DOI QR코드

DOI QR Code

Potentiometric sensor of graphene oxide decorated with silver nanoparticles/molecularly imprinted polymer for determination of gabapentin

  • Abdallah, Nehad A. (Pharmacognosy and Pharmaceutical Chemistry Department, Faculty of Pharmacy, Taibah University) ;
  • Ibrahim, Heba F. (Experiments and Advanced Pharmaceutical Research Unit, Faculty of Pharmacy, Ain Shams University)
  • Received : 2017.11.15
  • Accepted : 2017.12.27
  • Published : 2018.07.31

Abstract

An imprinted potentiometric sensor was developed for direct and selective determination of gabapentin. Sensor is based on carbon paste electrode adapted by graphene oxide that is decorated with silver nanoparticles and mixed with molecularly imprinted polymers nanoparticles using gabapentin as a template molecule. The synthesized nanoparticles were characterized by Fourier transmission infrared spectroscopy, transmission electron microscopy and X-ray diffraction. Under optimal experimental conditions, the studied sensor exhibited high selectivity and sensitivity with LOD of $4.8{\times}10^{-11}mol\;L^{-1}$. It provided a wide linearity range from $1{\times}10^{-10}$ to $1{\times}10^{-3}mol\;L^{-1}$ and high stability for more than 3 mo. The sensor was effectively used for the determination of gabapentin in pharmaceutical tablets and spiked plasma samples.

Keywords

References

  1. Stein D, Lydiard RB, Giordano S, Mandel F. Poster session II : benzodiazepine and anxiolytics. Eur Psychiatry, 23, S221 (2008). https://doi.org/10.1016/j.eurpsy.2008.01.389.
  2. Petroff OAC, Hyder F, Rothman DL, Mattson RH. Effects of gabapentin on brain GABA, homocarnosine, and pyrrolidinone in epilepsy patients. Epilepsia, 41, 675 (2000). https://doi.org/10.1111/j.1528-1157.2000.tb00227.x.
  3. Tampi RR, Ozkan B, Williamson D. Gabapentin for the treat-ment of behavioral and psychological symptoms of dementia. Adv Alzheimer's Dis, 1, 13 (2012). https://doi.org/10.4236/aad.2012.12002.
  4. Siddiqui FA, Arayne MS, Sultana N, Qureshi F, Mirza AZ, Zuberi MH, Bahadur SS, Afridi NS, Shamshad H, Rehman N. Spectrophotometric determination of gabapentin in pharmaceutical formulations using ninhydrin and ${\pi}$-acceptors. Eur J Med Chem, 45, 2761 (2010). https://doi.org/10.1016/j.ejmech.2010.02.058.
  5. Ambalal PS, Natavarlal JP. Visible spectrophotometric methods for determination of gabapentin in pharmaceutical tablet and capsule dosage forms. Asian J Pharm Life Sci, 1, 223 (2011).
  6. Mohammed TO, Elbashir AA. Spectrophotometric method for determination of gabapentin in pharmaceutical formulation by derivatization with 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole (NBDCl). Int J Drug Dev Res, 7, 1 (2015).
  7. Effendi N, Rachmat K, Akbar P, Tadjuddin N. Validated UV-Vis spectrophotometric method for determination of gabapentin using acetyl acetone and formaldehyde reagents. Iran J Pharm Sci, 9, 23 (2013).
  8. Saleh MS, Youssef AK, Hashem EY, Abdel-kader DA. A novel spectrophotometric method for determination of gabapentin in pharmaceutical formulations using 2,5-dihydroxybenzaldehyde. Comput Chem, 2, 22 (2014). https://doi.org/10.4236/cc.2014.22004.
  9. Abdulrahman SAM, Basavaiah K. Highly sensitive spectrophotometric method for the determination of gabapentin capsules using sodium hypochloride. Turk J Pharm Sci, 9, 113 (2012).
  10. Abdellatef HE, Khalil HM. Colorimetric determination of gabapentin in pharmaceutical formulation. J Pharm Biomed Anal, 31, 209 (2003). https://doi.org/10.1016/s0731-7085(02)00572-1.
  11. Al-Majed AA. A derivatization reagent for vigabatrin and gabapentin in HPLC with fluorescence detection. J Liq Chromatogr Relat Technol, 28, 3119 (2005). https://doi/org/10.1080/10826070500295229.
  12. Patel Y, Patel MB, Patel NK, Sakhreliya B. Development and validation of analytical method for simultaneous estimation of gabapentin and nortriptyline hydrochloride in pharmaceutical dosage form. J Pharm Sci Bioscientific Res, 5, 434 (2015).
  13. Jalalizadeh H, Souri E, Tehrani MB, Jahangiri A. Validated HPLC method for the determination of gabapentin in human plasma using pre-column derivatization with 1-fluoro-2,4-dinitrobenzene and its application to a pharmacokinetic study. J Chromatogr B, 854, 43 (2007). https://doi/org/10.1016/j.jchromb.2007.03.039.
  14. Hyder S, Vani R. Stability indicating method development and validation of RP-HPLC method for simultaneous estimation of gabapentin and mecobalamine in bulk and its tablets. World J Pharm Pharm Sci, 3, 1095 (2014).
  15. Ragham PK, Chandrasekhar KB. Development and validation of a stability-indicating RP-HPL C-CAD method for gabapentin and its related impurities in presence of degradation products. J Pharm Biomed Anal, 125, 122 (2016). https://doi.org/10.1016/j.jpba.2016.03.035.
  16. Ciavarella AB, Gupta A, Sayeed VA, Khan MA, Faustino PJ. Development and application of a validated HPLC method for the determination of gabapentin and its major degradation impurity in drug products. J Pharm Biomed Anal, 43, 1647 (2007). https://doi.org/10.1016/j.jpba.2006.12.020.
  17. Sagirli O, Cetin SM, Onal A. Determination of gabapentin in human plasma and urine by high-performance liquid chromatography with UV-vis detection. J Pharm Biomed Anal, 42, 618 (2006). https://doi/org/10.1016/j.jpba.2006.05.012.
  18. Gupta A, Ciavarella AB, Sayeed VA, Khan MA, Faustino PJ. Development and application of a validated HPLC method for the analysis of dissolution samples of gabapentin drug products. J Pharm Biomed Anal, 46, 181 (2008). https://doi.org/10.1016/j.jpba.2007.08.023.
  19. Park JH, Jhee OH, Park SH, Lee JS, Lee MH, Shaw LM, Kim KH, Lee JH, Kim YS, Kang JS. Validated LC-MS/MS method for quantification of gabapentin in human plasma: application to pharmacokinetic and bioequivalence studies in Korean volunteers. Biomed Chromatogr, 21, 829 (2007). https://doi.org/10.1002/bmc.826.
  20. Carlsson KC, Reubsaet JLE. Sample preparation and determination of gabapentin in venous and capillary blood using liquid chromatography-tandem mass spectrometry. J Pharm Biomed Anal, 34, 415 (2004). https://doi.org/10.1016/s0731-7085(03)00572-7.
  21. Borrey DCR, Godderis KO, Engelrelst VIL, Bernard DR, Langlois MR. Quantitative determination of vigabatrin and gabapentin in human serum by gas chromatography-mass spectrometry. Clin Chim Acta, 354, 147 (2005). https://doi.org/10.1016/j.cccn.2004.11.023.
  22. Nezhad GK, Pashazadeh S. Electro-oxidation and determination of gabapentin at copper sulfide nanostructures modified carbon paste electrode. Anal Bioanal Electrochem, 7, 439 (2015).
  23. Jalali F, Hassanvand R, Dorraji PS. Voltammetric Determination of gabapentin by a carbon ceramic electrode modified with multiwalled carbon nanotubes and nickel-catechol complex. J Braz Chem Soc, 25, 1537 (2014). https://doi.org/10.5935/0103-5053.20140137.
  24. Yari A, Papi F, Farhadi S. Voltammetric determination of trace antiepileptic gabapentin with a silver-nanoparticle modified multiwalled carbon nanotube paste electrode. Electroanalysis, 23, 2949 (2011). https://doi.org/10.1002/elan.201100454.
  25. Heli H, Faramarzi F, Sattarahmady N. Oxidation and determination of Gabapentin on nanotubes of nickel oxide-modified carbon paste electrode. J Solid State Electrochem, 16, 45 (2010). https://doi.org/10.1007/s10008-010-1272-9.
  26. Hegde RN, Swamy BEK, Shetti NP, Nandibewoor ST. Electrooxidation and determination of gabapentin at gold electrode. J Electroanal Chem, 635, 51 (2009). https://doi.org/10.1016/j.jelechem.2009.08.004.
  27. Jalali F, Arkan E, Bahrami G. Preparation of a gabapentin potentiometric sensor and its application to pharmaceutical analysis. Sens Actuators B Chem, 127, 304 (2007). https://doi.org/10.1016/j.snb.2007.07.019.
  28. El-Tohamy M, Razeq S, Shalaby A. Electrochemical sensors for determination of anticonvulsant drug gabapentin in bulk powder and pharmaceutical dosage forms. Int J Electrochem Sci, 7, 5374 (2012).
  29. Zhu Y, Yang L, Huang D, Zhu Q. Molecularly imprinted nanoparticles and their releasing properties, bio-distribution as drug carriers. Asian J Pharm Sci, 12, 172 (2017). https://doi.org/10.1016/j.ajps.2016.08.008.
  30. Tan F, Zhao Q, Teng F, Sun D, Gao J, Quan X, Chen J. Molecularly imprinted polymer/mesoporous carbon nanoparticles as electrode sensing material for selective detection of ofloxacin. Mater Lett, 129, 95 (2014). https://doi.org/10.1016/j.matlet.2014.05.039.
  31. Arabi M, Ghaedi M, Ostovan A, Tashkhourian J, Asadallahzadeh H. Synthesis and application of molecularly imprinted nanoparticles combined ultrasonic assisted for highly selective solid phase extraction trace amount of celecoxib from human plasma samples using design expert (DXB) software. Ultrason Sonochem, 33, 67 (2016). https://doi.org/10.1016/j.ultsonch.2016.04.022.
  32. Atar N, Yola ML, Eren T. Sensitive determination of citrinin based on molecular imprinted electrochemical sensor. Appl Surf Sci, 362, 315 (2016). https://doi.org/10.1016/j.apsusc.2015.11.222.
  33. Yola ML, Eren T, Atar N. A sensitive molecular imprinted electrochemical sensor based on gold nanoparticles decorated graphene oxide: application to selective determination of tyrosine in milk. Sens Actuators B Chem, 210, 149 (2015). https://doi.org/10.1016/j.snb.2014.12.098.
  34. Yola ML, Atar N. A highly efficient nanomaterial with molecular imprinting polymer: carbon nitride nanotubes decorated with graphene quantum dots for sensitive electrochemical determination of chlorpyrifos. J Electrochem Soc, 164, B223 (2017). https://doi.org/10.1149/2.1411706jes.
  35. Li J, Wei G, Zhang Y. Molecularly imprinted polymers as recognition elements in sensors. Mol Imprinted Sens, 35 (2012). https://doi.org/10.1016/b978-0-444-56331-6.00002-5.
  36. Javanbakht M, Akbari-Adergani B. Molecularly Imprinted Polymer-Based Potentiometric Sensors for the Determination of Drugs in Pharmaceutical, Biological, and Environmental Samples. Mol Imprinted Sens, 247 (2012). https://doi.org/10.1016/b978-0-444-56331-6.00011-6.
  37. Alam SN, Sharma N, Kumar L. Synthesis of Graphene Oxide (GO) by Modified Hummers Method and Its Thermal Reduction to Obtain Reduced Graphene Oxide (rGO). Graphene, 6, 1 (2017). https://doi.org/10.4236/graphene.2017.61001.
  38. Ma J, Zhang J, Xiong Z, Yong Y, Zhao XS. Preparation, characterization and antibacterial properties of silver-modified graphene oxide. J Mater Chem, 21, 3350 (2011). https://doi.org/10.1039/c0jm02806a.
  39. Zhang Y, Liu S, Wang L, Qin X, Tian J, Lu W, Chang G, Sun X. One-pot green synthesis of Ag nanoparticles-graphene nanocomposites and their applications in SERS, $H_2O_2$, and glucose sensing. RSC Adv, 2, 538 (2012). https://doi.org/10.1039/c1ra00641j.
  40. Chen C, Fu X, Ma T, Fan W, Wang Z, Miao S. Synthesis and electrochemical properties of graphene oxide/nanosulfur/polypyrrole ternary nanocomposite hydrogel for supercapacitors. J Appl Polym Sci, 131, 40814 (2014). https://doi.org/10.1002/app.40814.
  41. Shahriary L, Athawale AA. Graphene oxide synthesized by using modified hummers approach. Int J Renew Energy Environ Eng, 2, 58 (2014).
  42. Umezawa Y, Buhlmann P, Umezawa K, Tohda K, Amemiya S. Potentiometric selectivity coefficients of ion-selective electrodes. Part I. inorganic cations (technical report). Pure Appl Chem, 72, 1851 (2000). https://doi.org/10.1351/pac200072101851.
  43. Baumann EW. Trace fluoride determination with specific ion electrode. Anal Chim Acta, 42, 127 (1968). https://doi.org/10.1016/s0003-2670(01)80277-4.
  44. Jyoti K, Baunthiyal M, Singh A. Characterization of silver nanopar ticles synthesized using Urtica dioica Linn. leaves and their synergistic effects with antibiotics. J Radiat Res Appl Sci, 9, 217 (2016). https://doi.org/10.1016/j.jrras.2015.10.002.
  45. Hui KS, Hui KN, Dinh DA, Tsang CH, Cho YR, Zhou W, Hong X, Chun HH. Green synthesis of dimension-controlled silver nanoparticle-graphene oxide with in situ ultrasonication. Acta Mater, 64, 326 (2014). ttps://doi.org/10.1016/j.actamat.2013.10.045.
  46. Alizadeh T, Azizi S. Graphene/graphite paste electrode incorporated with molecularly imprinted polymer nanoparticles as a novel sensor for differential pulse voltammetry determination of fluoxetine. Biosens Bioelectron, 81, 198 (2016). https://doi.org/10.1016/j.bios.2016.02.052.
  47. Chen D, Feng H, Li J. Graphene oxide: preparation, functionalization, and electrochemical applications. Chem Rev, 112, 6027 (2012). https://doi.org/10.1021/cr300115g.
  48. Luo X, Morrin A, Killard AJ, Smyth MR. Application of nanoparticles in electrochemical sensors and biosensors. Electroanalysis, 18, 319 (2006). https://doi.org/10.1002/elan.200503415.
  49. Ren X, Meng X, Chen D, Tang F, Jiao J. Using silver nanoparticle to enhance current response of biosensor. Biosens Bioelectron, 21, 433 (2005). https://doi.org/10.1016/j.bios.2004.08.052.