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Lp SOLUTIONS FOR GENERAL TIME INTERVAL

MULTIDIMENSIONAL BSDES WITH WEAK

MONOTONICITY AND GENERAL GROWTH GENERATORS

Yongpeng Dong and Shengjun Fan

Abstract. This paper is devoted to the existence and uniqueness of
Lp (p > 1) solutions for general time interval multidimensional backward

stochastic differential equations (BSDEs for short), where the generator g

satisfies a (p∧ 2)-order weak monotonicity condition in y and a Lipschitz
continuity condition in z, both non-uniformly in t. The corresponding

stability theorem and comparison theorem are also proved.

1. Preliminaries

In this paper, we assume that k and d are two given positive integers, and
0 ≤ T ≤ +∞ is an extended real number. Let R+ := [0,+∞) and let (Ω,F , P )
be a probability space carrying a standard d-dimensional Brownian motion
(Bt)t≥0, and (Ft)t≥0 be the natural σ-algebra generated by (Bt)t≥0. We assume
that FT = F and (Ft)t≥0 is right-continuous and complete. The main purpose
of this paper is to study the following multidimensional backward stochastic
differential equation (BSDE for short in the remaining):

yt = ξ +

∫ T

t

g(s, ys, zs)ds−
∫ T

t

zsdBs, t ∈ [0, T ],(1.1)

where the terminal condition ξ is an FT -measurable and k-dimensional random
vector, T is called the time horizon, and the generator g(ω, t, y, z) : Ω× [0, T ]×
Rk ×Rk×d 7→ Rk is (Ft)-progressively measurable for each (y, z). The triple
(ξ, T, g) is called the parameters of BSDE (1.1), and a pair of (Ft)-progressively
measurable processes (yt, zt)t∈[0,T ] satisfying (1.1) is called a solution of BSDE
(1.1).

Now, we introduce some basic notations and definitions, which will be used
in the whole paper. Firstly, for each subsect A ⊂ Ω × [0, T ], let 1A = 1 in
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case of (ω, t) ∈ A, otherwise 1A = 0. Let the Euclidean norm of space Rd be
denoted by |y| for a vector y ∈ Rk and let 〈x, y〉 represent the inner product of
x, y ∈ Rk. Then, for each real number p > 1, let Lp(Rk) represent the set of
all Rk-valued and FT -measurable random variables ξ such that E[|ξ|p] < +∞
and let Sp(0, T ; Rk) (or Sp simply) denote the set of Rk-valued, (Ft)-adapted
and continuous processes (Yt)t∈[0,T ] such that

‖Y ‖Sp :=

(
E

[
sup
t∈[0,T ]

|Yt|p
]) 1

p

< +∞.

Furthermore, let Mp(0, T ; Rk×d) (or Mp simply) denote the set of (Ft)-pro-
gressively measurable Rk×d-valued processes (Zt)t∈[0,T ] such that

‖Z‖Mp :=

E

(∫ T

0

|Zt|2dt

) p
2

 1
p

< +∞.

Obviously, both Sp and Mp are Banach spaces for each p > 1. At last, we let
S denote the set of all nondecreasing and concave continuous functions κ(·) :
R+ 7→ R+ satisfying κ(0) = 0, κ(x) > 0 for x > 0 and

∫
0+ κ

−1(x)dx = +∞.
In this paper, we use the following definition concerning the Lp (p > 1)

solutions of BSDE (1.1).

Definition 1.1. If (yt, zt)t∈[0,T ] ∈ Sp(0, T ; Rk) × Mp(0, T ; Rk×d) for some
p > 1 and dP-a.s., BSDE (1.1) holds for each t ∈ [0, T ], then (yt, zt)t∈[0,T ] is
called an Lp solution of BSDE (1.1).

The nonlinear version of finite time interval multidimensional BSDEs were
initially introduced in [19], where the authors established the existence and
uniqueness for L2 solutions of BSDEs under the Lipschitz assumption of the
generator g. Since then, more and more scholars have been starting to inves-
tigate them with great interest, and BSDEs have gradually become an impor-
tant mathematical tool in many fields such as financial mathematics, stochastic
games, optimal control and PDEs and so on, see [1, 14], etc.

On the other hand, many investigators devoted themselves to improving the
existence and uniqueness result of [19]. They have extended them to more
general case by weakening the assumptions on g, or the L2 integrability as-
sumptions on ξ and g(t, 0, 0), or relaxing the finite time terminal to the infinite
case, see [1–6, 7–17, 20], etc. We especially mention that [5] first investigated
the general time interval BSDEs, and [6] further developed them. Recently,
[8] established the existence and uniqueness of an Lp (p > 1) solution for finite
time interval multidimensional BSDEs under a (p∧2)-order weak monotonicity
condition together with a general growth condition in y of the generator g.

In the light of aforementioned works, the present paper is devoted to the
general time interval multidimensional BSDEs with weak monotonicity and
general growth generators, which extends the results in [8] to the general time
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interval case, and the existence and uniqueness result in [20] to the Lp (p > 1)
solution case. More precisely, in this paper the generator g of BSDE (1.1)
satisfies a (p∧2)-order weak monotonicity and general growth condition in y and
a Lipschitz continuity condition in z, both non-uniformly in time t. The paper
is built up as follows. In Section 2, we first introduce some useful assumptions
and lemmas, and establish two nonstandard a priori estimates for Lp (p > 1)
solutions of general time interval multidimensional BSDEs. Then, we prove a
stability theorem and an existence and uniqueness theorem in Section 3, and
introduce several examples and corollaries in Section 4. Finally, in Section 5
we put forward a new comparison theorem of Lp (p > 1) solutions for general
time interval one-dimensional BSDEs.

2. Lemmas and a priori estimates

In this section, we introduce several useful lemmas and establish some crucial
priori estimates with respect to Lp (p > 1) solutions of BSDE (1.1), which will
play an important role in proving our main results. The following Lemma 2.1
is a general Gronwall’s inequality, which comes from [11].

Lemma 2.1 (Gronwall’s inequality). Let 0 ≤ T ≤ +∞, α(·) : [0, T ] 7→ R+

be a decreasing function, β(·) : [0, T ] 7→ R+ satisfy
∫ T

0
β(t)dt < +∞ and

h(·) : [0, T ] 7→ R+ be a continuous function such that

h(t) ≤ α(t) +

∫ T

t

β(s)h(s)ds, t ∈ [0, T ].

Then we have
h(t) ≤ α(t)e

∫ T
t
β(s)ds, t ∈ [0, T ].

Now, we introduce the following Lemma 2.2, which comes from [10]. It will
be frequently used later.

Lemma 2.2. Suppose that κ(·) : R+ 7→ R+ is a nondecreasing and concave
function with κ(0) = 0. Then, it increases at most linearly, i.e., there exists a
constant A > 0 such that

κ(x) ≤ A(x+ 1), ∀ x ≥ 0.

Moreover, for each m ≥ 1, we have

κ(x) ≤ (m+ 2A)x+ κ(
2A

m+ 2A
), ∀ x ∈ R+.

The following Lemma 2.3 is a direct corollary of Lemma 5 in [12], which is
a general version of Bihari’s inequality.

Lemma 2.3 (Bihari’s inequality). Assume that 0 ≤ T ≤ +∞, β(·) : [0, T ] 7→
R+ satisfies

∫ T
0
β(s)ds < +∞, h(·) : [0, T ] 7→ R+ satisfies supt∈[0,T ] h(t) <

+∞ and

h(t) ≤
∫ T

t

β(s)κ(h(s))ds, t ∈ [0, T ],
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where κ ∈ S. Then we have that h(t) = 0 for all t ∈ [0, T ].

Next, we establish two nonstandard a priori estimates. The following as-
sumptions on the generator g will be used, where p > 1, and 0 ≤ T ≤ +∞.

(A1) There exist two nonnegative functions µ(·), λ(·) : [0, T ] 7→ R+ with∫ T
0

(µ(t)+λ2(t))dt < +∞ such that dP×dt−a.e., ∀ (y, z) ∈ Rk×Rk×d,

〈y, g(ω, t, y, z)〉 ≤ µ(t)|y|2 + λ(t)|y||z|+ |y|ft + ϕt,

where (ft)t∈[0,T ] and (ϕt)t∈[0,T ] are two nonnegative and (Ft)-pro-
gressively measurable processes with

E

[(∫ T

0

ftdt

)p]
< +∞ and E

(∫ T

0

ϕtdt

)p/2 < +∞.

(A2) There exist two nonnegative functions µ(·), λ(·) : [0, T ] 7→ R+ with∫ T
0

(µ(t)+λ2(t))dt < +∞ such that dP×dt−a.e., ∀ (y, z) ∈ Rk×Rk×d,

|y|p−1〈 y
|y|

1|y|6=0, g(ω, t, y, z)〉 ≤ µ(t)ψ(|y|p) + λ(t)|y|p−1|z|+ |y|p−1ft,

where ψ ∈ S, (ft)t∈[0,T ] is a nonnegative and (Ft)-progressively mea-
surable process with

E

[(∫ T

0

ftdt

)p]
< +∞.

Proposition 2.1. Assume that p > 1, 0 ≤ T ≤ +∞, and assumption (A1)
holds for the generator g. Let (yt, zt)t∈[0,T ] solve BSDE (1.1), and (yt)t∈[0,T ]

belong to Sp(0, T ; Rk). Then (zt)t∈[0,T ] belongs to Mp(0, T ; Rk×d), and for
each 0 ≤ u ≤ t ≤ T, we have

E

(∫ T

t

|zs|2ds

)p/2 ∣∣∣∣Fu


≤ Cp

[
3 + 2

∫ T

t

(
µ(s) + λ2(s)

)
ds

]p/2
·E

[
sup
s∈[t,T ]

|ys|p
∣∣∣∣Fu
]

+ CpE

[(∫ T

t

fsds

)p ∣∣∣∣Fu
]

+ CpE

(∫ T

t

ϕsds

)p/2 ∣∣∣∣Fu
,

where Cp is a nonnegative constant depending only on p.

Proof. For each integer n ≥ 1, we introduce the following (Ft)-stopping time

τn = inf

{
t ∈ [0, T ] :

∫ t

0

|zs|2ds ≥ n
}
∧ T.
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Then we apply the Itô’s formula to |yt|2, so that for each n ≥ 1,

|yt∧τn |2 +

∫ τn

t∧τn
|zs|2ds

= |yτn |2 + 2

∫ τn

t∧τn
〈ys, g(s, ys, zs)〉ds− 2

∫ τn

t∧τn
〈ys, zsdBs〉, t ∈ [0, T ].

According to (A1), we can get that dP × ds− a.e.,

2〈ys, g(s, ys, zs)〉 ≤ 2(µ(s) + λ2(s))|ys|2 +
|zs|2

2
+ 2|ys|fs + 2ϕs.

Then,

1

2

∫ τn

t∧τn
|zs|2ds ≤

[
2 + 2

∫ τn

t∧τn
(µ(s) + λ2(s))ds

]
sup

s∈[t∧τn,T ]

|ys|2 +

(∫ T

t∧τn
fsds

)2

+ 2

∫ T

t∧τn
ϕsds+ 2

∣∣∣∣∫ τn

t∧τn
〈ys, zsdBs〉

∣∣∣∣ , t ∈ [0, T ].

Using the inequality (a+ b)p/2 ≤ 2p(ap/2 + bp/2), we can deduce that, for some
constant cp > 0 depending only on p,(∫ τn

t∧τn
|zs|2ds

)p/2
≤ cp

[
2 + 2

∫ τn

t∧τn
(µ(s) + λ2(s))ds

]p/2
sup

s∈[t∧τn,T ]

|ys|p + cp

(∫ T

t∧τn
fsds

)p

+ cp

(∫ T

t∧τn
ϕsds

)p/2
+ cp

∣∣∣∣∫ τn

t∧τn
〈ys, zsdBs〉

∣∣∣∣p/2 , t ∈ [0, T ].(2.1)

Furthermore, we can take the conditional mathematical expectation with re-
spect to Fu in both sides of (2.1) and use the Burkholder-Davis-Gundy (BDG

for short) inequality to the process {Mt :=
∫ t

0
〈ys, zsdBs〉}t∈[0,T ]. Finally, let-

ting n → +∞ and applying Yong’s inequality, Fatou’s lemma and Lebesgue’s
dominated convergence theorem, we can deduce the desired result. �

Proposition 2.2. Assume that p > 1, 0 ≤ T ≤ +∞, and assumption (A2)
holds for the generator g. Let (yt, zt)t∈[0,T ] be an Lp solution of BSDE (1.1).
Then there exists a nonnegative constant Kp depending only on p such that for
each 0 ≤ u ≤ t ≤ T,

E

[
sup
s∈[t,T ]

|ys|p
∣∣∣∣Fu
]

≤ Kpe
Kp

∫ T
t
λ2(s)ds

{
E

[
|ξ|p
∣∣∣∣Fu]+

∫ T

t

µ(s)ψ

(
E

[
|ys|p

∣∣∣∣Fu])ds
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+ E

[(∫ T

t

fsds

)p ∣∣∣∣Fu
]}

.

Proof. By Corollary 2.3 in [2] and assumption (A2), we can obtain that, with
probability one, for each t ∈ [0, T ],

|yt|p + c(p)

∫ T

t

|ys|p−21|ys|6=0|zs|2ds

≤ |ξ|p + p

∫ T

t

[µ(s)ψ(|ys|p) + λ(s)|ys|p−1|zs|+ |ys|p−1fs]ds

− p
∫ T

t

|ys|p−21|ys|6=0〈ys, zsdBs〉,

where c(p) = p[(p− 1) ∧ 1]/2. It is straightforward to show that dP − a.s,∫ T

t

|ys|p−21|ys|6=0|zs|2ds < +∞,

and dP × ds− a.e.,

pλ(s)|ys|p−1|zs| = p

( √
2λ(s)√

(p− 1) ∧ 1
|ys|p/2

)(√
(p− 1) ∧ 1

2
|ys|

p−2
2 1|ys|6=0|zs|

)

≤ pλ2(s)

(p− 1) ∧ 1
|ys|p +

c(p)

2
|ys|p−21|ys|6=0|zs|2.

Then for each t ∈ [0, T ], we have

|yt|p +
c(p)

2

∫ T

t

|ys|p−21|ys|6=0|zs|2ds ≤ Xt − p
∫ T

t

|ys|p−21|ys|6=0〈ys, zsdBs〉,

(2.2)

where

Xt = |ξ|p +
p

(p− 1) ∧ 1

∫ T

t

λ2(s)|ys|pds+ p

∫ T

t

µ(s)ψ(|ys|p)ds+ p

∫ T

t

|ys|p−1fsds.

Furthermore, by virtue of (2.2), the BDG inequality and Young’s inequality, a
similar argument as in the proof of Proposition 3 in [8] yields the existence of
a constant kp > 0 depending only on p such that

E

[
sup
s∈[t,T ]

|ys|p
∣∣∣∣Fu
]

≤ 2kpE

[
|ξ|p +

p

(p− 1) ∧ 1

∫ T

t

λ2(s)|ys|pds+ p

∫ T

t

µ(s)ψ(|ys|p)ds
∣∣∣∣Fu
]

+ kpE

[(∫ T

t

fsds

)p ∣∣∣∣Fu
]
, 0 ≤ u ≤ t ≤ T.
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Now, let

ht = E

[
sup
s∈[t,T ]

|ys|p|Fu

]
.

In the previous inequality, applying Fubini’s theorem, Jensen’s inequality, and
in view of the concavity of ψ(·), we can easily get that for each 0 ≤ u ≤ t ≤ T ,

ht ≤ 2kpE

[
|ξ|p
∣∣∣∣Fu]+ 2pkp

∫ T

t

µ(s)ψ

(
E

[
|ys|p

∣∣∣∣Fu])ds

+ kpE

[(∫ T

t

fsds

)p ∣∣∣∣Fu
]

+
2pkp

(p− 1) ∧ 1

∫ T

t

λ2(s)hsds.

At last, by Lemma 2.1 the desired result follows immediately. �

3. Existence and uniqueness theorem and stability theorem

In this section, we will put forward and prove our main results. Firstly, we
introduce the following assumptions on the generator g. In stating them, we
always suppose that 0 ≤ T ≤ +∞, p > 1 and u(·), v(·) : [0, T ] 7→ R+ are two

deterministic functions with
∫ T

0
(u(t) + v2(t))dt < +∞.

(H1)p g satisfies a p-order weak monotonicity condition in y, non-uniformly
in t, i.e., there exists a function ρ(·) ∈ S such that dP × dt − a.e.,
∀ y1, y2 ∈ Rk, z ∈ Rk×d,

|y1−y2|p−1〈 y1 − y2

|y1 − y2|
1|y1−y2|6=0, g(ω, t, y1, z)−g(ω, t, y2, z)〉 ≤ u(t)ρ(|y1−y2|p);

(H2) dP × dt− a.e., ∀ z ∈ Rk×d, y 7→ g(ω, t, y, z) is continuous;
(H3) g has a general growth with respect to y, i.e.,

∀ α > 0, φα(t) := sup
|y|≤α

|g(ω, t, y, 0)− g(ω, t, 0, 0)| ∈ L1([0, T ]× Ω);

(H4) g satisfies a Lipschitz continuity condition in z, non-uniformly in t, i.e.,
dP × dt− a.e., ∀ y ∈ Rk, z1, z2 ∈ Rk×d,

|g(ω, t, y, z1)− g(ω, t, y, z2)| ≤ v(t)|z1 − z2|;

(H5)p E
[
|ξ|p +

(∫ T
0
|g(t, 0, 0)|dt

)p]
< +∞.

Remark 3.1. By a similar argument to that in the proof of Proposition 1 in [8]
we know that (H1)p implies (H1)q for each 1 ≤ p ≤ q < +∞.

The following Proposition 3.1 is a direct corollary of Theorem 6 in [20],
which will be used later.

Proposition 3.1. Assume that 0 ≤ T ≤ +∞ and the generator g satisfies
(H1)2, (H2)-(H4) and (H5)2. Then, BSDE (1.1) admits a unique L2 solution.

The following Theorem 3.1 is one of the main results in this paper, which
generalizes Proposition 3.1 to the Lp (p > 1) solution case.
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Theorem 3.1. Assume that p > 1, 0 ≤ T ≤ +∞ and the generator g satisfies
(H1)p∧2, (H2)-(H4) and (H5)p. Then, BSDE (1.1) admits a unique Lp solution.

Before proving Theorem 3.1, we first introduce and prove the following
stability theorem. Suppose that p > 1, 0 ≤ T ≤ +∞ and for each n ≥ 1,
(yt, zt)t∈[0,T ] and (ynt , z

n
t )t∈[0,T ] are, respectively, an Lp solution of BSDE (1.1)

and the following BSDE depending on parameter n:

ynt = ξn +

∫ T

t

gn(s, yns , z
n
s )ds−

∫ T

t

zns dBs, t ∈ [0, T ].

We need the following assumptions.

(B1) ξn ∈ Lp(Rk) for each n ≥ 1 and all of gn satisfy assumptions (H1)p∧2

and (H4) with the same ρ(·), u(·) and v(·).
(B2) lim

n→+∞
E
[
|ξn − ξ|p +

(∫ T
0
|gn(s, ys, zs)− g(s, ys, zs)|ds

)p]
= 0.

Theorem 3.2. Assume that assumptions (B1) and (B2) hold true. Then we
have

lim
n→+∞

E

 sup
s∈[0,T ]

|yns − ys|p +

(∫ T

0

|zns − zs|2ds

)p/2 = 0.(3.1)

Proof. To begin with, by virtue of (B1) and Remark 3.1, we deduce that for
each n ≥ 1,

(a) (H1)p holds true for each gn, together with u(·) and a new and same
function ρ̂(x) ∈ S;

(in case of 1 < p ≤ 2, ρ̂(x) ≡ ρ(x))
(b) (H1)2 holds true for each gn, together with u(·) and a new and same

function ρ̄ ∈ S.
(in case of p ≥ 2, ρ̄(x) ≡ ρ(x))

In the sequel, for each n ≥ 1, set ŷn· := yn· −y·, ẑn· := zn· −z·, and ξ̂n := ξn−ξ.
Then

ŷnt = ξ̂n +

∫ T

t

ĝn(s, ŷns , ẑ
n
s )ds−

∫ T

t

ẑns dBs, t ∈ [0, T ],(3.2)

where for each (y, z) ∈ Rk ×Rk×d,

ĝn(s, y, z) := gn(s, y + ys, z + zs)− g(s, ys, zs).

By virtue of assumption (B1) together with (a), it is easy to verify that dP ×
ds− a.e., for each (y, z) ∈ Rk ×Rk×d,

|y|p−1〈 y
|y|

1|y|6=0, ĝ
n(s, y, z)〉

≤ u(s)ρ̂(|y|p) + v(s)|y|p−1|z|+ |y|p−1|gn(s, ys, zs)− g(s, ys, zs)|.
It follows that the generator ĝn of BSDE (3.2) satisfies assumption (A2) with

µ(·) = u(·), ψ(·) = ρ̂(·), λ(·) = v(·) and ft = |gn(t, yt, zt)− g(t, yt, zt)|.
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Then, Proposition 2.2 with u = 0 yields the existence of a nonnegative constant
Kp depending only on p such that for each n ≥ 1 and each t ∈ [0, T ],

E

[
sup
r∈[t,T ]

|ŷnr |p
]

≤ Kpe
Kp

∫ T
t
v2(s)ds

{
E
[
|ξ̂n|p

]
+

∫ T

t

u(s)ρ̂

(
E

[
sup

r∈[s,T ]

|ŷnr |p
])

ds

+ E

[(∫ T

t

|gn(s, ys, zs)− g(s, ys, zs)|ds

)p]}
.(3.3)

Moreover, using (B2), Lemma 2.2 and Lemma 2.1, we can deduce that

sup
n≥1

E

[
sup

r∈[0,T ]

|ŷnr |p
]
< +∞.

Then, taking account of (B2) and taking limsup in (3.3) with respect to n and
using Fatou’s lemma, the monotonicity and continuity of ρ̂(·) and Lemma 2.3
we obtain that

lim
n→+∞

E

[
sup

s∈[0,T ]

|yns − ys|p
]

= 0.(3.4)

On the other hand, in view of (B1), (b) and Lemma 2.2 we can also get that
dP × ds− a.e., for each (y, z) ∈ Rk ×Rk×d and m ≥ 1,

〈y, ĝn(s, y, z)〉 ≤ u(s)(m+ 2A)|y|2 + v(s)|y||z|+ u(s)ρ̄(
2A

m+ 2A
)

+ |y||gn(s, ys, zs)− g(s, ys, zs)|.

It follows that the generator ĝn of BSDE (3.2) satisfies assumption (A1) with

µ(·) = (m+ 2A)u(·), λ(·) = v(·), ft = |gn(t, yt, zt)− g(t, yt, zt)| and

ϕt = ρ̄(
2A

m+ 2A
)u(t)

for each m ≥ 1. Thus, by Proposition 2.1 with u = t = 0 we know that there
exists a constant Cp > 0 depending only on p such that for each n,m ≥ 1,

E

(∫ T

0

|ẑns |2ds

)p/2
≤ Cp

(
3 + 2

∫ T

0

[
(m+ 2A)u(s) + v2(s)

]
ds

)p/2
E

[
sup

s∈[0,T ]

|ŷns |p
]

+CpE

[(∫ T

0

|gn(s, ys, zs)− g(s, ys, zs)|ds

)p]
+ Cp

(
ρ̄(

2A

m+ 2A
)

∫ T

0

u(s)ds

)p/2
.



994 Y. DONG AND S. FAN

Finally, by virtue of (3.4), (B2) and the fact that ρ̄ is a continuous function
with ρ̄(0) = 0, we first let n→∞, and then m→∞ in the previous inequality
to obtain that

lim
n→+∞

E

(∫ T

0

|zns − zs|2ds

)p/2 = 0.

The proof of Theorem 3.2 is complete. �

Based on Theorem 3.2, we can prove Theorem 3.1.

Proof of Theorem 3.1. Assume that p > 1, 0 ≤ T ≤ +∞, and the generator
g satisfies assumptions (H1)p∧2 with u(·) and ρ(x), (H2)-(H4) with v(·) and
(H5)p. In view of Remark 3.1, we know that (H1)2 also holds true for g with
u(·) and a new function ρ̄(x) (in case of p ≥ 2, ρ̄(x) ≡ ρ(x)).

By Theorem 3.2, the uniqueness part of Theorem 3.1 follows immediately.
Now, let us show the existence part. Firstly, for each γ ∈ R+and x ∈ Rk, we
define qγ(x) := γx/(γ ∨ |x|) and for each n ≥ 1, let

(3.5) ξn := qn(ξ) and gn(t, y, z) := g(t, y, z)− g(t, 0, 0) + qne−t(g(t, 0, 0)).

It is clear that, for each n ≥ 1, the generator gn satisfies assumptions (H1)2

with u(·) and ρ̄(x), and (H2)-(H4) with v(·). Moreover, for each n ≥ 1,

(3.6) |ξn| ≤ n, dP − a.s. and |gn(t, 0, 0)| ≤ ne−t, dP × dt− a.e.,
and by virtue of (H5), it follows that
(3.7)

lim
m,n→+∞

E

[
|ξm − ξn|p +

(∫ T

0

|qme−t(g(t, 0, 0))− qne−t(g(t, 0, 0))|dt

)p]
= 0.

By Proposition 3.1 we know that BSDE with parameters (ξn, T, gn) admits a
unique L2 solution for each n ≥ 1, denoted by (ynt , z

n
t )t∈[0,T ].

Since the generator g satisfies (H1)2 with u(·) and ρ̄(x), and (H4) with v(·),
then dP × dt− a.e., for each n ≥ 1 and (y, z) ∈ Rk ×Rk×d,

〈y, gn(t, y, z)〉 ≤ u(t)ρ̄(|y|2) + v(t)|y||z|+ |y||qne−t(g(t, 0, 0))|.(3.8)

Thus, assumption (A2) is satisfied by gn(t, y, z) with

p = 2, µ(·) = u(·), ψ(·) = ρ̄(·), λ(·) = v(·), ft = ne−t.

From Proposition 2.2 together with (3.6) and Lemmas 2.1-2.2, it follows that for
each n ≥ 1, (ynt )t∈[0,T ] is a bounded process and then belongs to Sp(0, T ; Rk).
Furthermore, combining (3.8) and Lemma 2.2 yields that dP × dt − a.e., for
each n ≥ 1 and (y, z) ∈ Rk ×Rk×d,

〈y, gn(t, y, z)〉 ≤ Au(t)|y|2 + v(t)|y||z|+ ne−t|y|+Au(t),

so that gn(t, y, z) satisfies assumption (A1) with

µ(t) = Au(t), λ(t) = v(t), ft = ne−t, ϕt = Au(t).
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Then, Proposition 2.1 together with (3.6) yields that for each n ≥ 1, (znt )t∈[0,T ]

belongs to Mp(0, T ; Rk×d).

On the other hand, set ξ̂m,n = ξm − ξn, ŷm,n· = ym· − yn· , ẑ
m,n
· = zm· − zn· .

Then, (ŷm,n· , ẑm,n· ) is an Lp solution of the following BSDE depending on (m,n):

(3.9) ŷm,nt = ξ̂m,n +

∫ T

t

ĝm,n(s, ŷm,ns , ẑm,ns )ds−
∫ T

t

ẑm,ns dBs, t ∈ [0, T ],

where ĝm,n(s, y, z) := gm(s, y + yns , z + zns ) − gn(s, yns , z
n
s ) for each (y, z) ∈

Rk ×Rk×d. It follows from (3.5) that dP × dt− a.e., for each m,n ≥ 1,

ĝm,n(t, y, z)=qme−t(g(t, 0, 0))−qne−t(g(t, 0, 0))+g(t, y+ynt , z+znt )−g(t, ynt , z
n
t ).

Then, by virtue of the assumptions of the generator g together with (3.7), we
can deduce that the assumptions (H1)p∧2 and (H4) with ρ(·), u(·) and v(·) are
satisfied by the generator ĝm,n of BSDE (3.9) for each m,n ≥ 1, and

lim
m,n→+∞

E

[
|ξ̂m,n − 0|p +

(∫ T

0

|ĝm,n(s, 0, 0)− g̃(s, 0, 0)|ds

)p]
= 0,

where for each (y, z) ∈ Rk×Rk×d, g̃(s, y, z) := 0. Thus, applying Theorem 3.2
to BSDE (3.9) yields that

lim
m,n→+∞

E

 sup
s∈[0,T ]

|ŷm,ns − 0|p +

(∫ T

0

|ẑm,ns − 0|ds

)p/2 = 0.

It means that {(ynt , znt )t∈[0,T ]}∞n=1 is a Cauchy sequence in Sp(0, T ; Rk) ×
Mp(0, T ; Rk×d). At last, we denote by (yt, zt)t∈[0,T ] the limit of the sequence

{(ynt , znt )t∈[0,T ]}∞n=1 in Sp(0, T ; Rk) × Mp(0, T ; Rk×d), and pass to limit un-
der the uniform convergence in probability for the BSDE with parameters
(ξn, T, gn), in view of (H2), (H3) and (H4), to see that (yt, zt)t∈[0,T ] solves
BSDE (1.1). The proof is complete. �

4. Corollaries and examples

In this section, we will introduce several corollaries of Theorem 3.1 and
two examples. We suppose that 0 ≤ T ≤ +∞ and u(·) : [0, T ] → R+ is a

deterministic function with
∫ T

0
u(t)dt < +∞. The following assumptions on

the generator g will be used.

(H1a)p g satisfies a p-order one-sided Mao condition in y, non-uniformly in t,
i.e., there exists a function ρ(·) ∈ S such that dP × dt− a.e., ∀ y1, y2 ∈
Rk, z ∈ Rk×d,

〈 y1 − y2

|y1 − y2|
1|y1−y2|6=0, g(ω, t, y1, z)− g(ω, t, y2, z)〉 ≤ u(t)ρ

1
p (|y1 − y2|p);



996 Y. DONG AND S. FAN

(H1b)p g satisfies a p-order one-sided Constantin condition in y, non-uniformly
in t, i.e., there exists a nondecreasing and concave function ρ(·) : R+ 7→
R+ satisfying ρ(0) = 0, ρ(u) > 0 for u > 0 and

∫
0+

up−1

ρp(u)du = +∞,

such that dP × dt− a.e., ∀ y1, y2 ∈ Rk, z ∈ Rk×d,

〈 y1 − y2

|y1 − y2|
1|y1−y2|6=0, g(ω, t, y1, z)− g(ω, t, y2, z)〉 ≤ u(t)ρ(|y1 − y2|);

(H1*) g satisfies a one-sided Osgood condition in y, non-uniformly in t, i.e.,
there exists a function ρ(·) ∈ S such that dP × dt − a.e., ∀ y1, y2 ∈
Rk, z ∈ Rk×d,

〈 y1 − y2

|y1 − y2|
1|y1−y2|6=0, g(ω, t, y1, z)− g(ω, t, y2, z)〉 ≤ u(t)ρ(|y1 − y2|).

By a similar argument to that in the proof of Proposition 1 in [8], we know
that for each p > 1, (H1a)p ⇔(H1b)p ⇒(H1∗)⇒(H1)p. Thus, by Theorem 3.1
and Remark 3.1 the following corollaries follow immediately.

Corollary 4.1. Assume that 0 ≤ T ≤ +∞ and the generator g satisfies as-
sumptions (H1)2 and (H2)-(H4). Then, if assumption (H5)p holds true for
some p > 2, then BSDE (1.1) admits a unique Lp solution.

Corollary 4.2. Suppose that p > 1, 0 ≤ T ≤ +∞ and assumptions (H1*)
and (H2)-(H4) are satisfied by the generator g. Then, if assumption (H5)p also
holds true for some p > 1, then BSDE (1.1) admits a unique Lp solution.

Corollary 4.3. Suppose that p > 1, 0 ≤ T ≤ +∞ and assumptions (H1a)p
(or (H1b)p), (H2)-(H4) and (H5)p are satisfied by the generator g, then BSDE
(1.1) admits a unique Lp solution.

Example 4.1. Let k = 1, p > 1, 0 ≤ T ≤ +∞ and

g(ω, t, y, z) = t2e−t
(
h(|y|)− e|Bt(ω)|y

)
+

|z|√
1 + t2

,

where h(x) := x| lnx|1/p10<x≤δ + (h′(δ−)(x− δ) + h(δ))1x>δ with δ > 0 small
enough.

It is not difficult to check that assumptions (H1b)p, (H2)-(H4), and (H5)p
with u(t) = t2e−t, v(t) = 1/

√
1 + t2 and ρ(x) = h(x) are satisfied by this g.

Then, it follows from Corollary 4.3 that for each ξ ∈ Lp(Rk), BSDE (1.1) ad-
mits a unique Lp solution. We remark that this conclusion cannot be obtained
by Theorem 1 in [8] and Theorem 6 in [20].

Example 4.2. Let 0 ≤ T ≤ +∞, y = (y1, . . . , yk) and g(t, y, z) = (g1(t, y, z),
. . . , gk(t, y, z)), where for each i = 1, . . . , k,

gi(ω, t, y, z) :=
1

(1 + t)2

(
σ(yi) + e−yi

)
+

|z|√
1 + t2

+
t2

t4 + t
,

where σ(x) := x| lnx| ln | lnx|10<x≤δ + (σ′(δ−)(x− δ) + σ(δ)) 1x>δ with σ > 0
small enough.
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It is straightforward to verify that assumptions (H1*) and (H2)-(H4) with
u(t) = 1

(1+t)2 , v(t) = 1√
1+t2

and ρ(x) = σ(x) are satisfied by this g. Then, it

follows from Corollary 4.2 that for each p > 1, and ξ ∈ Lp(Rk), BSDE (1.1)
admits a unique Lp solution. This conclusion cannot be obtained by Theorem
1 in [8] and Theorem 6 in [20].

5. A comparison theorem

In this section, we only study the one-dimensional BSDE, i.e., k = 1, and
establish a general comparison theorem of the Lp solutions for BSDE (1.1) with
generators satisfying (H1)p and (H4), which extends Theorem 3 in [8] to the
general time interval BSDEs.

Theorem 5.1. Assume that p > 1, 0 ≤ T ≤ +∞, ξ, ξ′ ∈ Lp(Rk), g and g′ are
two generators of BSDEs, and (y·, z·) and (y′·, z

′
·) are, respectively, Lp solutions

to the BSDE with parameters (ξ, T, g) and (ξ′, T, g). If ξ ≤ ξ′, dP − a.s., and
one of the following two conditions is satisfied:

(i) g satisfies (H1)p and (H4), and g(t, y′t, z
′
t) ≤ g′(t, y′t, z′t), dP ×dt−a.e.;

(ii) g′ satisfies (H1)p and (H4), and g(t, yt, zt) ≤ g′(t, yt, zt), dP×dt−a.e.;
then for each t ∈ [0, T ], we have yt ≤ y′t, dP − a.s..

Proof. We only prove the case that (i) is satisfied. The other case can be proved
in the same way. Now, we assume that ξ ≤ ξ′, dP−a.s., and assumptions (H1)p
with u(·) and ρ(x), (H4) with v(·) and g(t, y′t, z

′
t) ≤ g′(t, y′t, z′t), dP × dt− a.e.

are satisfied by the generator g. Setting ŷt := yt− y′t, ẑt := zt− z′t, ξ̂ := ξ− ξ′.
By virtue of the Itô-Tanaka formula (see Exercise VI.1.25 in [15]) we know that
for each t ∈ [0, T ],

(ŷ+
t )p +

p[(p− 1) ∧ 1]

2

∫ T

t

|ŷs|p−21ŷs>0|ẑs|2ds

≤ (ξ̂+)p + p

∫ T

t

|ŷs|p−11ŷs>0[g(s, ys, zs)− g′(s, y′s, z′s)]ds(5.1)

− p
∫ T

t

|ŷs|p−11ŷs>0ẑsdBs.

By adding and subtracting the term g(s, y′s, z
′
s), in view of the fact that

g(s, y′s, z
′
s) − g′(s, y′s, z′s) is non-positive, and applying assumptions (H1)p and

(H4) for the generator g together with Young’s inequality, we can deduce that
dP × ds− a.e.,

p|ŷs|p−11ŷs>0[g(s, ys, zs)− g′(s, y′s, z′s)](5.2)

≤ pu(s)ρ((ŷ+
s )p) + pv(s)|ŷ+

s |p−1|ẑs|

≤ pu(s)ρ((ŷ+
s )p) +

pv2(s)

(p− 1) ∧ 1
|ŷ+
s |p +

p[(p− 1) ∧ 1]

4
|ŷs|p−21|ŷs|>0|ẑs|2
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≤ ū(s)ρ̄((ŷ+
s )p) +

p[(p− 1) ∧ 1]

4
|ŷs|p−21|ŷs|>0|ẑs|2,

where

ū(s) := pu(s) +
p

(p− 1) ∧ 1
v2(s) and ρ̄(u) := ρ(u) + u.

It is clear that
∫ T

0
ū(t)dt < +∞, and ρ̄(·) is a nondecreasing concave function

with ρ̄(0) = 0 and ρ̄(u) > 0 for u > 0. Furthermore, since ξ ≤ ξ′ dP − a.s., it
follows from (5.1) and (5.2) that

(ŷ+
t )p ≤

∫ T

t

ū(s)ρ̄((ŷ+
s )p)ds− p

∫ T

t

|ŷs|p−11ŷs>0ẑsdBs, t ∈ [0, T ].

Taking mathematical expectation in the previous inequality and in view of fact

that {p
∫ T
t
|ŷs|p−11ŷs>0ẑsdBs}t∈[0,T ] is a martingale, we can deduce that, by

virtue of Fubini’s theorem and Jensen’s inequality,

E[(ŷ+
t )p] ≤

∫ T

t

ū(s)ρ̄(E[(ŷ+
s )p])ds, t ∈ [0, T ].

Since ρ ∈ S, it is not difficult to verify that
∫

0+
1

ρ̄(u)du = +∞, and then

ρ̄(·) ∈ S. Thus, Lemma 2.3 yields that for each t ∈ [0, T ], E[(ŷ+
t )p] = 0 and

then yt ≤ y′t, dP − a.s.. The proof is complete. �
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