DOI QR코드

DOI QR Code

Design of Vertically Adjustable Transition Piece of Concrete Gravity Based Substructure for Offshore Wind Turbine

수직도 조정이 가능한 콘크리트 중력식 해상풍력 지지구조물 연결부 설계

  • Received : 2018.03.07
  • Accepted : 2018.06.30
  • Published : 2018.07.01

Abstract

Verticality problem during the installation process in offshore wind turbine substructures could degrade the safety of the whole structures. Therefore, in this paper, the design of vertically adjustable transition piece(T.P.), using a PS anchor and grout of anchor socket in concrete gravity based substructure(G.B.S.), was proposed. T.P. was designed for 5MW offshore wind trubine and can adjust up to $0.5^{\circ}$ in verticality, occurred during installation. The design plan for each members and design procedure for T.P. was proposed. Then based on the proposed design, actual design targeting sea of Jeju-island was carried out. Finally, by use of non-linear 3D Finite Element Analysis(F.E.A.), evaluation of design was performed. As a result of evaluation, by checking load transfer mechanism and stress of T.P, proposed design was considered safe up to $0.5^{\circ}$ of adjustment.

해상풍력 지지구조물은 설치과정에서 수직도 오차가 발생하여 풍력발전기 전체 구조의 안전성이 저하될 수 있다. 따라서, 본 논문에서는 콘크리트 중력식 해상풍력 연결부에서 PS 앵커와 앵커체결구 그라우트를 사용하여 수직도를 조정할 수 있는 방안에 대한 연구를 수행하였다. 연결부는 5MW급 해상풍력 지지구조물에서 발생한 수직도 오차를 최대 $0.5^{\circ}$까지 보정하는 것을 목표로 하였다. 우선, 수직도 조정이 가능한 해상풍력 연결부에 대해 주요 부재별 설계안과 설계절차를 제안하고, 제주도 해상지역을 대상으로 설계 제원을 산출하였다. 그 후, 설계 제원에 대해 비선형 3차원 유한요소해석을 수행하여 설계안의 적정성을 검토하였다. 검토 결과, 하중 전달 메커니즘과 연결부 발생 응력 확인을 통해 제안 설계안은 $0.5^{\circ}$의 수직도 오차를 보정하여도 안전하다고 판단하였다.

Keywords

References

  1. ACI 318-08. (2008), Building Code Requirements for Structural Concrete and Commentary, American Concrete Institute.
  2. AISC Steel Design Guide 1. (2006), Base Plate and Anchor Rod Design, Second edition, American Institute of Steel Construction.
  3. Bengar, H.A., Maghsoudi, A.A. (2012), Ultimate Axial Load and Moment Interaction Diagrams for Prestressed HPC Thin-Walled Short Columns, International Journal of Civil Engineering, 10(4), 263-273.
  4. CEB-FIP Model Code 1990. (1993), Design Code, Comite Euro-International Du Beton.
  5. Dallyn, P., El-Hamalawi, A., Palmeri, A., Knight, R. (2015). Experimental Testing of Grouted Connections for Offshore Substructures; A Critical Review, Structures, 3, 90-108. https://doi.org/10.1016/j.istruc.2015.03.005
  6. Design & Construction Guidelines. (2017), Offshore Wind Concrete Gravity Based Substructure-Design & Construction Guidelines, Daewoo E&C.
  7. DNV-OS-J101. (2014), Design of Offshore Wind Turbine Structures. DetNorskeVeritas.
  8. EN 1993-1-8. (2005), Eurocode 3: Design of Steel Structures - Part 1-8: Design of Joints, CEN.
  9. Lotsberg, I., Serednicki, A., Lervik, A., Bertnes, H., (2012), Design of Grouted Connections for Monopile Offshore Structures, Stahlbau, 81(9), 695-704. https://doi.org/10.1002/stab.201201598
  10. Malhotra, S. (2011). Selection, Design and Construction of Offshore Wind Turbine Foundations, Wind Turbines, InTech, London, 231-264.
  11. Peire, K., Nonneman, H., Bosschem, E. (2009), Gravity Base Foundations for the Thornton Bank Offshore Wind Farm, Terra et Aqua, 115, 19-29.
  12. Pisano, F., Gavin, K.G. (2011), General Report for TC 209 Offshore Geotechnics, Proceedings of the 19th International Conference on Soil Mechanics and Geotechnical Engineering, International Society for Soil Mechanics and Geotechnical Engineering, London, 1-8.
  13. Ruiz de Temino Alonso, I. (2013), Gravity Base Foundation for Offshore Wind Farms. Master dissertation, University of Cantabria, Spain.
  14. Vici Ventus. (2010), Offshore Wind Turbines: Concrete Foundations, Norway.