DOI QR코드

DOI QR Code

Control Effect of Alternative Fungicide Spraying System on Powdery Mildew Caused by Podosphaera xanthii on Greenhouse Cucumber

약제교호살포에 따른 시설재배 오이 흰가루병(Podosphaera xanthii) 방제효과

  • Park, Se-Keun (Crop Protection Division, National Institute of Agricultural Science, RDA) ;
  • Park, Bue-yong (Crop Protection Division, National Institute of Agricultural Science, RDA) ;
  • Jeong, In-Hong (Crop Protection Division, National Institute of Agricultural Science, RDA) ;
  • Jeon, Sung-wook (Crop Protection Division, National Institute of Agricultural Science, RDA) ;
  • Ryu, Hyun-ju (Crop Protection Division, National Institute of Agricultural Science, RDA) ;
  • Lee, Sang-bum (Crop Protection Division, National Institute of Agricultural Science, RDA)
  • 박세근 (국립농업과학원 농산물안전성부 작물보호과) ;
  • 박부용 (국립농업과학원 농산물안전성부 작물보호과) ;
  • 정인홍 (국립농업과학원 농산물안전성부 작물보호과) ;
  • 전성욱 (국립농업과학원 농산물안전성부 작물보호과) ;
  • 류현주 (국립농업과학원 농산물안전성부 작물보호과) ;
  • 이상범 (국립농업과학원 농산물안전성부 작물보호과)
  • Received : 2018.11.07
  • Accepted : 2018.11.27
  • Published : 2018.12.31

Abstract

Powdery mildew caused by Podosphaera xanthii is a disease in cucurbit crops especially in green house. The objective of this study was to determine the effect of alternative fungicide spraying system for control of powdery mildew disease. We selected four fungicides with different mode of action and made three treatment combinations of each fungicide in 2017. Pyraclostrobin-flutianyl-penthiopyrad treatment showed the highest control value (87%) while, pyraclostrobin-pyraclostrobin-pyraclostrobin treatment showed the lowest control value (32.5%). So it seemed like the treatment was not suitable for control of powdery mildew. In 2018, pyraclostrobin of pyraclostrobin-flutianyl-penthiopyrad was replaced to contact fungicide called iminoctadine-tris-albesilate and compared control effect of two treatments. Two of the treatments showed similar control value (87.0% for pyraclostrobin, 89.0% for iminoctadine-tris-albesilate). These two tests in 2017 and 2018 indicated that alternative treatment of different fungicides is essential for controlling of powdery mildew and inhibiting development of fungicide resistance.

흰가루병은 시설 재배 박과류 작물에 광범위하게 발생하여 큰 경제적 피해를 유발하는 병으로서 흰가루병에 의한 피해를 예방하기 위해 실제 현장에서 사용할 수 있는 효과적인 방제체계의 개발이 필요하다. 본 연구에서는 시설오이 재배지의 흰가루병에 대해 오이흰가루병에 등록된 서로 다른 계통의 4개 약제와 2종의 유기농 자재의 약제 교호살포체계별 방제효과를 조사하였다. Pyraclostrobin EC (Pyr, a.i. 22.9%), Hexaconazole SC (Hex, a.i. 2%), Flutianil EC (Flu, a.i. 5%), Penthiopyrad EC (Pen, a.i. 20%) 등 4종의 화학약제를 단일약제 반복처리 및 조합처리 방식으로 총 3회 처리한 결과 $Pyr{\rightarrow}Flu{\rightarrow}Pen$ 처리구는 87%의 높은 방제가를 나타낸 반면, Pyr 연속 3회 처리구는 32.5%의 낮은 방제가를 나타내어 해당 약제에 대한 저항성이 있음을 확인하였다. $Pyr{\rightarrow}Flu{\rightarrow}Pen$ 처리구와 보호용 살균제인 Iminoctadine-tris-albesilate SC (Imi)를 처리한 구 그리고 유기농 자재 2종의 교호살포 처리구의 방제가를 조사한 결과 $Imi{\rightarrow}Flu{\rightarrow}Pen$ 처리구의 방제가는 89%로 가장 높게 나타났으며, 유기농자재 교차살포 처리구의 방제가는 66.3%로 나타났다. 시험 결과를 바탕으로 $Pyr{\rightarrow}Flu{\rightarrow}Pen$, $Imi{\rightarrow}Flu{\rightarrow}Pen$ 처리구는 시설 오이 재배지 내 발생하는 흰가루병 피해를 최소화할 수 있는 효과적인 약제교호살포체계로 생각된다.

Keywords

References

  1. FRAC. 2018. FRAC Code List 2018: Fungicide sorted by mode of action (including FRAC Code numbering). Fungicide Resistance Action Committee. www.frac.info/publications/downloads. Accessed on 10 May 2018.
  2. Hong SJ, JH Kim, YK Kim, HJ Jee, CK Shim, MJ Kim, JH Park, EJ Han, HJ Goo and KY Choi. 2014. Control efficacy of mixed application of microbial and chemical fungicides against powdery mildew of red-pepper. Korean J. Pestic. Sci. 18:409-416.
  3. Jee HJ, KY Ryu, JH Park, DH Choi, GH Ryu, JG Ryu and SS Shen. 2008. Effect of COY (cooking oil and yolk mixture) and ACF (air-circulation fan) on the control of powdery mildew and production of organic lettuce. Res. Plant Dis. 14:51-56.
  4. Kang HJ, YS Kim, BT Han, TI Kim, JW Noh, YG Kim and HD Shin. 2014. Alternative fungicide spraying for the control of powdery mildew caused by Sphaerotheca fusca on greenhouse watermelon (Citrullus lanatus). Res. Plant Dis. 20:31-36.
  5. Kim JY, SS Hong, JW Lim, KY Park and H Kim. 2008. Screening of fungicide resistance of cucumber powdery mildew pathogen Sphaerotheca fusca in Gyeonggi Province. Res. Plant Dis. 14:95-101.
  6. KOSIS. 2018. Korean Statistical Information Service. https://kosis.kr. Accessed on 17 September 2018.
  7. Lebeda A. 1984. Screening of wild Cucumis species for resistance to cucumber powdery mildew (Erysiphe cichoracearum and Sphaerotheca fuliginea). Sci. Hortic. 24: 241-249.
  8. Lee SY, YK Kim and YK Lee. 2007. Cause and control of lettuce powdery mildew caused by Podosphaera fusca. Kor. J. Mycol. 35:115-120.
  9. Lee YH, KH Cha, SJ Ko, IJ Park, BI Park and KY Seong. 2000. Evaluation of electrolyzed oxidizing water as a control agent of cucumber powdery mildew. Plant Pathol. J. 16:206-210.
  10. McGrath MT. 2001. Fungicide resistance in cucurbit powdery mildew: Experiences and challenges. Plant Dis. 85:236-245. https://doi.org/10.1094/PDIS.2001.85.3.236
  11. Nam MH, WK Lee, SS Lee, NG Kim and HG Kim. 2005. Control efficacy of milk concentration against powdery mildew of strawberry. Plant Pathol. J. 21:270-274.
  12. Ortuno F, A Perez-Garcia, F Lopez-Ruiz, D Romero, A Vicente and JA Tores. 2006. Occurrence and distribution of resistance to QoI fungicides in populations of Podosphaera fusca in south central Spain. Eur. J. Plant Pathol. 115:215-222. https://doi.org/10.1007/s10658-006-9014-7
  13. Paik SB, SH Kim, JJ Kim and YS Oh. 1996. Effect of bioactive substance extracted from Rheum undulatum on control of cucumber powdery mildew. Plant Pathol. J. 12:85-90.
  14. Sedlakova B and A Lebeda. 2008. Fungicide resistance in Czech populations of cucurbit powdery mildews. Phytoparasitica 36:272-289.
  15. Shim CK, MJ Kim, YK Kim, SJ Hong and SC Kim. 2014. Reducing phytotoxic by adjusted pH and control effect of loess-sulfur complex as organic farming material against powdery mildew in tomato. Korean J. Pestic. Sci. 18:376-382.