DOI QR코드

DOI QR Code

Topology Optimization of Plane Structures under Free Vibration with Isogeometric Analysis

등기하해석법을 이용한 자유진동 평면구조물의 위상최적화

  • 이상진 (경상대학교 건축공학과) ;
  • 배정은 (경상대학교 구조연구실, SJ미래)
  • Received : 2018.03.13
  • Accepted : 2018.05.28
  • Published : 2018.06.30

Abstract

Isogeometric concept is introduced to find out the optimum layout of plane structure under free vibration. Eigenvalue problem is formulated and numerically solved in order to obtain natural frequencies and mode shapes of plane structures. For the exact geometric expression of the structure, the Non-Uniform Rational B-spline Surface (NURBS) basis functions is employed and it is also used to define the material density functions. A node-wise design variables is adopted to deal with the updating of material density in topology optimization (TO). The definition of modal strain energy is employed to achieve the maximization of fundamental frequency through its minimization. The verification of the proposed TO technique is performed by a series of benchmark test for plane structures.

Keywords

Acknowledgement

Supported by : 경상대학교

References

  1. Bae, J.E., Lee, S.J., & Kim, Y.B. (1997). Topology optimization for plane problem, Journal of the Architectural Institute of Korea, 13(6), 216-227.
  2. Bendsoe, M.P., & Kikuchi, N. (1988). Generating optimal topologies in structural design using homogenization method, Computer Methods in Applied Mechanics Engineering, 71, 197-224. https://doi.org/10.1016/0045-7825(88)90086-2
  3. Cheng, G., & Olhoff, N. (1981). An investigation con-cerning optimal design of solid elastic plates, Int. J. Solids and Structures, 17, 305-323. https://doi.org/10.1016/0020-7683(81)90065-2
  4. Diaz, A.R., & Kikuchi, N. (1992). Solutions to shape and topology eigenvalue optimization problems using a homogenization method, Int. J. Num. Meth. Engng., 35, 1487-1502. https://doi.org/10.1002/nme.1620350707
  5. Gomes F.A.M., & Senne T.A. (2011). An SLP algorithm and its application to topology optimization. Computational and Applied Mathematics, 30, 53-89.
  6. Hassani, B., Khanzadi, M., & Tavakkoli, S.M. (2012). An isogeometric approach to structural topology optimization by optimality criteria, Structural and Multidisciplinary Optimization, 45, 223-233. https://doi.org/10.1007/s00158-011-0680-5
  7. Hughes, T.J.R. (1987). The Finite Element MethodLine-ar Static and Dynamic Finite Element Analysis, Pren-tice-Hall, New Jersey.
  8. Hughes, T.J.R., Cottrell, J.A., & Bazileves, Y. (2005). Isogeometric Analysis: CAD, Finite Elements, NURBS, Exact Geometry and Mesh Refinement, Computer Methods in Applied Mechanics and Engineering, 194, 4135-4195. https://doi.org/10.1016/j.cma.2004.10.008
  9. Kane, C., & Schoenauer, M. (1996). Topological Optimum Design using Genetic Algorithms, Control and Cybernetics, 25(5), 1-25.
  10. Krog, L.A., & Olhoff, N. (1999). Optimum topology and reinforcement design of disk and plate structures with multiple stiffness and eigenfrequency objectives, Comp. Struc., 72, 535-563. https://doi.org/10.1016/S0045-7949(98)00326-5
  11. Kumar, A.V., & Parthasarathy, A. (2011). Topology optimization using B-spline finite elements, Structural and Multidisciplinary Optimization, 44, 471-481. https://doi.org/10.1007/s00158-011-0650-y
  12. Lee, S.J. (2014). Free vibration analysis of thin shells using isogeometric approach, Architectural Research, 16(2), 67-74. https://doi.org/10.5659/AIKAR.2014.16.2.67
  13. Lee, S.J., & Bae, J.E. (2010). Topology Optimization of Plane Structures using Modal Strain Energy for Fundamental Frequency Maximization, Architectural Research, 12(1), 39-47. https://doi.org/10.5659/AIKAR.2010.12.1.39
  14. Nguyen, V.P., Simpson, R., Bordas, S.P.A., & Rabczuk, T. (2015). Isogeometric analysis: An overview and computer implementation aspects, Advances in Engineering Softwares, 117, 89-116.
  15. Pedersen, N.L. (2000). Maximization of eigenvalues using topology optimization, Struc. Opt., 20, 2-11. https://doi.org/10.1007/s001580050130
  16. Qian, X. (2013). Topology optimization in B-spline space, Computer Methods in Applied Mechanics Engineering, 265, 15-35. https://doi.org/10.1016/j.cma.2013.06.001
  17. Rozvany, G., Bendsoe, M.P., & Kirsch, U. (1995). Layout optimization of structures. Appl. Mech. Rev., 48, 41-118. https://doi.org/10.1115/1.3005097
  18. Tenek, L.H., & Hagiwara, I. (1993). Static and vibrational shape and topology optimization using homogenization and mathematical programming, Comp. Meth. Appl. Mech. Engng., 109, 143-154. https://doi.org/10.1016/0045-7825(93)90229-Q
  19. Xie, Y.M., & Steven, G.P. (1993). A simple evolutionary procedure for structural optimization, Comp. Struc., 49, 885-896. https://doi.org/10.1016/0045-7949(93)90035-C
  20. Yang, R.J., & Chung, C.H. (1994). Optimal topology design using linear programming, Comp. Struc., 52, 265-275. https://doi.org/10.1016/0045-7949(94)90279-8
  21. Wang, M.Y., Wang, X., & Guo, D. (2003). A level set method for structural topology optimization, Computer Methods in Applied Mechanics Engineering, 192, 227-246. https://doi.org/10.1016/S0045-7825(02)00559-5