DOI QR코드

DOI QR Code

Preparation and Characterization of Cerium Oxide/Silica Composite Particles

세륨 옥사이드/실리카 복합입자 제조 및 특성분석

  • Koh, Seo Eun (Division of Chemistry & Cosmetics, Dongduk Women's University) ;
  • Shim, Jongwon (Division of Chemistry & Cosmetics, Dongduk Women's University) ;
  • Jin, Byung Suk (Division of Chemistry & Cosmetics, Dongduk Women's University)
  • 고서은 (동덕여자대학교 자연과학대학 화학.화장품 학부) ;
  • 심종원 (동덕여자대학교 자연과학대학 화학.화장품 학부) ;
  • 진병석 (동덕여자대학교 자연과학대학 화학.화장품 학부)
  • Received : 2018.02.03
  • Accepted : 2018.04.20
  • Published : 2018.08.10

Abstract

Composite particles of porous silica and cerium oxide nanoparticles blocking UV/blue light were prepared through a dry coating process. Various composite particles were prepared by varying conditions such as the mixing ratio of cerium oxide and silica, and the chamber rotating speed of mechano fusion system. The surface morphology of the composite particles was observed with SEM and the composition was analyzed using X-ray fluorescence (XRF). When the cerium oxide/silica composite particles were dispersed in water, the transparency and dispersion stability of the colloidal solution were improved. In addition, the fluidity and spreadability of the particle powder were enhanced by making composite particles. These results show that cerium oxide/silica composite particles can be used as functional cosmetic ingredients for UV/blue light protection.

UV 및 블루라이트를 차단하는 세륨 옥사이드 나노 입자와 다공성 실리카와의 복합입자를 건식 코팅 공정을 통해 제조하였다. 실리카와 세륨 옥사이드 간 혼합 비율과 메카노 퓨전 장치의 챔버 회전속도 등의 제조 조건을 달리하여 여러 복합입자를 만든 후, 입자 표면 형태를 SEM으로 관측 비교하고 XRF을 통해 복합입자의 조성을 분석하였다. 세륨 옥사이드를 실리카와 함께 복합입자로 만들어 물에 분산시키면 현탁 용액의 투명도가 높아지고 분산 안정성이 향상되었다. 또한 파우더의 유동성과 발림성이 개선되었다. 본 연구를 통해 세륨 옥사이드/실리카 복합입자가 자외선 및 블루라이트를 차단하는 기능성 화장품 소재로 사용 가능함을 확인하였다.

Keywords

References

  1. G. P. Dransfield, Inorganic sunscreens, Radiat. Prot. Dosimetry, 91, 271-273 (2000). https://doi.org/10.1093/oxfordjournals.rpd.a033216
  2. C. Antoniou, M. G. Kosmadaki, A. J. Stratigos, and A. D. Katsambas, Sunscreens - what's important to know, J. Eur. Acad. Dermatol. Venereol., 22, 1110-1118 (2008). https://doi.org/10.1111/j.1468-3083.2007.02580.x
  3. E. Toutiou and B Godin, Skin nonpenetrating sunscreens for cosmetic and pharmaceutical formulations, Clin. Dermatol., 26, 375-379 (2008).
  4. T. Uchino, H. Tokunaga, M. Ando, and H. Utsumi, Quantitative determination of OH radical generation and its cytotoxicity induced by $TiO_2$ UVA treatment. Toxicol. in Vitro., 16(5), 629-635 (2002). https://doi.org/10.1016/S0887-2333(02)00041-3
  5. K. Pierzchala, M. Lekka, A. Magrez, A. J. Kulik, L. Forro, and A. Sienkiewicz, Photocatalytic and phototoxic properties of $TiO_{2-}$ based nanofilaments: ESR and AFM assays, Nanotoxicology, 6, 813-824 (2012). https://doi.org/10.3109/17435390.2011.625129
  6. E. Gilbert, F. Pirot, V. Bertholle, L. Roussel, F. Falson, and F. Padois, Commonly used UV filter toxicity on biological functions: review of last decade studies, Int. J. Cosmet. Sci., 35, 208-219 (2013). https://doi.org/10.1111/ics.12030
  7. V. Sharma, S. K. Singh, D. Anderson, D. J. Tobin, and A. Dhawan, Zinc oxide nanoparticle induced genotoxicity in primary human epidermal keratinocytes, J Nanosci. Nanotechnol., 11(5), 3782-3788 (2011). https://doi.org/10.1166/jnn.2011.4250
  8. H. C. Bae, H. J. Ryu, S. H. Jeong, E. Y. Lee, Y. H. Park, K. G. Lee, B. H. Choi, E. H. Maeng, M. K. Kim, and S. W. Son, Oxidative stress and apoptosis induced by ZnO nanoparticles in HaCaT cells, Mol. Cell. Toxicol., 7, 333-337 (2011). https://doi.org/10.1007/s13273-011-0042-9
  9. S. Yabea and T. Satob, Cerium oxide for sunscreen cosmetics, J. Solid State Chem., 171, 7-11 (2003). https://doi.org/10.1016/S0022-4596(02)00139-1
  10. L. Truffault, B. Winton, B. Choquenet, C. Andreazza, C. Simmonard, T. Devers, K. Konstantinov, C. Couteau, and L. J. M. Coiffard, Cerium oxide based particles as possible alternative to ZnO in sunscreens: Effect of the synthesis method on the photoprotection results, Mater. Lett., 68, 357-360 (2012). https://doi.org/10.1016/j.matlet.2011.10.108
  11. T. Herrling, M. Seifert, and K. Jung, Cerium dioxide: Future UV-filter in sunscreen, SOFW J., 139, 10-14 (2013).
  12. F. Caputo, M. D. Nicola, A. Sienkiewicz, A. Giovanetti, I. Bejarano, S. Licoccia, E. Traversa, and L. Ghibelli, Cerium oxide nanoparticles, combining antioxidant and UV shielding properties, prevent UV-induced cell damage and mutagenesis, Nanoscale, 7, 15643-15656 (2015). https://doi.org/10.1039/C5NR03767K
  13. S. Das, J. M. Dowding, K. E. Klump, J. F. McGinnis, W. Self, and S. Seal, Cerium oxide nanoparticles: Applications and prospects in nanomedicine, Nanomedicine, 8, 1483-1508 (2013). https://doi.org/10.2217/nnm.13.133
  14. I. Celardo, M. D. Nicola, C. Mandoli, J. Z. Pedersen, E. Traversa, and L. Ghibelli, $Ce^{3+}$ ions determine redox-dependent anti-apoptotic effect of cerium oxide nanoparticles, ACS Nano, 5(6), 4537-4549 (2011). https://doi.org/10.1021/nn200126a
  15. I. Celardo, E. Traversa, and L. Ghibelli, Cerium oxide nanoparticles: a promise for applications in therapy, J. Exp. Ther. Oncol., 9(1), 47-51 (2011).
  16. T. Fujimoto, Cerium oxide shielding material for ultraviolet, blue, and near-infrared light, IFSCC Conference, September 21-23, Zurich, Switzerland (2015).
  17. Y. Nakashima, S. Ohta, and A. M. Wolf, Blue light-induced oxidative stress in live skin, Free Radic. Biol. Med., 108, 300-310 (2017). https://doi.org/10.1016/j.freeradbiomed.2017.03.010
  18. B. F. Godley, F. A. Shamsi, F. Q. Liang, S. G. Jarrett, S. Davies, and M. Boulton, Blue light induces mitochondrial DNA damage and free radical production in epithelial cells, J. Biol. Chem., 280(22), 21061-21066 (2005). https://doi.org/10.1074/jbc.M502194200
  19. C. Opländer, S. Hidding, F. B. Werners, M. Born, N. Pallua, and C. V. Suschek, Effects of blue light irradiation on human dermal fibroblasts, J. Photochem. Photobiol. B, 103(2), 118-125 (2011). https://doi.org/10.1016/j.jphotobiol.2011.02.018
  20. L. Duteli, N. Cardot-Leccia, C. Queille-Roussel, Y. Maubert, Y. Harmelin, F. Boukari, D. Ambrosetti, J. P. Lacour, and T. Passeron, Differences in visible light-induced pigmentation according to wavelengths: A clinical and histological study in comparison with UVB exposure, Pigment Cell Melanoma Res., 27(5), 822-826 (2014). https://doi.org/10.1111/pcmr.12273
  21. G. Tosini, I. Ferguson, and K. Tsubota, Effects of blue light on the circadian system and eye physiology, Mol. Vis., 22, 61-72 (2016).
  22. P. Stamatkis, B. R. Palmer, and G. C. Salzman, Optimal particle size of titanium dioxide and zinc oxide for attenuation of ultraviolet radiation, J. Coat. Technol., 62, 95-98 (1990).
  23. K. M Tyner, A. M. Wokovich, D. E. Godar, W. H. Doub, and N. Sadrieh, The state of nano-sized titanium dioxide ($TiO_2$) may affect sunscreen performance, Int. J. Cosmet. Sci., 33(3), 234-44 (2011). https://doi.org/10.1111/j.1468-2494.2010.00622.x
  24. K. Y. Kim and S. B. Park, Photocatalytic activity of anatase titania particles of controlled size prepared in an aerosol reactor, Korean Chem. Eng. Res., 36(1), 116-119 (1998).
  25. T. A. Egerton and I. R. Tooley, UV absorption and scattering properties of inorganic-based sunscreens, Int. J. Cosmet. Sci., 34, 117-122 (2012). https://doi.org/10.1111/j.1468-2494.2011.00689.x
  26. T. A. Egerton, UV absorption-the primary process in photocatalysis and some practical consequences, Molecules, 19(11), 18192-18214 (2014). https://doi.org/10.3390/molecules191118192
  27. A. P. Popov, J. Lademann, A. V. Priezzhev, and R. Myllyla, Effect of size of $TiO_2$ nanoparticles embedded into stratum corneum on ultraviolet-A and ultraviolet-B sun-blocking properties of the skin, J. Biomed. Opt., 10, 1-9 (2005).
  28. K. Tanno, Current status of the mechanofusion process for producing composites particles, Kona, 8, 74-82 (1990). https://doi.org/10.14356/kona.1990014
  29. M. Larsson, A. Hill, and J. Duffy, Suspension stability; why particle size: zeta potential and rheology are important, Annu. Trans. Nord. Rheol. Soc., 20, 209-214 (2012).
  30. R. Konstance, C. Onwulata, and V. Holsinger, Flow properties of spray-dried encapsulated butteroil, J. Food Sci., 60(4), 841-844 (1995). https://doi.org/10.1111/j.1365-2621.1995.tb06243.x