DOI QR코드

DOI QR Code

변색기 고온에 의한 '거봉' 및 '흑보석' 포도의 과피 안토시아닌 조성 변화

Changes of Fruit Quality and Anthocyanin Composition of 'Kyoho' and 'Heukboseok' Grape Berry Skins under High Temperature at Veraison

  • 류수현 (농촌진흥청 국립원예특작과학원 원예작물부 과수과) ;
  • 한점화 (농촌진흥청 국립원예특작과학원 원예작물부 과수과) ;
  • 한현희 (농촌진흥청 국립원예특작과학원 원예작물부 과수과) ;
  • 정재훈 (농촌진흥청 국립원예특작과학원 원예작물부 과수과) ;
  • 조정건 (농촌진흥청 국립원예특작과학원 원예작물부 과수과) ;
  • 도경란 (농촌진흥청 국립원예특작과학원 원예작물부 과수과)
  • Ryu, Suhyun (Fruit Research Division, National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Han, Jeom Hwa (Fruit Research Division, National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Han, Hyun Hee (Fruit Research Division, National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Jeong, Jae Hoon (Fruit Research Division, National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Cho, Jung-Gun (Fruit Research Division, National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Do, Kyeong Ran (Fruit Research Division, National Institute of Horticultural & Herbal Science, Rural Development Administration)
  • 투고 : 2018.05.16
  • 심사 : 2018.07.02
  • 발행 : 2018.07.30

초록

여름철 고온으로 인해 '거봉' 포도의 착색 불량이 나타나는 원인을 안토시아닌 조성의 변화로부터 구명하기 위해 본 실험을 수행하였으며, 같은 대립계 포도 품종인 '흑보석'의 과실 품질과 안토시아닌의 변화를 함께 비교하였다. 착색 초기부터 30일 동안의 고온 처리에 의해 '거봉'과 '흑보석' 모두에서 과피의 착색이 감소하였지만, '흑보석'은 온도 처리의 종료 이후 안토시아닌 함량이 대조구의 수준으로 증가하였고, '거봉'은 착색이 정지된 상태로 안토시아닌 함량이 증가하지 못했다. 고온에 의해 '거봉'의 안토시아니딘은 Mal, Del, Pet의 순으로 크게 감소하였으며, 개별 성분으로는 diglucoside 및 Malacylated 형태가 가장 크게 감소하였다. 안토시아닌의 형태별 함량을 비교한 결과, '거봉' 과피에서 고온에 의해 acylated 형태가 non-acylated 형태에 비해서 더 크게 감소하였고, B ring의 tri-hydroxylated 형태가 di-hydroxylated 형태보다 더 큰 비율로 감소하였다. '거봉'에서 모든 그룹의 안토시아닌 함량이 총 안토시아닌과 비슷한 경향으로 감소하였고, '흑보석'에서는 모든 그룹의 합성이 고온에 의해 억제되었다가 온도 처리가 종료된 이후 대조구의 수준으로 회복되었다. 따라서 착색 초기의 고온에 의한 '거봉'의 착색 불량은 특정 안토시아닌의 감소에 의한 것이 아니라, 전체적인 안토시아닌의 생합성 자체가 고온에 의해 억제되었기 때문으로 판단되었다.

We analyzed the skin coloration and anthocyanin composition of 'Kyoho' and 'Heukboseok' grape berries to determine the cause of poor coloring in 'Kyoho' berry skins under high temperature (HT) at veraison. Although the skin coloration inhibited in both 'Kyoho' and 'Heukboseok' berries under HT for 30 days from veraison, the total anthocyanin content in 'Heukboseok' berry skins increased to the level of control after the end of temperature treatment, but 'Kyoho' did not increase. Malvidin derivatives were most significantly reduced in 'Kyoho' berry skins, followed by those of delphinidin and petunidin. Among individual anthocyanins, diglucosides and acylated malvidin derivatives were most decreased in 'Kyoho' berry skins. Acylated and tri-hydroxylated anthocyanins were reduced more than those of non-acylated and dihydroxylated, respectively. All different types of anthocyanin components in 'Kyoho' berry skins decreased by HT, and they were similar to that of total anthocyanin. In 'Heukboseok' berry skins, accumulations of all different types of anthocyanins were inhibited by HT, and increased to the level of control after the end of the treatment. These results suggest that the poor coloration of 'Kyoho' under HT at veraison was not caused by the decrease of specific anthocyanins but because the whole anthocyanin biosynthesis was suppressed by HT.

키워드

참고문헌

  1. Azuma A., Yakushiji H., Koshita Y., and S. Kobayashi. 2012. Flavonoid biosynthesis-related genes in grape skin are differentially regulated by temperature and light conditions. Planta 236(4):1067-1080. https://doi.org/10.1007/s00425-012-1650-x
  2. Castellarin S.D., and G.D. Gaspero. 2007. Transcriptional control of anthocyanin biosynthetic genes in extreme phenotypes for berry pigmentation of naturally occurring grapevines. BMC Plant Biol. 7(1):46. https://doi.org/10.1186/1471-2229-7-46
  3. Gomez C., Terrier N., Torregrosa L., Vialet S., Fournier-Level A., Verries C., Souquet J.M., Mazauric J.P., Klein M., Cheynier V., and A. Ageorges. 2009. Grapevine MATE-type proteins act as vacuolar $H^+$-dependent acylated anthocyanin transporters. Plant Physiol. 150(1):402-415. https://doi.org/10.1104/pp.109.135624
  4. He F., He J.J., Pan Q.H., and C.Q. Duan. 2010a. Mass-spectrometry evidence confirming the presence of pelargonidin-3-O-glucoside in the berry skins of Cabernet Sauvignon and Pinot Noir (Vitis vinifera L.). Aust. J. Grape Wine Res. 16(3):464-468. https://doi.org/10.1111/j.1755-0238.2010.00107.x
  5. He F., Mu L., Yan G.L., Liang N.N., Pan Q.H., Wang J., Reeves M.J., and C.Q. Duan. 2010b. Biosynthesis of anthocyanins and their regulation in colored grapes. Molecules 15(12):9057-9091. https://doi.org/10.3390/molecules15129057
  6. Holton T.A. and E.C. Cornish. 1995. Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell 7(7):1071-1083. https://doi.org/10.1105/tpc.7.7.1071
  7. Kallam K., Appelhagen I., Luo J., Albert N., Zhang H., Deroles S., Hill L., Findlay K., Andersen O.M., Davies K., and C. Martin. 2017. Aromatic decoration determines the formation of anthocyanic vacuolar inclusions. Curr. Biol. 27(7):945-957. https://doi.org/10.1016/j.cub.2017.02.027
  8. Koshita Y., Mitani N., Azuma A., and H. Yakushiji. 2015. Effects of short-term temperature treatment to clusters on anthocyanin and abscisic acid content in the peel of 'Aki Queen' grape. Vitis 54(4):169-173.
  9. Lee, K., H.J. Baek, S. Park, H.S. Kang, and C.H. Cho. 2012. Future projection of changes in extreme temperatures using high resolution regional climate change scenario in the Republic of Korea. J. Kor. Geogr. Soc. 47: 208-225 (in Korean).
  10. Mazza G. and F.J. Francis. 1995. Anthocyanins in grapes and grape products. Crit. Rev. Food Sci. Nutr. 35(4):341-371. https://doi.org/10.1080/10408399509527704
  11. Mori K., Sugaya S., and H. Gemma. 2004. Regulatory mechanism of anthocyanin biosynthesis in 'Kyoho' grape berries grown under different temperature conditions. Environ. Contr. Biol. 42(1):21-30. https://doi.org/10.2525/ecb1963.42.21
  12. Mori K., Goto-Yamamoto N., Kitayama M., and K. Hashizume. 2007. Effect of high temperature on anthocyanin composition and transcription of flavonoid hydroxylase genes in 'Pinot noir' grapes (Vitis vinifera). J. Hort. Sci. Biotech. 82(2):199-206. https://doi.org/10.1080/14620316.2007.11512220
  13. De Rosas I. Ponce M.T., Malovini E., Deis L., Cavagnaro B., and P. Cavagnaro. 2017. Loss of anthocyanins and modification of the anthocyanin profiles in grape berries of Malbec and Bonarda grown under high temperature conditions. Plant Sci. 258:137-145. https://doi.org/10.1016/j.plantsci.2017.01.015
  14. Ryu, S., Y. Kwon, K.R., Do, J.H., Han, H.H., Han, and H.C. Lee. 2015. Physiological responses and fruit quality changes of 'Fuji' apple under the high night temperature. Protected Hort. Plant Fac. 24(3):264-270. https://doi.org/10.12791/KSBEC.2015.24.3.264
  15. Sadras V.O., and M.A. Moran. 2012. Elevated temperature decouples anthocyanins and sugars in berries of Shiraz and Cabernet Franc. Aust. J. Grape Wine Res. 18(2):115-122. https://doi.org/10.1111/j.1755-0238.2012.00180.x
  16. Shinomiya R., Fujishima H., Muramoto K., and M. Shiraishi. 2015. Impact of temperature and sunlight on the skin coloration of the 'Kyoho' table grape. Sci. Hort. 193:77-83. https://doi.org/10.1016/j.scienta.2015.06.042
  17. Tamura H., Hayashi Y., Sugisawa H., and T. Kondo. 1994. Structure determination of acylated anthocyanins in Muscat Bailey a grapes by homonuclear Hartmann-Hahn (HOHAHA) spectroscopy and liquid chromatography-mass spectrometry. Phytochem. Anal. 5(4):190-196. https://doi.org/10.1002/pca.2800050404
  18. Tarara J.M., Lee J., Spayd S.E., and C.F. Scagel. 2008. Berry temperature and solar radiation alter acylation, proportion, and concentration of anthocyanin in Merlot grapes. Am. J. Enol. Vitic. 59(3):235-247.