DOI QR코드

DOI QR Code

Sound absorption of micro-perforated elastic plates in a cylindrical impedance tube

원통형 임피던스 튜브 내 미세천공 탄성 판의 흡음

  • 김현실 (한국기계연구원 음향소음팀) ;
  • 김봉기 (한국기계연구원 음향소음팀) ;
  • 김상렬 (한국기계연구원 음향소음팀) ;
  • 이성현 (한국기계연구원 음향소음팀) ;
  • 마평식 (한국기계연구원 음향소음팀)
  • Received : 2018.05.23
  • Accepted : 2018.07.19
  • Published : 2018.07.31

Abstract

In this paper, sound absorption of micro-perforated elastic plates installed in an impedance tube of a circular cross-section is discussed using an analytic method. Vibration of the plates and sound pressure fields inside the duct are expressed in terms of an infinite series of modal functions, where modal functions in the radial direction is given in terms of the Bessel functions. Under the plane wave assumption, a low frequency approximation is derived by including the first few plate modes, and the sound absorption coefficient is given in terms of an equivalent impedance of a single surface. The sound absorption coefficient using the proposed formula is in excellent agreement with the result by the FEM (Finite Element Method), and shows dips and peaks at the natural frequencies of the plate. When the perforation ratio is very small, the sound absorption coefficient is dominated by the vibration effect. However, when the perforation ratio reaches a certain value, the sound absorption is mainly governed by the rigid MPP (Micro-Perforated Plate), while the vibration effect becomes very small.

본 논문은 원형 단면 임피던스 튜브내에 고정된 미세천공 탄성판의 흡음을 해석적으로 구하는 방법을 다루었다. 판의 진동과 덕트 내부 음장을 모드 함수의 무한 급수의 합으로 전개하였는데 반경방향으로는 Bessel 함수를 포함한다. 평면파 가정하에서 저주파수 대역의 근사식을 판의 처음 몇 개의 모드만 고려하여 흡음율을 유도하였으며 등가 임피던스를 갖는 단일 표면의 형태로 제시하였다. 본 논문에서 제안한 공식과 FEM(Finite Element Method)을 이용한 결과는 잘 일치 하였는데 탄성의 효과는 판의 고유진동수에 해당하는 골 또는 피크의 형태로 나타난다. 천공율이 매우 작으면 진동의 영향이 지배적이나 천공율이 어느 한계이상 되면 박판의 탄성거동은 매우 작게 나타나고 강체 MPP(Micro-Perforated Plate)의 흡음 특성이 지배적이 된다.

Keywords

References

  1. H. S. Kim, B. K. Kim, S. R. Kim, Y. H. Seo, and P. S. Ma, "Sound absorption of micro-perforated thin plates in a duct" (in Korean), J. Acoust. Soc. Kr. 36, 305-313 (2017).
  2. D. Y. Maa, "Microperforated-panel wideband absorbers," Noise Cont. Eng. J. 29, 77-84 (1987). https://doi.org/10.3397/1.2827694
  3. D. Y. Maa, "Potential of microperforated panel absorbers," J. Acoust. Soc. Am. 104, 2861-2866 (1998). https://doi.org/10.1121/1.423870
  4. Y. M. Lee and E. W. M. Lee, "Widening the sound absorption bandwidths of flexible micro-perforated curved absorbers using structural and acoustic resonances," Int. J. Mech. Sci. 49, 925-934 (2007). https://doi.org/10.1016/j.ijmecsci.2007.01.008
  5. Y. M. Lee, E. W. M. Lee, and C. F. Ng, "Sound absorption of a finite flexible micro-perforated panel backed by an air cavity," J. Sound Vib. 287, 227-243 (2005). https://doi.org/10.1016/j.jsv.2004.11.024
  6. T. Bravo, C. Maury, and C. Pinhede, "Sound absorption and transmission through flexible micro-perforated panels backed by an air layer and a thin plate," J. Acoust. Soc. Am. 131, 3853-3863 (2012). https://doi.org/10.1121/1.3701987
  7. T. Bravo, C. Maury, and C. Pinhede, "Vibroacoustic properties of thin micro-perforated panel absorbers," J. Acoust. Soc. Am. 132, 789-798 (2012). https://doi.org/10.1121/1.4733555
  8. T. Bravo, C. Maury, and C. Pinhede, "Enhancing sound absorption and transmission through flexible multi-layer micro-perforated structures," J. Acoust. Soc. Am. 134, 3663-3673 (2013). https://doi.org/10.1121/1.4821215
  9. M. Toyoda, R. L. Mu, and D. Takahashi, "Relationship between Helmholtz-resonance absorption and panel-type absorption in finite flexible microperforated-panel absorbers," Appl. Acoust. 71, 315-320 (2010). https://doi.org/10.1016/j.apacoust.2009.10.007
  10. M. L. Munjal, Acoustics of Ducts and Muffler (2nd Ed., John Wiley and Sons Ltd, United Kingdom, 2014), Section 1.2.
  11. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover Publications, New York, 1970), Chapter 9.
  12. D. Takahashi and M. Tanaka, "Flexural vibration of perforated plates and porous elastic materials under acoustic loading," J. Acoust. Soc. Am. 112, 1456-1464 (2002). https://doi.org/10.1121/1.1497624
  13. A. W. Leissa, Vibration of Plates (Acoustical Society of America, New York, 1993), Chap. 2.
  14. COMSOL, COMSOL Multiphysics reference manual, version 4.4, 2013.