DOI QR코드

DOI QR Code

Application of Antimicrobial Peptides against Microcystis aeruginosa to Control Harmful Algal Blooms

항균 펩타이드를 이용한 녹조현상 원인종 Microcystis aeruginosa의 제어

  • Han, Sang-Il (Division of Environmental Science & Ecological Engineering, Korea University) ;
  • Park, Yoonkyung (Research Center for Proteinaceous Materials (RCPM), Chosun University) ;
  • Choi, Yoon-E (Division of Environmental Science & Ecological Engineering, Korea University)
  • 한상일 (고려대학교 생명공학과) ;
  • 박윤경 (조선대학교 생명공학과) ;
  • 최윤이 (고려대학교 생명공학과)
  • Received : 2018.11.19
  • Accepted : 2018.12.10
  • Published : 2018.12.31

Abstract

Microcystis aeruginosa, a freshwater cyanobacteria species known to be one of the most predominant species responsible for cyanobacterial harmful algal blooms (CyanoHABs). It has been frequently associated with the contamination of neurotoxins and peptide hepatotoxins, such as microcystin and lipopolysaccharides-LPSs. CyanoHABs control technologies so far put in place do not provide a fundamental solution and cause secondary pollution linked with the control measures. For this study, algicidal peptides, which have been reported to be non-toxic and to have antimicrobial properties, were employed for the development of novel eco-friendly control against CyanoHABs. The four peptides (CMA1, CMA2, HPA3P, and HPA3NT3) selected in this study showed significant algicidal effects against M. aeruginosa cells inducing cell aggregation and flotation. Moreover, the newly generated peptides (K160242-5) with certain modifications also displayed high algicidal activity. The algicidal activity of the peptides was found to depend on the concentrations and structures of each of amino acid. The results of this study suggested a novel possibility of CyanoHABs control using the non-toxic algicidal peptides.

본 연구에서는 CyanoHABs를 제어하기 위해 주요 우점종인 Microcystis aeruginosa에 대한 항균 펩타이드의 살조 활성을 조사하고, 구조적 특이성을 바탕으로 새로운 M. aeruginosa 제어 펩타이드를 제작하였다. 본 실험에서 CA-MA 유래 펩타이드 CMA1, CMA2와 Helicobacter pylori 유래 펩타이드 HPA3P, HPA3NT3는 처리 48시간 후 각각 67.3, 73.1, 76.7, 69.8%의 최대 살조 효율을 보였다. 또한, 신규 펩타이드 K160242~5는 처리 48시간 후 각각 64.0, 64.1, 66.4, 70.1%의 최대 살조 효율을 보였다. CA-MA 유래 펩타이드는 처리 24시간 이후 세포의 재성장이 관찰되었으므로 세포 표면과의 정전기 인력을 통해 세포를 응집하고 간접적으로 제어하는 것으로 조사되었다. 반면에, 양친매성 펩타이드는 세포의 재성장이 관찰되지 않았으므로 세포 응집과 더불어 세포 내 침투를 통해 직 간접적으로 세포를 제어하는 것으로 추정되었다. 또한, 펩타이드의 살조 기작 및 효율에는 구성 아미노산의 종류, 수, 구조 및 펩타이드의 분자량, 처리 농도 등이 복합적으로 영향을 미치는 것으로 나타났다. 그러나 펩타이드를 이용한 CyanoHABs의 제어 가능성을 제고하기 위해서는 정확한 기작과 관련 인자들의 확인 및 증명이 요구된다.

Keywords

References

  1. Anderson DM. 2009. Approaches to monitoring, control and management of harmful algal blooms (HABs). Ocean Coastal Manage. 52:342-347.
  2. Briand E, M Bormans, M Gugger, PC Dorrestein and WH Gerwick. 2016. Changes in secondary metabolic profiles of Microcystis aeruginosa strains in response to intraspecific interactions. Environ. Microbiol. 18:384-400. https://doi.org/10.1111/1462-2920.12904
  3. Chen Y, J Li, J Wei, A Kawan, L Wang and X Zhang. 2017. Vitamin C modulates Microcystis aeruginosa death and toxin release by induced Fenton reaction. J. Hazard. Mater. 321:888-895.
  4. Da Ros PC, CS Silva, ME Silva-Stenico, MF Fiore and HF de Castro. 2012. Microcystis aeruginosa lipids as feedstock for biodiesel synthesis by enzymatic route. J. Mol. Catal. B-Enzym. 84:177-182.
  5. Dolah FMV, D Roelke and RM Greene. 2001. Health and ecological impacts of harmful algal blooms: risk assessment needs. Hum. Ecol. Risk Assess. 7:1329-1345.
  6. Gumbo RJ, G Ross and ET Cloete. 2008. Biological control of Microcystis dominated harmful algal blooms. Afr. J. Biotechnol. 7:4765-4773.
  7. Hadjoudja S, V Deluchat and M Baudu. 2010. Cell surface characterisation of Microcystis aeruginosa and Chlorella vulgaris. J. Colloid Interface Sci. 342:293-299.
  8. Karlson AM and R Mozuraitis. 2011. Deposit-feeders accumulate the cyanobacterial toxin nodularin. Harmful Algae 12:77-81.
  9. Lee DG, DH Kim, Y Park, HK Kim, HN Kim, YK Shin, CH Choi and KS Hahm. 2001a. Fungicidal effect of antimicrobial peptide, PMAP-23, isolated from porcine myeloid against Candida albicans. Biochem. Biophys. Res. Commun. 282:570-574.
  10. Lee JK, CH Seo, T Luchian and Y Park. 2015. The antimicrobial peptide CMA3 derived from the CA-MA hybrid peptide: antibacterial and anti-inflammatory activities with low cytotoxicity and mechanism of action in Escherichia coli. Antimicrob. Agents Chemother. 60:495-506.
  11. Lee JK, SC Park, KS Hahm and Y Park. 2013. Antimicrobial HPA3NT3 peptide analogs: placement of aromatic rings and positive charges are key determinants for cell selectivity and mechanism of action. Biochim. Biophys. Acta-Biomembr. 1828:443-454.
  12. Lee TH, KN Hall, MJ Swann, JF Popplewell, S Unabia, Y Park, KS Hahm and MI Aguilar. 2010. The membrane insertion of helical antimicrobial peptides from the N-terminus of Helicobacter pylori ribosomal protein L1. Biochim. Biophys. Acta-Biomembr. 1798:544-557.
  13. Lee T, K Nakano and M Matsumara. 2001b. Ultrasonic irradiation for blue-green algae bloom control. Environ. Technol. 22:383-390.
  14. Liu Y, S Chen, J Zhang, X Li and B Gao. 2017. Stimulation effects of ciprofloxacin and sulphamethoxazole in Microcystis aeruginosa and isobaric tag for relative and absolute quantitation-based screening of antibiotic targets. Mol. Ecol. 26:689-701.
  15. Ma J, JD Brookes, B Qin, HW Paerl, G Gao, P Wu, W Zhang, J Deng, G Zhu, Y Zhang, H Xu and H Niu. 2014. Environmental factors controlling colony formation in blooms of the cyanobacteria Microcystis spp. in Lake Taihu, China. Harmful Algae 31:136-142.
  16. Mereuta L, T Luchian, Y Park and KS Hahm. 2008. Single-molecule investigation of the interactions between reconstituted planar lipid membranes and an analogue of the HP (2-20) antimicrobial peptide. Biochem. Biophys. Res. Commun. 373:467-472.
  17. Olli K, R Klais and T Tamminen. 2015. Rehabilitating the cyanobacteria-niche partitioning, resource use efficiency and phytoplankton community structure during diazotrophic cyanobacterial blooms. J. Ecol. 103:1153-1164.
  18. Paerl HW and TG Otten. 2013. Harmful cyanobacterial blooms: causes, consequences, and controls. Microb. Ecol. 65:995-1010. https://doi.org/10.1007/s00248-012-0159-y
  19. Paerl HW and VJ Paul. 2012. Climate change: links to global expansion of harmful cyanobacteria. Water Res. 46:1349-1363. https://doi.org/10.1016/j.watres.2011.08.002
  20. Paerl HW, H Xu, MJ McCarthy, G Zhu, B Qin, Y Li and WS Gardner. 2011. Controlling harmful cyanobacterial blooms in a hyper-eutrophic lake (Lake Taihu, China): the need for a dual nutrient (N & P) management strategy. Water Res. 45:1973-1983.
  21. Park SC, JK Lee, SW Kim and Y Park. 2011. Selective algicidal action of peptides against harmful algal bloom species. PLoS One 6:e26733.
  22. Qian H, X Pan, J Chen, D Zhou, Z Chen, L Zhang and Z Fu. 2012. Analyses of gene expression and physiological changes in Microcystis aeruginosa reveal the phytotoxicities of three environmental pollutants. Ecotoxicology 21:847-859.
  23. Ren H, P Zhang, C Liu, Y Xue and B Lian. 2010. The potential use of bacterium strain R219 for controlling of the bloom-forming cyanobacteria in freshwater lake. World J. Microbiol. Biotechnol. 26:465-472.
  24. Schopf JW. 2000. The fossil record: tracing the roots of the cyanobacterial lineage. pp. 13-35. In The Ecology of Cyanobacteria. Springer, Dordrecht.
  25. Stanier R, R Kunisawa, M Mandel and G Cohen-Bazire. 1971. Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriol. Rev. 35:171.
  26. Sun LW, WJ Jiang, H Sato, M Kawachi and XW Lu. 2016. Rapid classification and identification of Microcystis aeruginosa strains using MALDI-TOF MS and Polygenetic Analysis. PLoS One. 11:e0156275.
  27. Suresh A and YC Kim. 2013. Translocation of cell penetrating peptides on Chlamydomonas reinhardtii. Biotechnol. Bioeng. 110:2795-2801.
  28. Vives E, P Brodin and B Lebleu. 1997. A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J. Biol. Chem. 272:16010-16017.
  29. Wei Y, J Niu, L Huan, A Huang, L He and G Wang. 2015. Cell penetrating peptide can transport dsRNA into microalgae with thin cell walls. Algal Res. 8:135-139.