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QUALITATIVE ANALYSIS OF
A GENERAL PERIODIC SYSTEM

SHIHE XU

ABSTRACT. In this paper we study the dynamics of a general w-periodic
model. Necessary and sufficient conditions for the global stability of zero
steady state of the model are given. The conditions under which there
exists a unique periodic solutions to the model are determined. We also
show that the unique periodic solution is the global attractor of all other
positive solutions. Some applications to mathematical models for cancer
and tumor growth are given.

1. Introduction

In this paper, we consider a general initial value problem as follows:

(1.1) & =axF(t ),

(1.2) z(to) = o,
where the function F' satisfies the following conditions:

(Al) F is continuous and locally Lipschitz continuous in z for all (¢,z) €
2 =R, ? where R, = [0, +00).

(A2) For all (t,z) € 2 = R,? equality F(t +w,z) = F(t,x) holds, that is F

is w-periodic.

(A3) F is strictly decreasing in x, that is for any ¢t > 0 and z > y > 0

inequality F(t,z) < F(t,y) holds.

Recently, the same model has been studied under different conditions by U.
Forys et al. [3]. In [3], the authors assumed that F satisfies the conditions (A1),
(A2), (A3)” and (A4), where (A3)’ and (A4) are as follows:

(A3)’ F is increasing in x, that is for any ¢ > 0 and = > y > 0 inequality
F(t,z) > F(t,y) holds.
(A4) F is uniformly bounded in 2.
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It should be pointed out that the methods used in [3] are not applicable to
this model with the conditions (A1), (A2) and (A3). We derive conditions for
the global stability of trivial solution to the model. Using Schauder’s Fixed
Point Theorem, we prove there exists at least one periodic solution under some
conditions. We also show that the periodic solution is the global attractor of
all other positive solutions. Thus the periodic solution is unique if it exists.

Theorem 1.1. Assume that F satisfies the conditions (A1)-(A3). For any
positive initial value xq, there exists a unique global positive solution to the
ingtial value problem (1.1), (1.2). Moreover, the solution is strictly positive for
allt > 0.

Proof. By the well-known existence and uniqueness theorem for first-order
ODEs, the local existence and uniqueness of the solution to the initial value
problem (1.1), (1.2) is clear. Noticing F is decreasing in x, we can get

(1.3) %‘% = F(t,z) < F(t,0).

Then we can get
(1.4) z(t) < z(0)et,
where F* = max(q ) F'(t,0). On the other hand,

(1.5) x(t) = xo eXp(/Ol F(s,x)ds) > 0.

Thus the solution can not blow up or disappear in a finite time, by continuation
theorem, there exists a unique global positive solution to the initial value prob-
lem (1.1), (1.2). By (1.5), we can get the solution to the initial value problem
(1.1), (1.2) is strictly positive for all ¢ > 0. O

The paper is organised as follows: In Section 2, necessary and sufficient
conditions for the global stability of zero steady state of the model are given.
In Section 3, the conditions under which there exists a unique periodic solutions
to the model are determined. Besides, we also show that the unique periodic
solution is the global attractor of all other positive solutions. In the last section,
some applications to mathematical models for cancer and tumor growth are
given.

2. Stability of zero steady state of (1.1)

For simplicity of notation, in this paper we denote

w w
g(x) :/ F(s,z)ds, Fa :/ F(s,0)ds = g(0).
0 0
Due to (A3), g(z) is decreasing in x. Set
li = Fy.
A 9 = Fo

We see that Fq = Fj if g is continuous at point 0.
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Theorem 2.1. Assume that F' satisfies the conditions (A1)—(A3). The follow-
ing assertions hold.

(1) The zero steady state of (1.1) is globally stable if Fa < 0. i.e., if Fa <0,
any solution of Eq. (1.1) with o > 0 tends to 0 as t — oo.

(2) If the zero steady state of (1.1) is globally stable, then Fa < 0.

Proof. (1) For any £ € [0,w],

E4+nw dx E+nw E+nw
/ @ / F(t,2)dt < / F(t,0)dt,
3 3 £

X

where we used the fact F' is decreasing in x. Thus,

E+nw
(& + nw) < z(€) exp (/g F(t, 0)dt> =z(&)exp(nFy).

Since F4 < 0, it follows that z(§) exp (nFa) — 0 as n — oo. Therefore, we can
get z(§ + nw) — 0 as n — co. Since lim, o 2(nw) = 0, then for an arbitrary
€ > 0, there exists n. > 0 such that z(nw) < € when n > n.. Let t. = n.w.
For any ¢ > t., there exists n > n. such that ¢t = nw + £, where £ € [0,w). We
can get

nw—+§&
z(t) = z(nw) exp(/ F(t,z)dt) < eefs <e.
Thus lims—, o0 2(¢) = 0.
(2) Since the zero steady state of (1.1) is globally stable, i.e., lim; o 2(t) =
0, then for a given ¢ > 0, there exists t. such that x(t) < ¢ for ¢ > t.. Then

dxr
— =F(t > F(t
= F(t.2) > F(t.2)

where we used the fact F' is decreasing in x. Therefore

W > exp (/tw F(g,@dt) = exp (/Ow F(gs)dt) .

We use the method of reduction to absurdity. If )4 > 0, we choose € sufficiently

small such that
exp </ F(f,s)dt) > 0.
0

Then w(;;;;" ) > 1. Therefore, we construct a sequence {z(t.+nw)}y, that strictly
increasing which contradicts to the assumption that the zero steady state of
(1.1) is globally stable. Thus F4 > 0 does not hold. This completes the proof
of Theorem 2.1. ]
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3. Existence, uniqueness and stability of the periodic solution to
Eq. (1.1)

Lemma 3.1 (see Theorem 4.1 and Corollary 5.1 in [6]). Consider the following
ODE

dy
(3.1) i
where G : [0,w] X [a,b] = R is continuous and w-periodic with respect to t. If,
for allt € [0,w], G(t,a) > 0 and G(t,b) < 0 then [a,b] is invariant under G,
moreover the equation (3.1) admits a w-periodic solution, y: R — [a, c].

Lemma 3.2. Assume that F satisfies the conditions (A1)—(A3) and Fa > 0.
Moreover, assume that

G(t,y), t € R,

F(t,z) — f(t) uniformly as © — oo

and Fy = [ f(t)ds < 0, then
(1) there exists at least one w-periodic positive solution x*(t) to (1.1).
(2) for any other positive solutions x(t) to (1.1), the limit

tliglo[m(t) —z"(t)] = 0.

Proof. (1) Set [,” F(t,z)dt = g(z), then g(x) is decreasing due to (A3). Since
9(0) = Fa > 0 and lim, o0 g(z) = 3 f(t)dt < 0, we can get there exists a
constant M > 0 such that g(M) = 0. Let X = {z|z € C(Ry,R)} be the
Banach space with the norm |[z|| = sup,;> |(t)|. Define a closed, bounded and
convex subset 2 of X as follows

Q={zeX:z(t+w)=2a(t),0<z(t) < KM},
where K = max{2, ef1}. Define the operator S : Q — X as follows:

t+w
S(z)(t) = z(t) exp(/t F(s,z)ds).

First, we show that Sx € Q for any = € Q. For any z € Q, if x < M, then

t+w
S(x)(t) = x(t) exp( F(s,x)ds) = ze9™) < zefs < KM.
t
If M <x < KM, we have

t+w
S(z)(t) = z(t) exp(/ F(s,z)ds) = ze9® < ze9M) < KM.
¢

Sz > 0 is obvious. Therefore, for any z € 2, 0 < Sz < KM. Since
t+2w

S(z)(t+w) =2(t +w) exp(/t+ F(s,z)ds)

t+w
= atexpl [ Fls.)ds) = S(@)0),

we can get Sz € () for any = € (.
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Next, we show that S is continuous. Let x; =: z;(t) € Q be such that
xi(t) = x(t) € Q as i — co. We can get

t+w
I15(z:)(8) = S(@)(®)] = sup [:(?) exp(/t F(s,x;)ds)

t+w
—x(t) exp(/t F(s,x)ds)| — 0,

which means S is continuous.
Now we show that S( is relatively compact. For x € €2, we have

d
ZS(@) (1)

From the definition of Q and Sz € €2, we can get the uniform boundedness
of SQ. By Arizela-Ascoli Theorem, we can get S is relatively compact. By
Schauder’s Fixed Point Theorem, there exists an x* € {2 such that Sz* = z*.
We see that z* is a positive w-periodic solution of (1.1).

(2) According to Theorem 1.1, solution of (1.1) is unique, and thus trajec-
tories can not cross each other. Assume z(t) > x*(t). Let

z(t) = z* (t)e’®),

xF(t, x) exp(/0 F(t,x)dt)' < KM%LI]I |F(t,0)]|g(0)] =: M>.

Then y(t) > 0 and
(3.2) y(t) = F(t,z"e¥) — F(t,x%).
Since x(t) > x*(t) and F is strictly decreasing in z, we can get y(t) =
F(t,z*e¥) — F(t,x*) < 0. Therefore, lim;_,~ y(t) exists. If we denote
lim y(t) = a,

t—o0
then o € [0,00). Now we prove a = 0. If @ > 0, there exists 7. such that
0<a—e<y(t)<a+efort>T.,. However, from (3.2), we can get
(3.3) )+ F(t,z") — F(t,z"e*¢) <O.

Integrating (3.3) from 7. to co immediately give a contraction since F'(t,z*) —
F(t,xz*e* ¢) > 0. Hence @ = 0 and therefore lim;_, y(t) = 0. Thus

. ok — 1 * y(t) _ _
(3.4) fli>rrolo[x(t) z*(t)] fll)rgox (t)e 1] = 0.
This completes the proof. (I

Theorem 3.3. Assume that F satisfies the conditions (A1)—(A3), and there
exists a positive constant § such that

F(t,6) > 0.
Moreover, assume that
F(t,z) — f(t) uniformly as x — oo,
and f(t) < 0. Then

(1) there exists at least one w-periodic positive solution x*(t) to (1.1).
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(2) for any other positive solutions x(t) to (1.1), the limit
Jim [z(t) = 2*(2)] = 0.

Proof. (1) From
F(t,z) — f(t) uniformly as z — co.
and f(t) < 0, we know that there exists M > 0 such that F'(t, M) < 0. Denote
G(t,z) = zF(t, z).

Then G : [0,w] X [§, M] — R is continuous and w-periodic with respect to t. By
the fact F'(¢,0) > 0 and F(t, M) < 0, we can get for all ¢t € [0,w], G(t,) > 0
and G(t,M) < 0. By Lemma 3.1, the equation (1.1) admits a w- periodic
solution, = : R — [4, M].

(2) The proof is the same as the proof of Lemma 3.2(2), we omit it here.
This completes the proof. ([

Theorem 3.4. Assume that F' satisfies the conditions (A1)-(A3) and Fa > 0.
Moreover, assume that there exists M > 0 such that Fyy = [ F(t, M)dt < 0.
Then

(1) there exists at least one w-periodic positive solution x*(t) to (1.1).
(2) for any other positive solutions x(t) to (1.1), the limit

lim [x(t) — 2" (t)] = 0.

t—o0

Proof. The proof is similar to that of the proof of Theorem 3.2, we omit it
here. (Il

Remark. Since for any other positive solutions z(t) to (1.1), the limit
T [a(t) — o (1)] = 0.

We can get that the periodic positive solution z*(¢) is unique if F' satisfies the
conditions in Theorem 3.2, Theorem 3.3 or Theorem 3.4.

4. Some applications

4.1. A mathematical model for tumor growth with periodic supplies
of nutrients

Bai and Xu [1] studied a mathematical model for tumor growth with a
periodic supply of external nutrients:

10 (,00\
(41) 7‘725 (r 87") —FO’7 O<’I"<R(t), t>07
(4.2) g—:(o,t) =0,0(R(t),t) = ¢(1),0 <r < R(t),t >0,

3 R(t) R(t)
(4.3) 4 (47TR (t)> =47 / so(r,t)ridr —/ soridr |, t >0,



QUALITATIVE ANALYSIS OF A GENERAL PERIODIC SYSTEM 1045

(4.4) R(0) = Ry,

where R(t) denote the external radius of tumor at time ¢; the term I'o in
(4.1) is the consumption rate of nutrient in a unit volume; ¢(¢) denotes the
external concentration of nutrients, which is assumed to be a periodic function
of a period w. The two terms on the righthand side of (4.3) are explained
as follows: The first term is the total volume increase in a unit time interval
induced by cell proliferation, the proliferation rate is so; The second term is
the total volume decrease in a unit time interval caused by natural death, and
the natural death rate is so.

By re-scaling the space variable we may assume that I' = 1. Accordingly,
the solution to (4.1), (4.2) is

0o R(t) sinhr

(4.5) o) = GahR@E) r
Substituting (4.5) to (4.3), we have

(4.6) L5 = RO stm(re) - 5.
where p(z) = Zethr=1

Denote # = R?, and assume that s = 1 (if not one can re-scale coefficients
0oo,0). Then Eq. (4.6) takes the form

dx

(4.7) & o 0BoOR(VE) ~ 3] = P (L),
where F(t,2) = 3¢(t)p(¥/z) — 6. And the initial value takes the form
(4.8) x(0) = zo = R > 0.

To study the existence, uniqueness and stability of the periodic solution to
Eq. (4.6), we only need to study the existence, uniqueness and stability of that

to Eq. (4.7).
From [2,4], we know that p is strictly decreasing in « and
. . 1
Jim p(z) =0, lim p(z) = 2.

Then 0 < p(z) < 1/3 for all x > 0. If we define p(0) = 1/3, then p is continuous
on Ry = [0,+00). It follows that F(t,x) satisfies conditions (A1)-(A3). By
Theorem 1.1, we can get: For any positive initial value xg, there exists a unique
global positive solution to the initial value problem (4.7), (4.8). Moreover, the
solution is strictly positive for all ¢ > 0.
Moreover,
F(t,x) - —¢ < 0 uniformly as  — oo.
Denote L [“¢(t)dt = 6. Then Fy = w(¢ — &) and F(t,0) = ¢(t). By
Theorem 2.1, we can get the following assertions:
(1) The zero steady state of (4.6) is globally stable if & < &.
(2) If the zero steady state of (4.6) is globally stable, then 7 < &.
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By Theorem 3.2, assume that ¢ > ¢ holds. we can get following assertions:
(3) There exists a unique w-periodic positive solution Z(t) to Eq. (4.7).
(4) For any other positive solutions z(¢) to Eq. (4.7), the limit

Tim [a(t) = #(t)] = 0.

Remark. The results of (3), (4) improved the results in [1]. Actually, in [1], the
authors have proved the following results: assume that o, > & holds. Then

(3) there exists a unique w-periodic positive solution Z(t) to Eq. (4.7).
(4) for any other positive solutions z(t) to Eq. (4.7), the limit
Jm [a(t) —z(t)] = 0.

Since & > o, it follows that o, > & = & > . Thus, the results of (3), (4)
improved the results in [1].

4.2. A mathematical model for PCa immunotherapy under impulsive
vaccination treatment

U. Forys et al. [3] proposed the model for PCa immunotherapy under im-
pulsive vaccination treatment. The model is as follows:

(4.9) @ = H(t) — G(t)z,

where H and G are periodic with respect 1, G(t) > 0, please see [3] for details.
The existence and uniqueness of the solution to (4.9) with initial condition
2o = x(0) > 0 is obviously since (4.9) is a linear equation. Denote

Then & = 2 F(t, ).
Since

H,
min F(t,2) = — — G,
[0,w] x

where H, = miny ) H(t) and G* = max( ) G(t), if H. > 0, then there exists
d > 0 such that F(t,0) > 0. Since
F(t,z) - —G(t) < 0 uniformly as z — oo,

by Theorem 3.3, we get that if H, > 0,
(1) there exists at least one 1-periodic positive solution z*(t) to (4.9).

(2) for any other positive solutions z(t) to (4.9), the limit
[z(t) — " ()] = 0.

lim
t—o0
Noticing

max F(t,z) =
wax F(t, o)

— G,
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where G = minp ) G(t) and H* = maxjq . H(t), consider the following initial
value problem

*

. " H
(4.10) y=H"-G.y=y( " = G.), y(0) = xo.
If H* < 0, we can get y < 0 and lim;_,, y(¢) = 0. By comparison principle,
we can get limg_, o, 2(t) = 0. We conclude:
If H* < 0, the zero steady state of (4.9) is globally stable.

4.3. A logistic model of periodic chemotherapy

Panetta [5] proposed a logistic growth model where there is a variable growth
rate is taken into account chemotherapy. The mathematical model is

(4.11) i=ro(o) (1-00 - 42,

where y(t) is the cell mass, r is the growth rate, K is the carrying capacity, and
b(t) is a periodic function representing the chemotherapeutic effects on the cell
mass. As [5], to reduce the problem to a simpler form, scale equation (4.11) by
y(t) = Kx(t). The resulting equation is

(4.12) z=rz(t) (1 —b(t) —z(t)) = «F(t,x),

where F(t,z) = r[l — b(t) — z]. F satisfies conditions (A1)-(A3). By Theo-
rem 1.1, we can get: For any positive initial value zg, there exists a unique
global positive solution to the initial value problem (4.12), (1.2). Moreover,
the solution is strictly positive for all £ > 0. Denote b = %fow b(t)dt. Then
F4 =w(1 —b). By Theorem 2.1, we can get following assertions:

(1) The zero steady state of (4.12) is globally stable if b > 1.
(2) If the zero steady state of (4.12) is globally stable, then b > 1.
Moreover, when M > 1—b, Fpy = [ r[1—b(t) = M]dt = rw[l —b—M] <0
and F4 > 0. By Theorem 3.4, assume that b < 1 holds. We can get following
assertions:
(3) There exists a unique w-periodic positive solution Z(t) to Eq. (4.12).
(4) For any other positive solutions z(t) to Eq. (4.12), the limit

tlggo [z(t) — Z(¢)] = 0.
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