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REFINEMENT OF HOMOGENEITY AND

RAMSEY NUMBERS

Hwajeong Kim and Gyesik Lee

Abstract. We introduce some variants of the finite Ramsey theorem.

The variants are based on a refinement of homogeneity. In particular,
they cover homogeneity, minimal homogeneity, end-homogeneity as spe-

cial cases. We also show how to obtain upper bounds for the correspond-
ing Ramsey numbers.

1. Introduction

The finite Ramsey theorem [11] states that there are always monochromatic
cliques of required cardinalities in any edge labelling of a sufficiently large
complete graph. It is a foundational result in combinatorics which guarantees
regularity in disorder and initiated the so-called Ramsey theory in combina-
torics.

In Ramsey theory, one studies inevitable substructures in large objects and
is mainly interested in finding lower and upper bounds for how large a complete
graph should be to allow regularity. For example, people have been interested
in the case where two colors C1, C2 are used for edge labelling. In this case, the
least number for how large a complete graph should be to allow a monochro-
matic clique is usually denoted by R(m1,m2), where mi ∈ N, i.e., positive
integers, are the cardinality of the required monochromatic clique of the color
Ci. Numbers such as R(m1,m2) are called Ramsey numbers.

One can easily extract an upper bound for R(m1,m2) from the proof of the
theorem in [11], and for lower bounds one has provided many other arguments.
One of the early results is obtained by Erdös [3]: If m ≥ 3, then

2m/2 < R(m,m) ≤ 4m−1.

There is usually a vast gap between the tightest lower and upper bounds,
and only for very few numbers mi the exact value of R(m1,m2) is known. we
refer to [2] for more about recent results about Ramsey numbers.
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In this paper we introduce some variants of the finite Ramsey theorem and
show how to obtain upper bounds for the corresponding Ramsey numbers. The
variants are related to a general form of homogeneity. The proof of the main
theorem of this paper is a revised and corrected version of that provided in [9].

This paper is organized as follows. Section 2 introduces two principles which
have some historical meaning in mathematical logic. These two principles are
based on homogeneity and min-homogeneity, respectively. In Section 3, we gen-
eralize the homogeneity property in order to get a variant of the finite Ramsey
theory. Section 4 shows how to find upper bounds for the corresponding Ram-
sey numbers.

2. Paris-Harrington and Kanamori-McAloon principles

Before we show how to generalize the finite Ramsey theory in the next
section, we would like to explain the importance of our interest by introducing
two principles: the Paris-Harrington principle and the Kanamori-McAloon
principle. In 1970s and 1980s, they played very important roles in the history
of mathematical logic.

The Paris-Harrington principle is introduced in [10] as the first true sentence
that mathematicians could encounter in their customary enterprise which can-
not be proved in the first-order logical system called Peano arithmetic [8]. Until
the paper was published in 1977, people believed that such a true sentence could
be found only in relation with some meta-theoretic properties such as Gödel’s
incompleteness theorems in the 1930s. A similar result was introduced, 10 years
later, by Kanamori and McAloon in [7]. They showed that one could define
another principle using the so-called minimal homogeneity which is equivalent
to the Paris-Harrington principle. That is, the Kanamori-McAloon principle is
a true sentence which cannot be proved in Peano arithmetic.

The reason why the two principles are interesting can be found in the fact
that they are simple variants of the finite Ramsey theorem. As mentioned be-
fore, the validity of the finite Ramsey theory can be shown in a very elementary
way. On the other hand, the results in [7,10] imply that the validity of the two
variants requires much more complicated tools, so that they cannot be proved
true in Peano arithmetic. One can even measure how complex the proofs could
be. We refer the reader to [6] for the detail. In the rest of this section, we
describe both principles. For that we first recall the finite Ramsey theorem
represented in a number-theoretic way.

The finite Ramsey theorem

In the rest of this paper, small Latin letters c, k, `, n, . . . range over positive
integers while capital Latin letters X,Y, . . . range over sets of positive integers.

Given a set X, a subset of X with n elements is called n-subset of X. Let
[X]n denote the set of all n-subset of X, i.e.,

[X]n := {Y ⊆X | card(Y ) = n}.
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If C is a function defined on [X]n and if x1 < x2 < · · · < xn, then we write
C(x1, . . . , xn) instead of C({x1, . . . , xn}). We now introduce a notation useful
in a compact representation of the finite Ramsey theorem. Let the notation

(1) `→ (k)nc

denote the following sentence:

for any coloring C : [X]n → {1, . . . , c}, where card(X) = `,
there is a subset H ⊆X such that card(H) ≥ k and H is ho-
mogeneous for C, i.e., C is constant on [H]n.

The finite Ramsey theorem [11] says that

for all positive integers n, c, k ∈ N, there exists some number
` ∈ N large enough such that `→ (k)nc holds.

Erdös and Rado [5] gives an upper bound for such a number ` depending
super-exponentially on n, c, and k. We will later present a generalized result
in Theorem 4.2.

The Paris-Harrinton theorem

The Paris-Harrington theorem is a variant of the finite Ramsey theorem
which makes use of large homogeneous sets.

Definition (Largeness). A set H of positive integers is called large if card(H) ≥
min(H).

Definition (Homogeneity). Given a function C : [X]n → N, a subset H ⊆X
is called homogeneous for C when C(s) = C(t) for all s, t ∈ [H]n.

Given positive integers `, n, c, k, we use the following notation

(2) `→∗ (k)nc

for the fact that

for any coloring C : [X]n → {1, . . . , c}, where card(X) = `,
there exists a large subset H ⊆X such that it is homogeneous
for C and card(H) ≥ k.

Theorem 2.1 (Paris and Harrington [10]). The following principle cannot be
proved in the first-order Peano arithmetic although it is true.

(PH) :≡ for all n, c, k ∈ N there exists some ` ∈ N such that `→∗ (k)nc

We call (PH) the Paris-Harrington principle.

We will not discuss further the difference between trueness and provability.
It would go far beyond the scope of this paper. We refer instead to [10] for
readers interested in the difference.
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The Kanamori-McAloon theorem

Kanamori and McAloon introduced, 10 years later, another variant of the
finite Ramsey theorem which is also unprovable in the first-order Peano arith-
metic although it is true. The so-called the Kanamori-McAloon principle uses
the concept of regressiveness.

Definition (Regressiveness). We call a function C : [X]n → N regressive when
C(s) < min(s) holds for all s ∈ [X]n such that min(s) > 0.

Definition (Minimal homogeneity). Given a function C : [X]n → N, a subset
H ⊆X is called min-homogeneous for C when C(s) = C(t) for all s, t ∈ [H]n

such that min(s) = min(t), that is, when f restricted to [H]n depends only on
the minimum elements of the ordered input tuples.

Given positive integers `, n, k the following notation

(3) `→ (k)nreg

denotes that

for any regressive function C : [X]n → N, where card(X) = `,
there exists a subset H ⊆X such that it is min-homogeneous
for C and card(H) ≥ k.

Theorem 2.2 (Kanamori and McAloon [7]). The validity of the following
principle is equivalent to (PH).

(KM) :≡ for all n, k ∈ N there exists some ` ∈ N such that `→ (k)nreg.

We call (KM) the Kanamori-McAloon principle.

3. End-homogeneity and its generalized form

Having introduced two historically important principles (PH) and (KM),
we now just focus on their purely combinatorial aspects, namely homogeneity
and min-homogeneity. First we introduce another closely related homogeneity
property, well known from set theory. It is the end-homogeneity. We refer the
reader to Section 15 in [4] for more about the role of end-homogeneity in set
theory. Here we focus on its finite version in combinatorics.

Definition (End-homogeneity). Let C : [X]n → {1, . . . , c} be a coloring func-
tion. We call a subset H ⊆X end-homogeneous for C if for all (n− 1)-element
subset U of H and for all elements v, w ∈ H such that maxU < min{v, w}, we
have

C(U ∪ {v}) = C(U ∪ {w}).

In fact, end-homogeneous sets are already used in the proof of the finite
Ramsey theorem. We finally introduce here a general concept of homogeneity
which covers all the three homogeneity properties. Let n, c, k, `, be positive
integers and s be a non-negative integer such that 0 ≤ s ≤ n ≤ k holds.
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Definition (s-homogeneity). Let C : [X]n → {1, . . . , c} be a coloring function.
We call a subset H ⊆X s-homogeneous for C if for all s-element subset U of H
and for all (n− s)-element subsets V, W of H such that maxU < min(V ∪W ),
we have

C(U ∪ V ) = C(U ∪W ).

Note that s-homogeneity generalizes all the three homogeneity properties men-
tioned earlier.

Lemma 3.1. Let C : [X]n → {1, . . . , c} be a coloring function. Then the fol-
lowing hold by definition.

(1) 0-homogeneous sets are homogeneous sets.
(2) 1-homogeneous sets are min-homogeneous sets.
(3) (n− 1)-homogeneous sets are end-homogeneous sets.

Let

(4) `→s 〈k〉nc
denote that

for any coloring C : [X]n → {1, . . . , c}, where card(X) = `,
there exists a subset H ⊆X such that it is s-homogeneous for
C and card(H) ≥ k.

The following lemma shows a connection between s-homogeneity and homo-
geneity.

Lemma 3.2. Let s ≤ n and assume

(1) `→s 〈k〉nc ,
(2) k − n+ s→ (m− n+ s)sc.

Then we have

`→ (m)nc .

Proof. Let C : [X]n → {1, . . . , c} be given. Then by (1), there exists some
H ⊆X such that |H| = k and H is s-homogeneous for C. Let z1 < · · · <
zn−s be the last (n − s) elements of H and H0 := H \ {z1, . . . , zn−s}. Then
card(H0) = k − n+ s.

Define D : [H0]s → {1, . . . , c} by

D(x1, . . . , xs) := C(x1, . . . , xs, z1, . . . , zn−s).

By (2), there is Y0 such that it is homogeneous for D and Y0⊆H0, card(Y0) =
m−n+s. Therefore, D �[Y0]s = e for some e ≤ c. Set Y := Y0∪{z1, . . . , zn−s}.
Then card(Y ) = m and Y is homogeneous for C. Indeed, we have for any
sequence x1 < · · · < xn from Y

C(x1, . . . , xn) = C(x1, . . . , xs, z1, . . . , zn−s) = D(x1, . . . , xs) = e. �
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4. Ramsey numbers related to s-homogeneity

In this section we show how to obtain upper bounds for Ramsey numbers
related to s-homogeneity which are defined by

(5) Rns (c, k) := min{` | `→s 〈k〉nc },

where n, s are given such that s ≤ n. Rns are called Ramsey functions.

Lemma 4.1. Suppose n is a positive integer and s is a non-negative integer
such that s ≤ n. Then the following hold.

(1) R1
0(c, k) = c · (k − 1) + 1.

(2) Rnn(c, k) = Rns (1, k) = k.
(3) Rns (c, n) = n.
(4) If 0 < s, then Rns (c, k) ≤ Rns−1(c, k).

Note that (1) corresponds to the pigeonhole principle.1

We are going to give upper bounds for Rns (c, k) which depend only on
n, s, c, k. For typographical reasons, we will use a binary operation ∗ on positive
integers defined by

x ∗ y := xy.

We assume that the operation ∗ is right-associative, that is,

x1 ∗ x2 ∗ · · · ∗ xp := x1 ∗ (x2 ∗ (· · · ∗ (xp−1 ∗ xp) · · · )).

We first remind Erdös and Rado’s upper bound for Rn0 (c, k):

(6) Rn0 (c, k) ≤ c ∗ (cn−1) ∗ (cn−2) ∗ · · · ∗ (c2) ∗ (c · (k − n) + 1)

when c ≥ 2 and k ≥ n ≥ 2. Note that the expression (cn−1) ∗ (cn−2) ∗ · · · ∗ (c2)
does not exist when n− 1 < 2. We have for instance

(7) R2
0(c, k) ≤ cc·(k−2)+1.

This upper bound turned out to be very useful in Weiermann [12]. As the
main result of this paper, we generalize (6) to cover the s-homogeneity with
s > 0.

Theorem 4.2. Suppose 2 ≤ n ≤ k, 0 < s ≤ n, and 2 ≤ c. Then the following
holds.

Rns (c, k) ≤ c ∗ (cn−1) ∗ (cn−2) ∗ · · · ∗ (cs+1) ∗ (k − n+ s) ∗ s.

Note that the expression (cn−1)∗(cn−2)∗· · ·∗(cs+1) does not exist when n < s+2.
In particular, we have R2

1(c, k) ≤ ck−1.

1The pigeonhole principle states that if m containers contain in total n items and if

n > m > 0, then at least one container must contain at least n
m

items.
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Proof. The proof below is a refined reconstruction of that of Erdös and Rado
[5]. We work with s-homogeneity instead of homogeneity. The main goal of
the proof is to show the following recursive relation:

(8) Rns (c, k) ∗ n ≤ (cn) ∗Rn−1s (c, k − 1) ∗ (n− 1)

from which the theorem follows by iterating it (n− s) times.
Let C : [X]n → {1, . . . , c} be a coloring function. In the following we will

show that there is an s-homogeneous subset H ⊆X such that card(H) ≥ k
under the assumption that card(X) is large enough. How large it should be
will be checked later, and the checking process will result in the relation (8).

Let

(9) ` := 1 +Rn−1s (c, k − 1).

Not that ` ≥ k > n. Assuming X is very large, we are now going to find
x1, . . . , x` ∈ X and Xn, . . . , X`+1⊆X, and construct functions Cn−1, . . . , C`
such that for all p ≥ n, we have

• Xp is not empty,
• Cp is a function defined on Xp \ {xp},
• Xp+1 is homogeneous for Cp,
• xp+1 = min(Xp+1), and

• card(Xp+1) ≥ card(Xp)−1
c∗(p−1

n−2)
.

First, let x1 < · · · < xn−1 denote the least (n− 1) elements of X and define
a function Cn−1 : X \ {x1, . . . , xn−1} → {1, . . . , c} by

Cn−1(x) := C(x1, . . . , xn−1, x).

Then by the pigeonhole principle, there exists some Xn⊆X \ {x1, . . . , xn−1}
such that it is homogeneous for Cn−1 and

card(Xn) ≥ card(X)− (n− 1)

c
.

Let xn := min(Xn) and define a function Cn on Xn \ {xn} by

Cn(x) := {(Y,C(Y ∪ {xn, x})) | Y ⊆{x1, . . . , xn−1}}.

Note that for each x ∈ Xn \ {xn}, Cn(x) : [{x1, . . . , xn−1}]n−2 → {1, . . . , c}.
That is, the image of Cn contains at most c ∗

(
n−1
n−2
)

many elements. Again by

the pigeonhole principle, there exists some Xn+1⊆Xn \ {xn} such that Cn is
constant on Xn+1 and

card(Xn+1) ≥ card(Xn)− 1

c ∗
(
n−1
n−2
) .

The process above can be iterated for an arbitrary p ≥ n as follows. Let
p ≥ n be given and suppose that x1, . . . , xp−1 and Xn, Xn+1, . . . , Xp have been
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defined. Suppose also Xp is not empty. Let xp := \(Xp) and define a function
Cp on Xp \ {xp} by

Cp(x) := {(Y,C(Y ∪ {xp, x})) | Y ⊆{x1, . . . , xp−1}}.

As explained above, the image of Cp containts at most c∗
(
p−1
n−2
)

many elements.

Then by the pigeonhole principle, there exists some Xp+1⊆Xp\{xp} such that
Cp is constant on Xp+1 and

card(Xp+1) ≥ card(Xp)− 1

c ∗
(
p−1
n−2
) .

Note again that, for any p ≥ n, the above process can be performed if card(X)
is sufficiently large. For this proof, p = ` is enough. Then, in particular, we
have x1 < · · · < x`.

We now define a function D : [{1, . . . , `− 1}]n−1 → {1, . . . , c} by

D(ρ1, . . . , ρn−1) := C(xρ1 , . . . , xρn−1
, x`).

By (9), there exists some Z ⊆{1, . . . , ` − 1} such that Z is s-homogeneous for
D and card(Z) = k − 1. Finally, we put

X ′ := {xρ | ρ ∈ Z} ∪ {x`}.

Finally, we claim that X ′ is s-homogeneous for C.

Proof of the claim. Let

H := {xρ1 , . . . , xρn} and H ′ = {xη1 , . . . , xηn}

be two subsets of X ′ such that ρ1 = η1, . . . , ρs = ηs and

1 ≤ ρ1 < · · · < ρn ≤ `, 1 ≤ η1 < · · · < ηn ≤ `.

Since xρn , x` ∈ Xρn , we have Cρn−1
(xρn) = Cρn−1

(x`), hence

C(xρ1 , . . . , xρn−1
, xρn) = C(xρ1 , . . . , xρn−1

, x`).

Similarly, we can show that

C(xη1 , . . . , xηn−1
, xηn) = C(xη1 , . . . , xηn−1

, x`).

In addition, since {ρ1, . . . , ρn−1} ∪ {η1, . . . , ηn−1}⊆Z, we have

D(ρ1, . . . , ρn−1) = D(η1, . . . , ηn−1),

i.e.,

C(xρ1 , . . . , xρn−1 , x`) = C(xη1 , . . . , xηn−1 , x`).

We therefore have C(H) = C(H ′). So X ′ is s-homogeneous for C. This proves
the claim.

We now turn our attention to the question how large card(X) should be such
that the construction above can be carried through find x1, . . . , x`. The answer
can be given by carefully reviewing the above process.
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Put first

tn :=
card(X)− (n− 1)

c
and tp+1 :=

tp − 1

c ∗
(
p−1
n−2
) ,

where n ≤ p < `. Then

t` = c−(`−2
n−2) ·

(
c−(`−3

n−2) ·
(
· · ·
(
c−(n−1

n−2) ·
(
tn − 1

))
· · ·
)
− 1
)

= c−(`−2
n−2)−···−(n−1

n−2) · tn − c−(`−2
n−2)−···−(n−1

n−2) − · · · − c−(`−2
n−2)−(`−3

n−2) − c−(`−2
n−2).

In order to show that t` > 0, we need to show that

c−(`−2
n−2)−···−(n−1

n−2) · tn > c−(`−2
n−2)+···−(n−1

n−2) + · · ·+ c−(`−2
n−2)−(`−3

n−2) + c−(`−2
n−2).

Since c = c(
n−2
n−2), a sufficient condition on card(X) is then

(10) card(X)− n+ 1 > c(
`−3
n−2)+···+(n−2

n−2) + c(
`−4
n−2)+···+(n−2

n−2) + · · ·+ c(
n−2
n−2) .

A possible value is

(11) card(X) = n+

`−2∑
p=n−1

c(
p

n−1) .

In fact, (10) can be proved using the so-called Pascal’s rule:(
q + 1

r + 1

)
=

(
q

r

)
+

(
q

r + 1

)
for arbitrary positive integers q, r.

A simple reformulation of (11) results in

Rsµ(n, c, k) ≤ n+

`−2∑
p=n−1

c(
p

n−1)

≤ n+

`−2∑
p=n−1

cp
n−1

≤ n+

`−2∑
p=n−1

(
c(p+1)n−1

− cp
n−1)

= n+ c(`−1)
n−1

− c(n−1)
n−1

≤ c(`−1)
n−1

= cR
n−1
s (c,k−1)n−1

.

Finally, we arrive at the recursive relation (8):

Rns (c, k) ∗ n ≤ (cn) ∗Rn−1s (c, k − 1) ∗ (n− 1).

Moreover, if we apply the above relation (n− s) times, we get

Rns (c, k) ∗ n ≤ (cn) ∗ (cn−1) ∗ · · · ∗ (cs+1) ∗Rsµ(s, c, k − n+ s) ∗ s
= (cn) ∗ (cn−1) ∗ · · · ∗ (cs+1) ∗ (k − n+ s) ∗ s.

This completes the proof of the theorem. �
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5. Concluding remarks

We introduced and investigated some variants of the finite Ramsey theorem
related to s-homogeneity, a general form of homogeneity. As the main result,
we showed how to obtain upper bounds for the corresponding Ramsey numbers.
This upper bounds could be very useful in getting independence results related
to Kanamori-McAloon principle. Related results can be found in [1].
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