy
regression model as follows:

d(a, b) = (a− b)2 for LS method and d(a, b) = |a− b| for LAD method.

Using the above five steps and the following r̂Yi(α(j)), we can also obtain the

right reference function RŶi
(·) of the predicted fuzzy number Ŷi

r̂Yi(α(j)) = min{r̄Yi(α(j)), r̂Yi(α(j−1))}, j = 2, 3, . . . , s.

The method used above can be extended to the robust estimation method,
which is commonly used in regression analysis. In addition, we estimate the
membership function µAk

(·) of the fuzzy coefficient Ak for the fuzzy regression
model (3) by using the above five steps. Estimated regression models can be
different from each other based on the estimation methods and the types of re-
sponse functions. Therefore, it is important to compare the efficiencies between
the estimation results from various kinds of estimation methods and various
types of response functions. The efficiencies can be obtained from the differ-
ence between the observed values and the estimated values. To evaluate the
performance of the fuzzy regression model with monotonic response function,
we use the two performance measures. One is Md based on the difference be-
tween the predicted value and the observed value and the other is Ms based on
the similarity between the predicted value and the observed value [3,11,12,17].
The measure Md based on the difference of two fuzzy numbers is defined as
follows:

Md(Y, Ŷ ) =

n∑
i=1

md(Y, Ŷi),

where

md(Yi, Ŷi) =

∫∞
−∞

∣∣∣µYi
(x)− µŶi

(x)
∣∣∣dx∫∞

−∞

∣∣µYi(x)
∣∣dx + hd(Yi(0), Ŷi(0)).

Here, hd(Yi(0), Ŷi(0)) = inf{inf{|a − b| : a ∈ Yi(0)} : b ∈ Ŷi(0)}, where inf
stands for infimum (that is, for the greatest lower bound). The more efficient
model has the smaller value of Md.

One more measure is Ms, which is the measure of how much overlapped is
in the membership. It is defined as follows:

Ms(Y, Ŷ ) =

n∑
i=1

ms(Y, Ŷi),

where

ms(Yi, Ŷi) =

∫∞
−∞Min(Ŷi, Yi(x))dx∫∞
−∞Max(Ŷi, Yi(x))dx

.
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4. Numerical examples

In this section, we illustrate the numerical examples to show that the fuzzy
regression model with a monotonic response function is better than linear re-
gression model in the non-linear phenomena. In this paper, two examples
described in other literatures having the monotonic increasing and decreasing
response functions are used. In this paper, we only deal with two types of the
monotonic response functions but the fuzzy regression model using the other
types of monotonic functions can also be estimated similarly to our proposed
method.

The following example represents the efficiency of the fuzzy regression model
with response function that increases monotonically.

Example 1. The fuzzified data of the temperature and pressure in a saturated
steam quoted in Draper and Smith [7] are listed in Table 1. To estimate the
fuzzy regression model for temperature, the linear (YL) and exponential (YE)
response functions are applied. To estimate the parameters for the linear and
exponential response functions the LS method (Ŷ ) and the LAD method(Ỹ )
are used.

Table 1. Dataset for Example 1

(x=temperature, Y=pressure)

x Y
0 (4.14, 3.2, 2.1)T
10 (8.52, 2.2, 3.8)T
20 (16.31, 3.4, 4.1)T
30 (32.18, 3.4, 3.4)T
40 (64.62, 0.7, 1.9)T
50 (98.76, 4.1, 1.7)T
60 (151.13, 4.5, 3)T
70 (224.74, 4.6, 3.3)T
80 (341.35, 4.7, 3)T
85 (423.36, 1.7, 3.1)T
90 (522.78, 0.2, 1.5)T
95 (674.32, 2, 2.6)T
100 (782.04, 1.4, 0.4)T
105 (920.01, 3.1, 2.7)T

We used the set of finite α-level C = {0, 0.25, 0.5, 0.75, 1} to estimate the
fuzzy regression model for the pressure by using the algorithm introduced in
Section 3. The estimation results by using the LS method based on linear and
exponential response functions are

ŶL = (−175.503, 3.274, 3.286)T ⊕ 8.049x
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and

ŶE = (−19.939, 3.236, 3.052)T ⊕ 17.78 exp(0.038x),

respectively.
By the same procedure, the estimation results by using the LAD method

are

ỸL = (−213, 0.9, 4.2)T ⊕ 8.049x

and

ỸE = (−17.97, 4.598, 0.908)T ⊕ (17.496, 0.038, 0.037)T ⊗ exp(0.038x),

where ⊗ denotes the multiplication of fuzzy numbers.
Table 2 shows that the exponential response function is more efficient than

the linear response function in the fuzzy regression model for the pressure.

Table 2. Results of performance

Measure ŶL ŶE ỸL ỸE
Md 55.26 5.88 58.54 10.03
Ms 0 0.12 0.04 0.23

In the following example, we estimate the fuzzy regression model with re-
sponse function that decreases. Also, we verify that the fuzzy regression model
having the sum of the exponential function as the response function is more
efficient than fuzzy linear regression model.

Example 2. The following data presented in Jennrich [10], obtained by mea-
suring a radioactive trace, record the retention of a drug aurothiomalate used
in the treatment of arthritic.

Table 3. Dataset for Example 2

(x=days after treatment, Y=tracer retained)

x Y
0 (100, 1.07, 1.07)T
2 (86, 0.99, 0.99)T
4 (78, 1.1, 1.1)T
14 (60, 1.35, 1.35)T
21 (53, 1.74, 1.74)T
42 (47, 2.26, 2.26)T
63 (42, 3.1, 3.1)T
97 (40, 3.87, 3.87)T
155 (35, 5.51, 5.51)T
217 (33, 7.36, 7.36)T
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Using the LS method and the proposed algorithm, the estimated fuzzy re-
gression model of three response functions, linear (YL), exponential (YE) and
additive exponential function (YAE), are given as follows:

ŶL =(71.1182, 1.0371, 1.0372)T ⊕ (−0.2399, 0.0293, 0.0292)T ⊗ x,

ŶE =(70.2514, 0.5542, 0.7665)T ⊗ exp (−0.0044, 0.0011, 0.0009)T ⊗ x,

ŶAE =(53, 0.0749, 0.0979)T ⊗ exp (−0.088, 0.0749, 0)T ⊗ x
⊕ (44, 3.3333, 1.0901)T ⊗ exp (−0.001, 0.0749, 0)T ⊗ x.

Using the LAD method and the proposed algorithm, the estimated fuzzy
regression model of three response functions, linear (YL), exponential (YE) and
additive exponential function (YAE), are given as follows:

ŶL =(62.48, 0.5618, 0.5682)T ⊕ (−0.1773, 0.0177, 0.0177)T ⊗ x,

ŶE =(79.995, 0.0352, 0.5319)T ⊗ exp (−0.0044, 0.0011, 0.0009)T ⊗ x,

ỸAE =(44.2, 0.5556, 0.8)T ⊗ exp (−0.0015, 0.01, 0.01)T ⊗ x
⊕ (53.2, 0.0749, 0.0979)T ⊗ exp (−0.075, 0, 0)T ⊗ x.

The results of two performance measures Md and Ms are presented in Table
4. The smaller value of Md and the larger value of Ms imply that a model is
more likely to be appropriate for the given sample data. Table 4 indicates that
the best-fitting model is an additive exponential model.

Table 4. Results of performance measures

Model ŶL ŶE ŶAE ỸL ỸE ỸAE
Md 10.93 10.30 3.50 10.64 8.86 2.10
Ms 0.1 0.11 0.25 0.12 0.12 0.37

Examples 1 and 2 show that the fuzzy regression model using the non-
linear monotonic function may be more effective than the fuzzy linear regression
model when the response function increases or decreases drastically.

5. Conclusion

Fuzzy linear regression model has been studied by many authors and it is
one of the popular fuzzy statistical analysis. In the classical regression model,
the monotonic response functions as well as the linear response function have
served as useful models describing various physical and biological systems but
they have rarely been used in fuzzy regression.

In this paper, we propose the fuzzy regression model with the monotonic
response function. Using α-level set, we represent the fuzzy regression model
with the monotonic response function and propose an algorithm to construct
the fuzzy regression model. To illustrate the proposed algorithm, we use two



982 S. CHOI, H. JUNG, W. LEE, AND J. YOON

monotonic response functions, that is, exponential and additive exponential re-
sponse functions. The two measures of performance are introduced to evaluate
the proposed fuzzy regression model and to compare it with the fuzzy linear
regression model. Through the numerical examples, we demonstrate that the
proposed model is superior to the fuzzy linear regression model when data have
the non-linear data structure.

In our future studies, we will propose the fuzzy regression models with the
various monotonic response functions such as logarithmic and arc trigonometric
and study the empirical analyses to illustrate such models. We will also use
a robust estimation method such as an M-estimator or a rank transformation
method to estimate a non-linear fuzzy regression model as an extension of the
method presented in this study. In addition, an asymptotic properties of fuzzy
regression model with monotonic response function will be investigated.
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