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STABLE APPROXIMATION OF THE HEAT FLUX IN AN

INVERSE HEAT CONDUCTION PROBLEM

Lëıla Alem and Lahcène Chorfi

Abstract. We consider an ill-posed problem for the heat equation uxx =

ut in the quarter plane {x > 0, t > 0}. We propose a new method to
compute the heat flux h(t) = ux(1, t) from the boundary temperature

g(t) = u(1, t). The operator g 7→ h = Hg is unbounded in L2(R), so we
approximate h(t) by hδ(t) = ux(1 + δ, t), δ → 0. When noise is present,

the data is gε leading to a corresponding heat hδ,ε. We obtain an estimate

of the error ‖h− hδ,ε‖, as well as the error when hδ,ε is approximated by
the trapezoidal rule. With an a priori choice rule δ = δ(ε) and τ = τ(ε),

the step size of the trapezoidal rule, the main theorem gives the error of

the heat flux as a function of noise level ε. Numerical examples show that
the proposed method is effective and stable.

1. Introduction

In this article, we consider the problem of finding a function u(x, t) from the
given data u(1, t) = g(t) in the following sideways heat equation

(1)


uxx = ut, x > 0, t > 0,

u(1, t) = g(t), lim
x→+∞

u(x, t) = 0, t ≥ 0,

u(x, 0) = 0, x ≥ 0.

We decompose this problem into two problems.

Problem 1. We consider the well-posed problem: given g, determine the heat
flux h(t) = ux(1, t), where u is the solution of the heat problem

(2)


uxx(x, t) = ut(x, t), x > 1, t > 0,
u(1, t) = g(t), lim

x→+∞
u(x, t) = 0, t ≥ 0,

u(x, 0) = 0, x ≥ 1.
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Problem 2. We solve the Cauchy problem

(3)

 uxx(x, t) = ut(x, t), 0 < x < 1, t > 0,
u(1, t) = g(t), ux(1, t) = h(t), t ≥ 0,
u(x, 0) = 0, 0 ≤ x ≤ 1.

The aim of this paper consists of two steps. In the first step we compute the
heat flow h(t) = ux(1, t) in a stable way from perturbed data gε, ‖g − gε‖ ≤ ε.
In the next step, we test our approximation by solving the Cauchy problem
(system (3)) with difference scheme.

Problem 2 is severely ill-posed [10]; i.e., the solution (if it exists) does not
depend continuously on the given data. This problem has been considered by
many authors with different methods. Mollification method has been used by
Murio [9] in the regularization of the Cauchy problem (system (3)). In [8], Hào
computed the heat flux h(t) = ux(1, t) by solving Problem 1 in the exterior
domain [1,+∞[×[0, T ] by finite differences schemes. Recently, in [1], the flux
has been regularized by the Fourier method (as in [2, 4]). In this paper, we
use a new method based on the formula h(t) = ux(1, t) where u(x, t) is an
explicit solution of Problem 1. The mapping H : g → h is an unbounded linear
operator in L2. To evaluate Hg in a stable way, we approximate h by a method
of truncation, more precisely, we set hδ(t) = ux(1 + δ, t), δ > 0, where u(x, t) is
the solution of (2). To our knowledge, this representation has not been used yet
in the literature. Our aim is to provide an error estimate with respect to the
cut off parameter when δ → 0 and the level noise ε in the data g(t) = u(1, t).
Also, the error due to the numerical integration is investigated, giving an a
priori choice rule τ = τ(δ) of the parameter of discretization τ which leads to
the convergence as δ → 0.

This paper is organized as follows. In Section 2, we obtain the formulation of
the heat flux h from the solution of Problem 1 and we propose its approximation
hδ. In Section 3, the method of choosing the regularization parameter δ = δ(ε)
when ε is the level noise and the error estimates are provided. In Section 4, we
study the error due to the discretization of the integral by trapezoidal formula,
giving an a priori choice rule of the parameter τ = τ(δ). In Section 5, we
discretize the Cauchy problem by finite differences schemes. In Section 6, two
numerical examples are given, and compared with two methods: the Fourier
regularization method and an approximation of the inverse Abel transform.

Notations. 1) Let v̂ denote the Fourier transform of function v(t) ∈ L2(R)
defined by

v̂(ξ) :=
1√
2π

∫ +∞

−∞
v(t)e−iξtdt, ξ ∈ R,

and ‖ · ‖s denote the norm in Sobolev space Hs(R), s ≥ 0, defined by

‖v‖s :=

(∫ +∞

−∞
(1 + ξ2)s|v̂(ξ)|2dξ

) 1
2

.
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When s = 0, ‖ · ‖0 := ‖ · ‖ denotes the L2(R) norm.
2) For f ∈ Cm([0, T ],R) we define the norm ‖f‖∞,m as follows:

‖f‖∞,m = max
0≤k≤m

{ sup
t∈[0,T ]

|f (k)(t)|}.

When m = 0, ‖f‖∞,0 = ‖f‖∞ is the uniform norm.

2. Approximation of the heat flux

Assume that g ∈ L2(R+), then the solution of (2) is given by the integral
(see [1])

(4) u(x, t) =

∫ t

0

x− 1

t− s
k(x− 1, t− s)g(s)ds, x ≥ 1, t ≥ 0,

where k(x, t) is the heat kernel

k(x, t) =
1

2
√
πt

exp

(
−x2

4t

)
,

then the flux at x = 1 is written as

(5) h(t) := lim
x→1

ux(x, t) = lim
x→1

∫ t

0

(1− (x− 1)2

2(t− s)
)

1

t− s
k(x− 1, t− s)g(s)ds.

Under some restriction on g, this limit exists in L2 (see Theorem 3.2).
As we can not interchange the limit and the integral in (5), we approximate

h by hδ, δ > 0, by setting

(6) hδ(t) := ux(1 + δ, t) =

∫ t

0

(1− δ2

2(t− s)
)

1

t− s
k(δ, t− s)g(s)ds.

Now we compute the Fourier transform of h and hδ. For this we extend the
functions u(x, t) and g(t) to the whole real t-axis by defining them to be zero
for t < 0. Taking the Fourier transform of (1) with respect to t, we obtain the
solution u in frequency domain (see also [1, 3]):

(7) û(x, ξ) = e
√
iξ(1−x)ĝ(ξ),

where √
iξ =

 (1 + i)
√
|ξ|
2 , ξ ≥ 0,

(1− i)
√
|ξ|
2 , ξ < 0,

which leads to

(8) ĥ(ξ) = lim
x→1

ûx(x, ξ) = −
√
iξĝ(ξ) a.e. ξ ∈ R

and

(9) ĥδ(ξ) = −
√
iξe−δ

√
iξ ĝ(ξ).
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Remark 2.1. Using Fourier transform analysis, we show in the appendix that
equation (8), in ξ, is equivalent to the integro-differential equation in time

(10) h(t) = −
√

2

π

d

dt

∫ t

0

g(s)√
t− s

ds,

which is the inverse of Abel transform

(11) g(t) = −
√

2π

∫ t

0

h(s)√
t− s

ds.

Murio proposed, in his book ([9, Chapter 2]), four methods for the approxima-
tion of the solution of Abel equation (11). In the third one, he approximated
h by the formula

(12) hγ(t) = −
√

2

π

{
γ−3/2

∫ t

t−γ
g(s)ds− 1

2

∫ t−γ

0

g(s)(t− s)−3/2ds
}
,

with 0 < γ < 1. If g is continuously differentiable and g(0) = 0, another
representation is proposed, namely

(13) h(t) := Lg = −
√

2

π

∫ t

0

g′(s)√
t− s

ds.

This formula is unstable. More precisely, the operator L with domain D(L) =
{g ∈ H1(0, 1), g(0) = 0} is unbounded in L2(0, 1). To show the instability, we
construct the functions gn defined as follows:

gn(t) =

{
nt if 0 ≤ t ≤ 1/n,
1 if 1

n ≤ t ≤ 1.

The sequence gn ∈ D(T ) and satisfies the properties:

gn → g = 1 in L2(0, 1) and ‖Lgn‖ → +∞ as n→ +∞.

Groetsch, in [6,7], approximates the values of L (in a stable way) by Tikhonov-
like method.

In the numerical tests, we shall compare our method (formulas (6)) with
(12). It seems that our method is comparable to the mollification method (the
first method introduced by Murio in his book). Indeed, the heat kernel k(δ, t)
in the expression (6) plays the role of the δ-mollifier.

3. Convergence and error estimates

In order to give an error estimate for the regularized flux hδ, we need the
following lemma.

Lemma 3.1. We have

(i) |1− e−δ
√
iξ| ≤ 2 for ξ ∈ R, (ii) |1− e−δ

√
iξ| ≤ δ

√
Aeδ

√
A for |ξ| ≤ A.
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Proof. (i) follows from ∀ξ, |e−δ
√
iξ| ≤ e−δ

√
|ξ|
2 ≤ 1.

(ii) Using the series eX = 1+X+ · · ·+ Xn

n! + · · · , we obtain the upper bound

|1− eX | ≤ |X|e|X|, ∀X, which leads to the inequality. �

Theorem 3.2. Assume that g ∈ Hs(R), s > 1, and ‖g‖s ≤ M . Then we
obtain the error bound

(14) ‖h− hδ‖ ≤
√

4 + e2 δ1−
1
sM.

Proof. Using Parseval formula for the Fourier transform together with equa-
tions (8) and (9), we obtain

‖h− hδ‖2 =

∫
R
|1− e−δ

√
iξ|2|ξ||ĝ(ξ)|2dξ =

∫
|ξ|≤A

+

∫
|ξ|≥A

.

From Lemma 3.1 it follows that for all A ≥ 1

‖h− hδ‖2 ≤ Aδ2e2δ
√
A‖g‖21

2
+

4

As−1

∫
|ξ|≥A

|ξ|s|ĝ(ξ)|2dξ.

We choose A such that Aδ2 = 1
As−1 ⇔ A = ( 1

δ )
2
s , then

‖h− hδ‖2 ≤ A1−se2‖g‖21/2 + 4A1−s‖g‖2s,

hence

‖h− hδ‖ ≤
√
e2 + 4‖g‖s δ1−

1
s . �

Theorem 3.3. Suppose that g ∈ Hs(R), s > 1, and gε ∈ L2(R) satisfying
‖g − gε‖ ≤ ε. Then we get the error bound

(15) ‖hδ − hδ,ε‖ ≤
√

2

e

ε

δ
,

where hδ,ε is defined by its transform ĥδ,ε(ξ) = −
√
iξe−δ

√
iξ ĝε(ξ).

Proof. We have

‖hδ − hδ,ε‖2 =

∫
R
|ξ|e−δ

√
2|ξ||ĝ(ξ)− ĝε(ξ)|2dξ ≤ (sup

ξ
|ξ|e−δ

√
2|ξ|)‖ĝ − ĝε‖2

≤ 2

e2
(
ε

δ
)2.

�

Theorem 3.4. Under the conditions of Theorem 3.2 and Theorem 3.3, we get
the error estimate

(16) ‖h− hδ,ε‖ ≤M
√

4 + e2 δ1−
1
s +

√
2

e

ε

δ
.

Proof. The estimate follows from Theorem 3.2, Theorem 3.3 and the triangle
inequality. �
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The error estimate is minimized by choosing δ such that ε
δ = δ1−

1
s ⇔ δ1−

1
s =

ε
s−1
2s−1 , and gives convergence as ε → 0 with rate O(εβ), β = s−1

2s−1 . The order

of convergence β is less than 1
2 . In particular β = 2

5 for s = 3. Hence we have
the corollary.

Corollary 3.5. Under the conditions of Theorem 3.4, if we choose δ = ε
s

2s−1

we obtain the error bound

(17) ‖h− hδ,ε‖ ≤ [M
√

4 + e2 +

√
2

e
]εβ with β =

s− 1

2s− 1
.

4. Discretization of the integral

In this section we approximate the integral (6) by the trapezoidal rule and
we give an estimate of the discrete error. In the following, the generic constant
C does not depend on δ and g. The integral (6) is of the form

I(δ, g, t) =

∫ t

0

k1(δ, t− s)g(s)ds =

∫ t

0

k1(δ, s)g(t− s)ds

with k1(δ, t) = 1
2
√
π

(t−3/2 − δ2

2 t
−5/2) exp(− δ

2

4t ).

Denoting f(δ, s) = k1(δ, s)g(t − s), the trapezoidal formula is written as
follows

I(δ, g, tn) ∼ Tτ (δ, g, tn) := τ

n∑
j=1

ωjfj , (ω0 = ωn = 0.5, ωj = 1, j = 1, n− 1)

where fj = f(δ, sj), T = Nτ , sj = jτ , n ≤ N . If g is of class C2, we have the
error bound

|I(δ, g, tn)− Tτ (δ, g, tn)| ≤ T

12
τ2M2(δ),

where M2(δ) = sup0<s<T |f ′′(δ, s)|. We can see that M2 ≤ ‖k1‖∞,2‖g‖∞,2 and

|k′′1 (δ, t)| ≤ Cδ6t− 13
2 exp(−δ

2

4t
) ≤ Cδ−7,

which leads to

|I(δ, g, tn)− Tτ (δ, g, tn)| ≤ CT τ
2

δ7
‖g‖∞,2.

Comparing this estimate with (14), for s = 3, we select τ such that

τ2

δ7
≤ δ 2

3 ⇔ τ ≤ δ 23
6 ,

this occurs if τ = δ4. Therefore

‖I(δ, g)− Tτ (δ, g)‖l2 ≤ CTδ
2
3 ‖g‖∞,2.
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Now we compare Tτ (δ, g) and Tτ (δ, gε) under the condition ‖g − gε‖ ≤ ε. We
have

Tτ (δ, g, tn)− Tτ (δ, gε, tn) = τ

n∑
j=1

ωjk1(δ, sj)(g(sj)− gε(sj)),

then

‖Tτ (δ, g)− Tτ (δ, gε)‖l2 ≤
√
τ‖k1(δ)‖∞‖g − gε‖l2 ≤ C

√
τ
ε

δ3
,

where ‖g‖2l2 = τ
∑n
j=1 |g(sj)|2 is the discrete L2(0, T ) norm.

With δ = ε
1
2 and τ = δ4 = ε2 we get

‖Tτ (δ, g)− Tτ (δ, gε)‖l2 ≤ Cε
1
2

and

‖I(δ, g)− Tτ (δ, g)‖l2 ≤ CTε
1
3 ‖g‖∞,2.

We summarize these results in the following theorem.

Theorem 4.1 (Discrete Error Estimate). Suppose that g ∈ H3(R) and
‖g − gε‖ ≤ ε. Then, by choosing δ =

√
ε and τ = ε2 we get

(18) ‖I(δ, g)− Tτ (δ, gε)‖l2 ≤ CTε
1
3 ‖g‖∞,2 +O(ε

1
2 ).

Denote by hε = Tτ (δ, gε) the approximate flux with the choice δ =
√
ε and

τ = ε2. By adding the different errors we get the global error.

Theorem 4.2 (Global Error). Suppose that g ∈ H3(R) and ‖g−gε‖ ≤ ε. Then

(19) ‖h− hε‖ ≤ CTε
1
3 ‖g‖3 +O(

√
ε).

Proof. The proof follows from the estimate (17) with s = 3 and the esti-
mate (18), observing that ‖g‖∞,2 ≤ C‖g‖3, according to the Sobolev embed-
ding H3(R) ⊂ C2. �

Remark 4.3. If g(t) = u(1, t) is an exact data, then ĝ(ξ) = e−
√
iξ f̂(ξ) where

f = u(0, ·) ∈ L2(R). From [1, Theorem 2.1], we see that g ∈ Hs(R) for all
s > 0 and ‖g‖s ≤ Cs‖f‖. Then the estimate (19) takes the form

‖h− hε‖ ≤ CsTEε
1
3 +O(

√
ε),

where E is an priori bound on f , that is, ‖f‖ ≤ E.

5. Discretization of the Cauchy problem

The Cauchy problem (3) is approximated by central finite differences sche-
mes. Letting w := ux, the system (3) can be rewritten as

(20)

 ux(x, t) = w(x, t), wx(x, t) = ut(x, t), 0 < x < 1, t > 0,
u(1, t) = g(t), w(1, t) = h(t), t > 0,
u(x, 0) = 0, 0 < x < 1.
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Now we define the discrete solution (umn , w
m
n ) on the grid G = {xm = mk; tn =

nτ : m = 0,M ; n = 0, N}, then this problem is discretized by

(21)



un+1
m − unm

k
= wn+1

m , n = 1, . . . , N, m = 1, . . . ,M + 1,

wn+1
m − wnm

k
=
unm+1 − unm−1

2τ
, n = 1, . . . , N, m = 1, . . . ,M,

uN+1
m = gm, wN+1

m = hm, m = 1, . . . ,M + 1,
u1m = 0, m = 1, . . . ,M + 1.

This scheme is unconditionally stable (see [8, Theorem 3.2] and the references
therein). In this article, Hào use the mollification method, developed by Murio
in [9], which consists of mollifying gε and hε by convolution with the Dirichlet

kernel Dν(t) = sin(νt)
2πt , ν →∞. He proved the stability estimate

‖un‖l2 ≤ e1+ν(‖g‖2 + ‖h‖2).

We shall not establish such an estimate for our case, but we are satisfied with
a numerical validation.

6. Numerical results and comparisons

6.1. Algorithm

We give some numerical examples to show the validity of the proposed nu-
merical schemes given in Sections 4 and 5. Also we compare the performance
of our method (Method I) with two methods.

• Method II: the Fourier method (see [1], formula (3.6)) which can be
implemented numerically by Fast Fourier Transform (FFT).
• Method III: Abel inversion formula (10) approximated by (12) due to

Murio ([9]).

Our algorithm is as follows:

(1) To simulate a data, we compute g = Af for given f , where A is the
forward operator defined in [1] by the formula (2.6) with M points in
[0, T ].

(2) Compute the exact flux h = Hg given by the expression (2.4) of [1]
with M points.

(3) Introduce random error of amplitude ε leading to the function gε(t) =
g(t) + ε ∗ σ(t) where σ is the Gaussian random function.

(4) Compute the approximate flux hδ,ε by the quadratic formula Tτ (δ, gε),

given in Section 4, with a priori choice δ = τ
1
4 = ( TN )

1
4 according to

Theorem 4.1. In practice we take N = 10 ×M points in the interval
[0, T ] in order to get δ close to zero. Here we are limited by the memory
allowed for array by Matlab 2011, N ≤ 6.103.

(5) To reconstruct f , we solve Cauchy problem (system (3)), with per-
turbed data (gε, hδ,ε) (hδ,ε is computed in the step 4), by applying
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Figure 1. Example 1-Method I: (left) Exact and approximate
heat flux at x = 1; with δ = 0.224, ε = 0.01, N = 2000; (right):
Exact and approximate solution at x = 0 with M = 200.

the central difference scheme described in Section 5. We use a grid of
M ×N points in the rectangle [0, 1]× [0, T ].

(6) Compare our method (Method I) with the Methods II and III.

6.2. Examples

• Example 1. As the first example we consider the function

u(0, t) = f(t) = 2 exp(−10(t− 1)2) + exp(−6(t− 2)2), 0 ≤ t ≤ T = 5,

the exact solution of the problem (1). The function f belongs to Hs(R)
for all s ≥ 0. We can assume (numerically) that f(t) = 0 for t /∈ [0, T ].

• Example 2. The exact solution is defined as follows

f(t) =

{
1 if 1 ≤ t ≤ 2,
0 elsewhere.

The function f belongs to L2(R), but the exact data function g = Af
satisfies the necessary hypothesis (g ∈ H3(R)) of Theorem 4.2 for the
convergence of the heat flux hδ,ε (see Remark 4.3).

6.3. Discussion

The computational results show that our method (Method I) is convergent
and stable for ε ≤ 10−2, however the parameter N must be large enough
(N ≥ 103) to ensure a good precision. Method I provides an automatic choice

rule to select δ = τ
1
4 = ( TN )

1
4 . In Method III, the regularization parameter

γ = γ(N) is obtained by numerical experimentation (see Figure 4, where γ =
0.085 if N = 500). Moreover, we observe that the Method III is sensitive to
the variation of N and is stable only if the level noise ε ≤ 10−3. The Method II
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Figure 2. Example 2-Method I: (left) Exact and approximate
heat flux at x = 1; with δ = 0.224, ε = 0.01, N = 2000; (right):
Exact and approximate solution at x = 0 with M = 200.
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Figure 3. Example 2-Method II: (left) Exact and approxi-
mate heat flux at x = 1; with ε = 0.001, N = 200; (right):
Exact and approximate solution at x = 0 with M = 200.

is the easiest to implement, it is stable for ε ≤ 10−3 and not well precise in the
reconstruction of f . Finally remark that we solve the ill-posed Cauchy problem
by finite difference schemes without additional regularization. Indeed in our
case the heat kernel k(δ, t) in the formula (6) plays the role of the δ-mollifier
of the heat flux hε, by comparison with the mollification method used by Hào
et al. in [8]. We can see in Figures 1 and 2 that hε is enough smooth.
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Figure 4. Example 2-Method III: (left) Exact and approxi-
mate heat flux at x = 1; with ε = 0.001, γ = 0.085, N = 500;
(right): Exact and approximate solution at x = 0 with M =
200.

7. Conclusion

We have proposed a new method (Method I) to compute the heat flux from
the measured temperature in an inverse heat conduction problem. We have
proved that our method is stable and given an error estimate. Our method
is based on a truncation procedure, where the parameter of regularization is
chosen by discrepancy principle (the discrete error must be of the same order of
the truncation error). The numerical tests confirm the efficiency of the method.
Our method has been compared with two methods: Fourier method and inverse
Abel formula, the numerical results show that Method I is slightly better in
term of stability.

Appendix A. Abel equation

Assume that h is the solution of Abel equation, i.e., h is given by the equa-

tion (12). In this section we show that ĥ(ξ) = −
√
iξĝ(ξ). For this we in-

troduce the function K such that K(t) = 1√
t

for t > 0 and K(t) = 0 for

t ≤ 0. If we assume that g(t) is causal i.e., g(t) = 0 for t ≤ 0, then we have

(K ∗ g)(t) =
∫ t
0
K(t − s)g(s)ds and we can write h(t) = −

√
2
π
d
dt (K ∗ g)(t).

Applying the Fourier transform, we obtain

ĥ(ξ) = −
√

2

π
iξK̂(ξ)ĝ(ξ)
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with K̂(ξ) =
∫∞
0
e−iξt dt√

t
. By using the change of variable x2 = |ξ|t, we get

K̂(ξ) =
2√
|ξ|

∫ ∞
0

e−iσx
2

dx, (σ = sgn ξ).

Now we use the Fresnel integrals
∫∞
0

cos(x2)dx =
∫∞
0

sin(x2)dx = 1
2

√
π
2 to

have

(22) K̂(ξ) =

√
π

2|ξ|
(1− iσ).

Using the definition
√
iξ = (1 + iσ)

√
|ξ|
2 and ξ = σ|ξ|, this leads to

ĥ(ξ) = −
√
iξĝ(ξ).

The formula (22) can be rigorously justified in the space S ′(R) of the generalized
functions (see [11]). Indeed, K ∈ L1

loc(R) and lim|t|→∞K(t) = 0, hence K ∈
S ′(R), moreover, we have

K̂(ξ) = lim
R→+∞

∫ R

0

e−iξt
dt√
t

in S ′(R),

since KR(t) =: χ[0,R]K(t) → K(t) in S ′(R) as R → ∞. Hence K̂ ∈ S ′(R).

Finally we remark that if g ∈ Hs(R), s ≥ 1, then ĥ = −
√
iξĝ ∈ L2

s− 1
2

(R) and

hence h(t) = −
√

2
π
d
dt (K ∗ g) belongs to Hs− 1

2 (R). For more details we can see

the book [5].
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