DOI QR코드

DOI QR Code

Study of Retrieving the Aerosol Size Distribution from Aerosol Optical Depths

에어로졸 광학깊이를 이용한 에어로졸 크기분포 추출 연구

  • Received : 2018.06.05
  • Accepted : 2018.07.06
  • Published : 2018.08.25

Abstract

In this study, aerosol size distributions were retrieved from aerosol optical depth measured over a range of 10 wavelengths from 250 to 1100 nm. The 10 wavelengths were selected where there is no absorption of atmospheric gases. To obtain the solar spectrum, a home-made solar tracking system was developed and calibrated. Using this solar tracking system, total optical depths (TODs) were extracted for the 10 wavelengths using the Langley plot method, and aerosol optical depths (AODs) were obtained after removing the effects of gas absorption and Rayleigh scattering from the TODs. The algorithm for retrieving aerosol size distributions was suggested by assuming a bimodal aerosol size distribution. Aerosol size distributions were retrieved and compared under various arbitrary atmospheric conditions. Finally, we found that our solar tracking spectrometer is useful for retrieving the aerosol size distribution, even though we have little information about the aerosol's refractive index.

본 연구에서는 250 nm와 1100 nm 사이에 있는 10개의 파장에서의 에어로졸 광학 깊이를 이용하여 에어로졸의 크기분포를 역산하는 연구를 수행하였다. 10개의 파장은 주요 대기 가스의 흡수선과 밴드를 피한 파장을 찾아서 선택하였다. 태양의 스펙트럼을 얻기 위해서 태양 추적시스템과 분광기를 구축하고 자체적으로 장치를 검정하였다. 본 장치를 이용해서 총 광학 깊이를 구하고 가스의 흡수나 공기의 산란을 제거하여 에어로졸의 광학 깊이를 구했다. 이정점 분포를 지닌 에어로졸 크기 분포를 역산하는 알고리즘을 제안하였고, 장치를 통해서 구한 에어로졸의 광학 깊이를 이용하여 다양한 임의의 대기 조건에서 그 크기분포를 역산하고 비교하였다. 이를 통하여 본 연구에서 사용한 방법론과 장치들이 미지의 입자 크기 분포를 추출하는데 매우 유용할 것으로 판단하였다.

Keywords

References

  1. J. Haywood and O. Boucher, "Estimation of the direct and indirect Radiative forcing due to tropospheric aerosol: A review," Rev. Geophys. 38, 513-543 (2000). https://doi.org/10.1029/1999RG000078
  2. E. Jung, B. A. Albrecht, G. Feingold, H. H. Jonsson, P. Chuang, and S. L. Donaher, "Aerosols, clouds, and precipitation in the North Atlantic trades observed during the Barbados aerosol cloud experiment - Part 1: Distributions and variability," Atmos. Chem. Phys. 16, 8643-8666 (2016). https://doi.org/10.5194/acp-16-8643-2016
  3. Z. Ren-Jian, H. Kin-Fai, and S. Zhen-Xing, "The role of aerosol in climate change, the environment, and human health," Atmos. Oceanic Sci. Lett. 5, 156-161 (2012). https://doi.org/10.1080/16742834.2012.11446983
  4. G. Chen, S. Li, Y. Zhang, W. Zhang, D. Li, X. Wei, Y. He, M. L. Bell, G. Williams, G. B Marks, B. Jalaludin, M. Abramson, and Y. Guo, "Effects of ambient PM1 air pollution on daily emergency hospital visits in China: an epidemiological study," Planet. Health 1, 221-229 (2017). https://doi.org/10.1016/S2542-5196(17)30100-6
  5. V. F. McNeill, "Atmospheric Aerosols: Clouds, Chemistry, and Climate," Annu. Rev. Chem. Biomol. Eng. 8, 427-444 (2017). https://doi.org/10.1146/annurev-chembioeng-060816-101538
  6. https://aeronet.gsfc.nasa.gov/
  7. https://aeronet.gsfc.nasa.gov/new_web/equipment_details.html
  8. https://aeronetsoftware.com/
  9. O. V. Dubovik, T. V. Lapyonok, and S. L. Oshchepkov, "Improved technique for data inversion: optical sizing of multicomponent aerosols," Appl. Opt. 34, 8422-8436 (1995). https://doi.org/10.1364/AO.34.008422
  10. M. Dubovik and M. King, "A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements," J. Geophys. Res. 105, 20673-20696 (2000). https://doi.org/10.1029/2000JD900282
  11. B. N. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, K A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, "AERONET - A federated instrument network and data archive for aerosol characterization," Remote Sens. Environ. 66, 1-16 (1998). https://doi.org/10.1016/S0034-4257(98)00031-5
  12. A. Herber, L. W. Thomason, H. Gernandt, U. Leiterer, D. Nagel, K. H. Schulz, J. Kaptur, T. Albrecht, and J. Notholt, "Continuous day and night aerosol optical depth observations in the Arctic between 1991 and 1999," J. Geophys. Res. Atmos. 107, 1984-2012 (2002).
  13. S. Volkov, I. Samokhvalov, H. Cheong, and D. Kim, "Optical model and calibration of a sun tracker," J. Quant. Spectrosc. Radiat. Transfer 180, 101-108 (2016). https://doi.org/10.1016/j.jqsrt.2016.04.020
  14. K. Chance and R. L. Kurucz, "An improved high-resolution solar reference spectrum for earth's atmosphere measurements in the ultraviolet, visible, and near infrared," J. Quant. Spectrosc. Radiat. Transfer 111, 1289-1295 (2010). https://doi.org/10.1016/j.jqsrt.2010.01.036
  15. K. V. Chance and R. J. D. Spurr, "Ring effect studies: Rayleigh scattering, including molecular parameters for rotational Raman scattering, and the Fraunhofer spectrum," Appl. Opt. 36, 5224-5230 (1997). https://doi.org/10.1364/AO.36.005224
  16. C. E. Sioris, G. B. C. Lacoste, and M. P. Stoll, "Filling in of Fraunhofer lines by plant fluorescence: Simulations for a nadir-viewing satellite-borne instrument," J. Geophys. Res. 108, 4133-4138 (2003). https://doi.org/10.1029/2001JD001321
  17. http://hitran.org/lbl/
  18. https://geo.arc.nasa.gov/sgg/AATS-website/AATS6_AATS14/AATS6_AATS14.html
  19. H. C. van de Hulst, Light Scattering by Small Particle (John Wiley, New York, 1957), p. 370.
  20. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, New York, 1983), p. 550.
  21. S. Twomey, Introduction to the Mathematics of Inversion in Remote Sensing and Indirect Measurements (Elsevier, 1977) p. 243.
  22. C. D. Rodgers, Inverse Methods for Atmospheric sounding theory and practices (University of Oxford), Chapter 5.
  23. G. P. Gobbi, Y. J. Kaufman, I. Koren, and T. F. Eck, "Classification of aerosol properties derived from AERONET direct sun data," Atmos. Chem. Phys. 7, 453-458 (2007). https://doi.org/10.5194/acp-7-453-2007
  24. G. L. Schuster, O. Dubovik, and A. Arola, "Remote sensing of soot carbon: Part 1: Distinguishing different absorbing aerosol species," Atmos. Chem. Phys. 16, 1565-1585 (2016). https://doi.org/10.5194/acp-16-1565-2016
  25. S. T. Massie and M. Hervig, "HITRAN 2012 refractive indices," J. Quant. Spectrosc. Radiat. Transfer 130, 373-380 (2013). https://doi.org/10.1016/j.jqsrt.2013.06.022
  26. M. I. Mishchenko, "Light scattering by size-shape distributions of randomly oriented axially symmetric particles of a size comparable to a wavelength," Appl. Opt. 32, 4652-4666 (1993). https://doi.org/10.1364/AO.32.004652
  27. S. N. Volkov, I. V. Samokhvalov, and D. Kim, "Assessing and improving the accuracy of T-matrix calculation of homogeneous particles with point-group symmetries," J. Quant. Spectrosc. Radiat. Transfer 123, 169-175 (2013). https://doi.org/10.1016/j.jqsrt.2012.10.008
  28. F. Borghese, P. Denti, and R. Saija, Scattering from Model Nonspherical Particles (Springer-Verlag Berlin Heidelberg 2007).
  29. S. Shin, D. Shin, K. Lee, and Y. Noh, "Classification of dust/non-dust particle from the aisan dust plules and retrieval of microphysical properties using Raman lidar systems," J. Kor. Soc. Atmos. Environ. 28, 688-696 (2012). https://doi.org/10.5572/KOSAE.2012.28.6.688