DOI QR코드

DOI QR Code

프리스트레스트 와이어로프를 사용한 RC 벽체의 단부 경계요소 내진보강 평가

Evaluation of Seismic Strengthening Approach at the Boundary Elements of RC Walls using Prestressed Wire Rope Units

  • 투고 : 2017.07.24
  • 심사 : 2017.12.08
  • 발행 : 2018.01.01

초록

이 연구에서는 연성중심의 보강을 위하여 벽체의 양단부에서 경계요소를 형성하는 내진 보강공법이 적용된 벽체의 반복 휨 거동을 평가하였다. 벽체 경계요소에서 구속효과를 위한 횡보강은 프리스트레스트 와이어로프를 사용하였다. 주요 변수는 제시된 단면 확대공법의 보강 높이로 하였다. 최소 보강 높이는 보강 벽체와 기존 벽체의 모멘트 분포의 비교로부터 결정하였다. 실험결과, 제시된 보강방법은 벽체의 휨 강성 및 연성향상에 매우 효율적이었는데, 최대내력 시 강성과 최대내력의 80%지점에서 산정한 일손상지수는 무보강 벽체에 비해 각각 평균 46%와 210% 증가하였다. 보강높이가 벽체의 일손상지수 증가에 미치는 영향은 보강높이가 $2.0l_w$ 이상일 때 중요하지 않았다. 보강된 벽체의 휨 내력은 ACI 318-14에서 제안하는 등가응력블록을 통한 예측 값보다 22% 이상 높았다.

The present study examined the reversal cyclic flexural behavior of walls with jacket section approach for seismic strengthening through forming the boundary elements at both ends of the wall. The prestressed wire ropes were used for the lateral reinforcement to confine the boundary element of the wall. The main parameter investigated was the height of the jacket section for strengthening. The limit height of the strengthening jacket section was determined by comparing the moment distributions between the existing and strengthened walls. Test results showed that the examined jacket section approach was significantly effective in enhancing the flexural resistance of walls, indicating 46% higher stiffness at peak strength and 210% greater work damage indicator, compared with the flexural performance of the unstrengthened wall. The ductility of the strengthened walls was insignificantly affected by the height of the jacket section when the height is greater than twice the wall length. The flexural capacity of the strengthened walls was 22% higher than the predictions obtained using the equivalent stress block specified in ACI 318-14.

키워드

참고문헌

  1. ACI Committee 318-14 (2014), American Concrete Institute, Farmington Hills, Michigan.
  2. Ahn, S. H. and Lee, S. H. (2005), Flexural Strengthening Design of RC Beams Strengthened with FRP, Journal of Architectural Institute of Korea, 21(5), 51-58.
  3. ASTM A416/A416M (2015), Standard Specification for Steel Strand, Uncoated Seven-Wire for Prestressed Concrete, ASTM International.
  4. FEMA 356 (2000), Prestandard and Commentary for the Seismic Rehabilitation of Buildings, FEMA, Washington DC.
  5. KS B 0802 (2003), Method of Tensile Test for Metallic Materials, Korean Standards Association.
  6. KS F 2405 (2010), Method of Test for Compressive Strength of Concrete, Korean Standards Association.
  7. KS L 5105 (2007), Testing Method for Compressive Strength of Hydraulic Cement Mortar, Korean Standards Association.
  8. Kwon, H. J., Yang, K. H., and Byun, H. Y. (2017), Evaluation on Flexural Behavior of Shear Walls Seismically Strengthened with Jacket Section Method using Prestressed Wire Ropes, Journal of the Korea Concrete Institute, 29(5), 483-491.
  9. Lee, K. H., You, T. S., Kim, T. W., and Jung, S. H. (2012), Nonlinear Modeling of RC Shear Walls Using Fiber and Shear Spring Elements, Journal of the Korea Concrete Institute, 24(5), 559-566. https://doi.org/10.4334/JKCI.2012.24.5.559
  10. Marius M. (2014), Failure Analysis of RC Shear Walls with Staggered Openings under Seismic Loads, Engineering Failure Analysis, 41, 48-64. https://doi.org/10.1016/j.engfailanal.2013.07.037
  11. Mun, J. H. (2014), Flexure and Shear Design Approach of Heavy-Weight Concrete Shear Walls, Doctoral Thesis, Kyonggi University, 70-76.
  12. Razvi, S. and Saatcioglu, M. (1999), Confinement Model for High-Strength Concrete, Journal of Structural Engineering, ASCE, 125(3), 281-289. https://doi.org/10.1061/(ASCE)0733-9445(1999)125:3(281)
  13. Roberto, R. and Annalisa, N. (2012), Results from Cyclic Tests on High Aspect Ratio RC Columns Strengthened with FRP Systems, Construction and Building Materials, 37, 606-620. https://doi.org/10.1016/j.conbuildmat.2012.07.065
  14. Sheikh, S. A. and Khoury, S. S. (1997), A Performance-Based Approach for the Design of Confining Steel in Tied Columns, ACI Structural Journal, 94(4), 421-431.
  15. Shin, J. H., Ha, G. J., An, J. S., and Ju, J. J. (1999), Improvement and Evaluation for Seismic Resistant Capacity of Reinforced Concrete Shear Wall with Connection Types and Diagonal Reinforcement, Journal of The Korea Institute for Structural Maintenance and Inspection, 3(3), 139-147.
  16. Sinan, A., Yagmur, K., and Mehmet, B. (2013), Strengthening of RC Walls Using Externally Bonding of Steel Strips, Engineering Structures, 49, 686-695. https://doi.org/10.1016/j.engstruct.2012.12.022
  17. Yang, K. H., Mun, J. H., Cho, M. S., and Kang, Thomas H. K. (2014), Stress-Strain Model for Various Unconfined Concretes In Compression, ACI Structural Journal, 111(4), 819-826.