DOI QR코드

DOI QR Code

선형 블록 오류정정코드의 구조와 원리에 대한 연구

Study on Structure and Principle of Linear Block Error Correction Code

  • 문현찬 (서울과학기술대학교 전자IT미디어공학과) ;
  • 갈홍주 (서울과학기술대학교 전자IT미디어공학과) ;
  • 이원영 (서울과학기술대학교 전자IT미디어공학과)
  • 투고 : 2018.06.14
  • 심사 : 2018.08.15
  • 발행 : 2018.08.31

초록

본 논문은 다양한 구조의 선형 블록 오류정정코드를 소개하고, 이를 회로로 구현하여 비교 분석한 결과를 보여주고 있다. 메모리 시스템에서는 잡음 전력으로 인한 비트 오류를 방지하기 위해 ECC(: Error Correction Code)가 사용되어 왔다. ECC의 종류에는 SEC-DED(: Single Error Correction Double Error Detection)와 SEC-DED-DAEC(: Double Adjacent Error Correction)가 있다. SEC-DED인 Hsiao 코드와 SEC-DED-DAEC인 Dutta, Pedro 코드를 각각 Verilog HDL을 이용해 설계 후 $0.35{\mu}m$ CMOS 공정을 사용해 회로로 합성하였다. 시뮬레이션에 의하면 SEC-DED회로는 인접한 두 개의 비트 오류를 정정하지 못하지만 적은 회로 사용면적과 빠른 지연 시간의 장점이 있으며, SEC-DED-DAEC 회로의 경우 Pedro 코드와 Dutta 코드 간에는 면적, 지연 시간의 차이가 없으므로 오류 정정률이 개선된 Pedro 코드를 사용하는 것이 더 효율적임을 알 수 있다.

This paper introduces various linear block error correction code and compares performances of the correction circuits. As the risk of errors due to power noise has increased, ECC(: Error Correction Code) has been introduced to prevent the bit error. There are two representatives of ECC structures which are SEC-DED(: Single Error Correction Double Error Detection) and SEC-DED-DAEC(: Double Adjacent Error Correction). According to simulation results, the SEC-DED circuit has advantages of small area and short delay time compared to SEC-DED-DAEC circuits. In case of SED-DED-DAEC, there is no big difference between Dutta's and Pedro's from performance point of view. Therefore, Pedro's code is more efficient than Dutta' code since the correction rate of Pedro's code is higher than that of Dutta's code.

키워드

참고문헌

  1. E. Jang, "LDPC Coding for image data and FPGA Implementation of LDPC Decoder," J. of the Korea institute of Electronic Communication Science, vol. 12, no. 4, 2017, pp. 569-574. https://doi.org/10.13067/JKIECS.2017.12.4.569
  2. J. Jung, Y. Lee, and H. Shin, "A Study on Forward Error Correction of Long-Distance Submarine Optical Communication Systems," J. of the Korea institute of Electronic Communication Science, vol. 3, no. 3, 2008, pp. 170-176.
  3. A. Doniyor and H. Suh, "An Efficient Algorithm for finding Optimal Spans to determine R=1/2 Rate Systematic Convolutional Self-Doubly Orthogonal Codes," J. of the Korea institute of Electronic Communication Science, vol. 10, no. 11, 2015, pp. 1239-1244. https://doi.org/10.13067/JKIECS.2015.10.11.1239
  4. H. Kal, H. Moon, and W. Lee, "Design of BCH Code Decoder using Parallel CRC Generation," J. of the Korea institute of Electronic Communication Science, vol. 13, no. 2, 2018, pp. 333-340. https://doi.org/10.13067/JKIECS.2018.13.2.333
  5. W. Zhang and H. Suh, "Analysis of Coarse Acquisition Code Generation Algorithm in GPS System," J. of the Korea institute of Electronic Communication Science, vol. 12, no. 1, 2017, pp. 61-68. https://doi.org/10.13067/JKIECS.2017.12.1.61
  6. S. Chen and H. Suh, "An Effective Decoding Algorithm of LDPC Codes with Lowering Error Floors," J. of the Korea institute of Electronic Communication Science, vol. 9, no. 10, 2014, pp. 1111-1116. https://doi.org/10.13067/JKIECS.2014.9.10.1111
  7. R. Hamming, "Error Correcting and Error Detecting Codes", The Bell Sys. Tech. Journal, vol. 29, no. 2, Apr. 1950, pp. 147-160. https://doi.org/10.1002/j.1538-7305.1950.tb00463.x
  8. M. Hsiao, "A Class of Optimal Minimum Odd-weightcolumn SEC-DED codes", IBM Journal of Research and Development, vol. 14, no. 4, July 1970, pp. 395-401. https://doi.org/10.1147/rd.144.0395
  9. A. Dutta and N. Touba, "Multiple bit upset tolerant memory using a selective cycle avoidance based SEC-DED-DAEC code," In Proc. 25th IEEE VLSI Test Symp., Berkeley, USA, 2007.
  10. P. Reviriego, J. Martínez, and J. Maestro, "A method to design SEC-DED-DAEC codes with optimized decoding," IEEE Transactions on Device and Materials Reliability, vol. 14, no. 3, Sept. 2014, pp. 884-889. https://doi.org/10.1109/TDMR.2014.2332364