PET/CT 검사에서 냉소 인공물 발생 시 산란 제한 보정 알고리즘 적용에 따른 영상 평가

A study on evaluation of the image with washed-out artifact after applying scatter limitation correction algorithm in PET/CT exam

  • 고현수 (서울아산병원 핵의학과) ;
  • 류재광 (서울아산병원 핵의학과)
  • Ko, Hyun-Soo (Department of Nuclear Medicine, Asan medical Center) ;
  • Ryu, Jae-kwang (Department of Nuclear Medicine, Asan medical Center)
  • 투고 : 2018.04.14
  • 심사 : 2018.04.30
  • 발행 : 2018.05.19

초록

PET/CT 검사에서 환자의 움직임이나 높은 비방사능에 의해 냉소 인공물(washed-out artifact)이 발생하여 육안적 판독 및 정량평가의 정확성을 감소시킬 가능성이 있다. GE PET/CT 장비의 산란 제한 보정 알고리즘은 영상에 발생한 냉소 인공물을 제거하여 영상을 회복시켜주는 알고리즘이다. 본 연구의 목적은 팬텀 실험을 통해 높은 비방사능에 의해 냉소 인공물이 발생한 영상에 산란 제한 보정 알고리즘을 적용하였을 때 기존의 정량 값으로 회복 가능한 비방사능의 역치 값을 측정하고, 냉소 인공물이 발생한 임상 환자 영상에 산란 제한 보정 알고리즘을 적용하여 보정 전과 후의 영상을 비교 분석하고자 한다. $^{68}Ge$ 실린더 팬텀 영상에 냉소 인공물을 발생시키기 위해 임의의 $^{18}F$ 선원의 비방사능이 20 ~ 20,000 kBq/ml 가 되도록 20 단계로 분주하고 $^{18}F$ 선원의 CT 영상과 PET 영상간에 불일치(mis-registration) 정도가 없을 때, 불일치가 각각 1, 2, 3, 4 cm 일 때의 영상을 획득하였다. 또한 본원에서 $^{18}F-FDG$ Fusion Whole Body PET/CT 검사를 시행한 환자 중 유치 도뇨관 내에 높은 비방사능에 의해 냉소 인공물이 발생한 34명의 환자를 대상으로, CT 영상과 PET 영상간의 불일치 정도(cm), 인공물을 발생시키는 원인이 되는 비방사능의 수치(kBq/ml), 인공물이 발생한 단면 내 근육에서의 $SUV_{mean}$, 인공물이 발생한 단면 내 병변에서의 $SUV_{max}$, 인공물이 발생하지 않은 단면 내 병변에서의 $SUV_{max}$를 측정하였다. 통계는 보정 전과 후의 차이를 비교하기 위해 대응 표본 t 검정을 시행하였다. 팬텀 실험에서는 $^{18}F$ 선원의 비방사능이 커질수록 $^{68}Ge$ 실린더 팬텀의 $SUV_{mean}$가 감소하였다. 불일치 거리가 커질수록 $SUV_{mean}$가 급격히 저하 되었지만 반대로 보정 효과는 더 크게 나타났다. 비방사능 50 kBq/ml 이하에서는 모든 조건에서 육안적으로도 냉소 인공물이 발생하지 않았으며 $SUV_{mean}$에도 차이가 없었다. 불일치가 없을 때와 1 cm 차이가 있을 때는 120 kBq/ml 이하부터 산란 제한 보정 알고리즘을 적용 할 때 기존 $SUV_{mean}$(0.95)와 동일하게 회복 되었고, 2 cm와 3 cm 차이에서는 100 kBq/ml 이하부터, 4 cm 차이에서는 80 kBq/ml 이하부터 기존 $SUV_{mean}$와 동일하게 회복 되었다. 임상 환자 34명의 영상을 분석한 결과, 불일치 평균 거리는 2.02 cm 이었고, 냉소 인공물을 발생시키는 평균 비방사능은 490.15 kBq/ml 이었다. 인공물이 발생한 단면 내 근육의 $SUV_{mean}$와 병변의 $SUV_{max}$는 보정 전 후 각각 통계적으로 유의한 차이가 있었지만(t=-13.805, p=0.000) (t=-2.851, p=0.012), 인공물이 발생하지 않은 단면 내 병변의 $SUV_{max}$는 통계적으로 유의한 차이가 없었다(t=-1.173, p=0.250). GE PET/CT 장비의 산란 제한 보정 알고리즘은 임상 검사에서 환자의 심한 움직임뿐만 아니라 높은 비방사능의 미세한 움직임에 의해 발생한 냉소 인공물을 제거하여 영상을 회복해 주는 알고리즘이다. 냉소 인공물이 발생 하였을 때 산란제한 보정 알고리즘 적용 후 그 원인이 되는 비방사능의 수치, CT 영상과 PET 영상의 불일치 거리 등을 감안하여 영상을 분석한다면 냉소 인공물 부위의 재촬영 없이, 육안적 판독 및 정량 값을 더 정확하게 평가 하는데 도움이 될 것으로 사료 된다.

Purpose In PET/CT exam, washed-out artifact could occur due to severe motion of the patient and high specific activity, it results in lowering not only qualitative reading but also quantitative analysis. Scatter limitation correction by GE is an algorism to correct washed-out artifact and recover the images in PET scan. The purpose of this study is to measure the threshold of specific activity which can recovers to original uptake values on the image shown with washed-out artifact from phantom experiment and to compare the quantitative analysis of the clinical patient's data before and after correction. Materials and Methods PET and CT images were acquired in having no misalignment(D0) and in 1, 2, 3, 4 cm distance of misalignment(D1, D2, D3, D4) respectively, with 20 steps of each specific activity from 20 to 20,000 kBq/ml on $^{68}Ge$ cylinder phantom. Also, we measured the distance of misalignment of foley catheter line between CT and PET images, the specific activity which makes washed-out artifact, $SUV_{mean}$ of muscle in artifact slice and $SUV_{max}$ of lesion in artifact slice and $SUV_{max}$ of the other lesion out of artifact slice before and after correction respectively from 34 patients who underwent $^{18}F-FDG$ Fusion Whole Body PET/CT exam. SPSS 21 was used to analyze the difference in the SUV between before and after scatter limitation correction by paired t-test. Results In phantom experiment, $SUV_{mean}$ of $^{68}Ge$ cylinder decreased as specific activity of $^{18}F$ increased. $SUV_{mean}$ more and more decreased as the distance of misalignment between CT and PET more increased. On the other hand, the effect of correction increased as the distance more increased. From phantom experiments, there was no washed-out artifact below 50 kBq/ml and $SUV_{mean}$ was same from origin. On D0 and D1, $SUV_{mean}$ recovered to origin(0.95) below 120 kBq/ml when applying scatter limitation correction. On D2 and D3, $SUV_{mean}$ recovered to origin below 100 kBq/ml. On D4, $SUV_{mean}$ recovered to origin below 80 kBq/ml. From 34 clinical patient's data, the average distance of misalignment was 2.02 cm and the average specific activity which makes washed-out artifact was 490.15 kBq/ml. The average $SUV_{mean}$ of muscles and the average $SUV_{max}$ of lesions in artifact slice before and after the correction show a significant difference according to a paired t-test respectively(t=-13.805, p=0.000)(t=-2.851, p=0.012), but the average $SUV_{max}$ of lesions out of artifact slice show a no significant difference (t=-1.173, p=0.250). Conclusion Scatter limitation correction algorism by GE PET/CT scanner helps to correct washed-out artifact from motion of a patient or high specific activity and to recover the PET images. When we read the image occurred with washed-out artifact by measuring the distance of misalignment between CT and PET image, specific activity after applying scatter limitation algorism, we can analyze the images more accurately without repeating scan.

키워드

참고문헌

  1. Matthew R. Acker, BHSc; and Steven C. Burrell, MD. Utility of $^{18}F$-FDG PET in Evaluating Cancers of Lung. J Nucl Med Technol2005; 33:69-74.
  2. Corneline J. Hoekstra, MD; Otto S. Hoekstra, MD, PhD; Sigrid G. Stroobants, MD;JohanVansteenkiste, MD, PhD; Johan Nuyts, PhD; Egbert F. Smit, MD, PhD; Maarten Boers, MD, PhD;Jos W.R. Twisk, PhD; and Adriaan A. Lammertsma, PhD. Methods to Monitor Response to Chemotherapyin Non-Small Cell Lung Cancer with $^{18}F$-FDGPET. J Nucl Med 2002; 43:1304-1309.
  3. Nikie J. Hoetjes&Floris H. P. van Velden&Otto S. Hoekstra&Corneline J. Hoekstra&Nanda C. Krak&Adriaan A. Lammertsma&Ronald Boellaard. Partial volume correction strategies for quantitativeFDG PET in oncology. Eur J Nucl Med Mol Imaging 2010; 37:1679-1687. https://doi.org/10.1007/s00259-010-1472-7
  4. Graham MM, Peterson LM, Hayward RM. Comparison ofsimplified quantitative analyses of FDG uptake. Nucl Med Biol. 2000;27(7):647-55. https://doi.org/10.1016/S0969-8051(00)00143-8
  5. WaheedaSureshbabu, CNMT, PET; and Osama Mawlawi, PhD. PET/CT Imaging Artifacts. J Nucl Med Technol. 2005;33:156-161.
  6. 김영설, 김덕윤. PET의 달인 되기. 군자 출판사. 2007. p39-41.
  7. Corrigan JA, Schleyer PJ, Cook GJ. Pitfalls and Artifacts in the Use of PET/CT in Oncology Imaging.SeminNucl Med. 2015.02; volume 45, Issue 6 481-499.
  8. Harnish R, Prevrhal S, Alavi A, Zaidi H, Lang TF. The effect of metal artiact reduction on CT-based attenuation correction for PET imaging in the vicinity of metallic hip implants: a phantom study. AnnNucl Med. 2014 Jul; 28(6):540-50.
  9. Bockisch A, Beyer T, Antoch G, Freudenberg LS, Kuhl H, Debatin JF, Muller SP.Positron emission tomography/computed tomography-imaging protocols, artifacts, and pitfalls. Mol Imaging Biol. 2004 Jul-Aug; 6(4):188-99. https://doi.org/10.1016/j.mibio.2004.04.006
  10. Lodge MA, Mhlanga JC, Cho SY, Wahl RL. Effect of patient arm motion in whole-body PET/CT.J Nucl Med. 2011 Dec; 52(12):1891-7. https://doi.org/10.2967/jnumed.111.093583
  11. Furuta A, Onishi H, Kangai Y, Shigehiro Y, Kawasaki. Effect of Scatter Limitation Correction with Misregistration between Computed Tomography and Positron Emission Tomography on Scatter Correction: A Physical Phantom Study. JSRT. 2017_73.3.185.
  12. Callahan J, Binns D, Deller T, Hicks RJ. Scatter limitation to correct for arm movement in PET/CT. ClinNucl Med. 2012 Aug; 37(8):786-7.
  13. Miwa K, Umeda T, Murata T, Wagatsuma K, Miyaji N, Terauchi T, Koizumi M, Sasaki M.Evaluation of scatter limitation correction: a new method of correcting photopenic artifacts caused by patient motion during whole-body PET/CT imaging. Nucl Med Commun. 2016 Feb; 37(2):147-54. https://doi.org/10.1097/MNM.0000000000000403
  14. 반영각 외 8 명. PETCT 검사에서 움직임에 의한 인공물의 산란 제한 보정법 적용 영상 평가. KJNMT 2012. 16권, 2호; 44-48.
  15. Dominique Delbeke, R. Edward Coleman, Milton J. Guiberteau, Manuel L. Brown, Henry D. Royal, Barry A. Siegel, David W. Townsend, Lincoln L. Berland, J. Anthony Parker, Karl Hubner, Michael G. Stabin, George Zubal, Marc Kachelriess, Valerie Cronin, and Scott Holbrook. Procedure Guideline for Tumor Imaging with $^{18}F$-FDG PET/CT 1.0*. http://www.snm.org/guidelines.
  16. Nancy Paquet, MD; Adelin Albert, PhD; Jacqueline Foidart, MD, PhD; and Roland Hustinx, MD, PhD. Within-Patient Variability of $^{18}F$-FDG : Standardized Uptake Values in Normal Tissues. J Nucl Med 2004; 45:784-788.