DOI QR코드

DOI QR Code

철근콘크리트 원형 교각의 횡방향철근 변형률과 항복이후 콘크리트 전단저항 저감

The Strain of Transverse Steel and Concrete Shear Resistance Degradation after Yielding of Reinforced Concrete Circular Pier

  • 고성현 (제주국제대학교 토목공학과)
  • 투고 : 2017.10.20
  • 심사 : 2017.12.08
  • 발행 : 2018.01.01

초록

철근콘크리트 교량에 대한 대부분의 내진설계기준들은 전체 교량 시스템의 붕괴를 방지하기 위한 성능보장설계를 암시적 또는 명시적으로 적용하고 있다. 이러한 개념 및 규정들을 명시하는 이유는 교량 전체 시스템에 설계지진하중이 작용하는 동안 철근콘크리트 교각들이 완전한 소성회전성능을 발휘할 때까지 구조적인 다른 구성요소들의 취성적인 파괴를 방지하기 위함이다. 이를 위해 철근콘크리트 교량에 대한 내진설계기준들에서는 취성적인 전단파괴를 피하도록 규정하고 있다. 성능보장의 중요한 요소 중의 하나가 교각의 연성거동을 보장하기 위한 전단강도가 충분히 확보되어야 하고 신뢰할 수 있어야 한다. 실험체 8개에 대하여 실험을 수행하였으며 모든 실험체에서 변위비 1.5%에서 다수의 휨-전단 균열이 발생되었고 최종단계까지 균열폭이 증가되었고 균열이 진전되었다. 휨-전단 균열의 각도는 부재 축과 $42^{\circ}{\sim}48^{\circ}$의 범위로 계측되었다. 본 연구에서는 실험에서 계측된 횡방향철근이 부담하는 전단강도에 대한 분석을 중심으로 하였다. 횡방향철근이 부담하는 전단강도, 축력 작용에 의한 전단강도, 콘크리트에 의한 전단강도 등 3요소에 대해 분석하였고 비교하였다. 실험체들의 콘크리트 응력은 도로 교설계기준의 응력한계를 초과하였다.

The basis of capacity design has been explicitly or implicitly regulated in most bridge design specifications. It is to guarantee ductile failure of entire bridge system by preventing brittle failure of pier members and any other structural members until the columns provides fully enough plastic rotation capacity. Brittle shear is regarded as a mode of failure that should be avoided in reinforced concrete bridge pier design. To provide ductility behavior of column, the one of important factors is that flexural hinge of column must be detailed to ensure adequate and dependable shear strength and deformation capacity. Eight small scale circular reinforced concrete columns were tested under cyclic lateral load with 4.5 aspect ratio. The test variables are longitudinal steel ratio, transverse steel ratio, and axial load ratio. Eight flexurally dominated columns were tested. In all specimens, initial flexural-shear cracks occurred at 1.5% drift ratio. The multiple flexural-shear crack width and length gradually increased until the final stage. The angles of the major inclined cracks measured from the vertical column axis ranged between 42 and 48 degrees. In particular, this study focused on assessing transverse reinforcement contribution to the column shear strength. Transverse reinforcement contribution measured during test. Each three components of transverse reinforcement contribution, axial force contribution and concrete contribution were investigated and compared. It was assessed that the concrete stresses of all specimen were larger than stress limit of Korea Bridge Design Specifications.

키워드

참고문헌

  1. AASHTO (2002), Standard Specifications for Highway Bridges, American Association of State Highway and Transportation Officials, 17th ed., Washington, D.C., USA.
  2. ACI 318-14 (2014), Building Code Requirements for Structural Concrete and Commentary, American Concrete Institute, Farmington Hills, USA.
  3. Ang, B. G., Priestley, M. J. N., and Paulay, T. (1989), Seismic Shear Strength of Circular Reinforced Concrete Columns, ACI Structural Journal, 86(1), 45-59.
  4. Applied Technology Council (1996), Seismic Evaluation and Retrofit of Concrete Buildings: ATC-40, Applied Technology Council, Redwood City, California.
  5. Applied Technology Council (1996), Improved Seismic Design Criteria for California Bridges: ATC-32, Provisional Recommendations, Applied Technology Council, Redwood City, California.
  6. ASCE/ACI Joint Task Committee 426 (1973), Shear Strength of Reinforced Concrete Members, Journal of Structural Engineering, ASCE, 99(6).
  7. Aschheim, M., and Moehle, J. P. (1992), Shear Strength and Deformability of RC Bridge Columns Subjected to Inelastic Cyclic Displacement, Report No. UCB/EERC 92/04, Earthquake Engineering Research Center, University of California at Berkeley.
  8. CALTRANS (2002), Caltrans Seismic Design Criteria, Version 1.3, California Department of Transportation, Sacramento, USA, December.
  9. CEN (1996), Eurocode2: Design of Concrete Structures - Part 2: Concrete Bridges, European Committee for Standardization.
  10. Cheong, Y. S. (2001), Experimental Study on the Improvement of Seismic Performance of Existing Bridges, Report, Korea Expressway Corporation(in Koean).
  11. Federal Emergency Management Agency (1997), FEMA 273 NEHRP Guidelines for the Seismic Rehabilitation of Buildings, Washington, D.C.
  12. Ghee, A. B., Priestley, M. J. N., and Paulay, T., (1989), Seismic shear strength of Circular Reinforced Concrete Columns, ACI Structural Journal, 86(1), 45-59.
  13. Jaradat, O. A., McLean, D. I., Marsh, M. L., (1998) Performance of Existing Bridge Columns under Cyclic Loading-Part 1: Experimental Results and Observed Behavior, ACI Structural Journal, 95(6), 695-704.
  14. Lee, J. H., and Ko, S. H.(2004), Flexure-Shear Behavior of Circular Bridge Columns under Cycle Lateral Loads, Journal of Korea Concrete Institute, 16(6), 823-832. https://doi.org/10.4334/JKCI.2004.16.6.823
  15. MacGregor, J. G. (1997), Reinforced Concrete, Prentice Hall, 939.
  16. Ministry of Construction & Transportation (2012), Korea Bridge Design Specifications(Limited state design), Korea. (in Koean), 9-66.
  17. Montejo, L. A., Kowalsky, M. J., and Hassan, T. (2009), Seismic Behavior of Shear-Dominated Reinforced Concrete Columns at Low Temperatures. ACI Structural Journal, 106(4), 445-454.
  18. Priestley, M. J. N., Seible, F., Xiao, Y., and Verma, R., (1994), Steel Jacket Retrofotting of Reinforced Concrete Columns for Enhanced shear strength - Part 2; Test Results and Comparison with Theory, ACI Structural Journal, 91(5), 537-551.
  19. Priestley, M. J. N., and Benzoni, G. (1996), Seismic Performance of Circular Columns with Low Longitudinal Reinforcement Ratios, ACI Structural Journal, 93(4), 474-484.
  20. Priestley, M. J. N., Seible, F., and Calvi, G. M. (1996). Seismic Design and Retrofit of Bridges, John Wiley & Sons, Inc., New York, 686.
  21. Sin, H. M., Lee, J. H., and Reinforced concretet (2013), Dongmyeongsa, Korea, 707.
  22. Standard New Zealand (1995), Design of Concrete Structures, NZS 3101, Willington, New Zealand.