DOI QR코드

DOI QR Code

Polarization-maintained Single-mode 400-W Yb-doped Fiber Laser with 2.5-GHz Linewidth from a 3-stage MOPA System

3단 MOPA 시스템에서 2.5 GHz 선폭을 가지는 편광유지 단일모드 400 W 이터븀 첨가 광섬유 레이저 연구

  • 박영호 (한화시스템 용인종합연구소) ;
  • 윤영석 (한화시스템 용인종합연구소) ;
  • 정민완 (한화 종합연구소) ;
  • 전창수 (광주과학기술원 고등광기술연구소) ;
  • 유봉안 (광주과학기술원 고등광기술연구소) ;
  • 신우진 (광주과학기술원 고등광기술연구소)
  • Received : 2018.06.04
  • Accepted : 2018.06.25
  • Published : 2018.08.25

Abstract

In this paper, we report on the high power amplification of a narrow-linewidth Yb-doped polarization-maintained (PM) fiber laser in a 3-stage, all-fiber master oscillator power amplifier (MOPA) system. The linearly polarized single-mode output power was 400 W with an 85% slope efficiency, with a linewidth of 2.5 GHz (full width at half maximum). Furthermore, mitigation of mode instability (MI) has been demonstrated by tightly coiling the gain fiber to a diameter of 11 cm. In addition, methods for higher power scaling are discussed.

본 논문에서는 3단으로 구성된 전광섬유(all-fiber) Master Oscillator Power Amplifier (MOPA) 구조의 협대역 이터븀 첨가 편광 유지 광섬유 레이저 증폭에 대해 보고한다. 편광유지 단일모드 출력은 85%의 기울기 효율을 가지는 400 W 출력을 얻을 수 있었고, 레이저 반치폭은 2.5 GHz였다. 더불어, 이득매질 광섬유를 11 cm 지름으로 코일링하여 모드 불안정성을 완화할 수 있었다. 추가적으로 레이저 출력 증가를 위한 방법들에 대해 논하였다.

Keywords

References

  1. L. Zhang, J. Hu, J. Wang, and Y. Feng, "Stimulated-Brillouinscattering-suppressed high-power single-frequency polarizationmaintaining Raman fiber amplifier with longitudinally varied strain for laser guide star," Opt. Lett. 37, 4796-4798 (2012). https://doi.org/10.1364/OL.37.004796
  2. C. Zeringue, C. Vergien, and I. Dajani, "Pump-limited, 203 W, single-frequency monolithic fiber amplifier based on laser gain competition," Opt. Lett. 36, 618-620 (2011). https://doi.org/10.1364/OL.36.000618
  3. N. A. Naderi, A. Flores, B. M. Anderson, and I. Dajani, "Beam combinable kilowatt. All-fiber amplifier based on phase-modulated laser gain competition," Opt. Lett. 41, 3964-3967 (2016). https://doi.org/10.1364/OL.41.003964
  4. P. D. Dragic, J. Ballato, S. Morris, and T. Hawkins, "Pockels' coefficients of alumina in aluminosilicate optical fiber," J. Opt. Soc. Am. B 30, 244-250 (2013). https://doi.org/10.1364/JOSAB.30.000244
  5. C. Robin, I. Dajani, and F. Chiragh, "Experimental studies of segmented acoustically tailored photonic crystal fiber amplifier with 494 W single-frequency output," Proc. SPIE 7914, 79140B (2011).
  6. A. Flores, C. Robin, A. Lanari, and I. Dajani, "Pseudo-random binary sequence phase modulation for narrow linewidth kilowatt monolithic fiber amplifiers," Opt. Express 22, 17735-17744 (2014). https://doi.org/10.1364/OE.22.017735
  7. N. A. Naderi, I. Dajani, and A. Flores, "High-efficiency, kilowatt 1034 nm all-fiber amplifier operating at 11 pm linewidth," Opt. Lett. 41, 1018-1021 (2016). https://doi.org/10.1364/OL.41.001018
  8. L. Yingfan, L. Zhiwei, D. Yongkang, and L. Qiang, "Research on SBS suppression based on multi-frequency phase modulation," Chin. Opt. Lett. 7, 29-31 (2009). https://doi.org/10.3788/COL20090701.0029
  9. J. Edgecumbe, T. Ehrenreich, C. H. Wang, K. Farley, J. Galipeau, R. Leveille, D. Bjork, I. Majid, and K. Tankala, Solid State and Diode Laser Technical Review, 17 June 2010.
  10. D. Brown, M. Dennis, and W. Torruellas, "Improved phase modulation for SBS mitigation in kW-class fiber amplifiers," in Proc. SPIE Photonics West, San Francisco, California, 24 January 2011.
  11. J. O. White, M. Harfouche, J. Edgecumbe, N. Satyan, G. Rakuljic, V. Jayaraman, C. Burner, and A. Yariv, "1.6 kW Yb fiber amplifier using chirped seed amplification for stimulated Brillouin scattering suppression," Appl. Opt. 56, B116-B122, (2017). https://doi.org/10.1364/AO.56.00B116
  12. J. Hansryd, F. Dross, M. Westlund, P. Andrekson, and S. Knudsen, "Increase of the SBS threshold in a short highly nonlinear fiber by applying a temperature distribution," J. Lightw. Technol. 19, 1691-1697 (2001). https://doi.org/10.1109/50.964069
  13. J. Boggio, J. Marconi, and F. Frangnito, "Experimental and numerical investigation of the SBS-threshold increase in an optical fiber by applying strain distributions," J. Lightw. Technol. 23, 3808-3814 (2005). https://doi.org/10.1109/JLT.2005.856226
  14. C. Jauregui, H. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tunnermann, "Passive mitigation strategies for mode instabilities in high-power fiber laser system," Opt. Express 21, 19375-19386 (2013). https://doi.org/10.1364/OE.21.019375
  15. A. V. Smith and J. J. Smith, "Maximizing the mode stability threshold of a fiber amplifier," arXiv:1301.3489 [physics. optics] (2013).
  16. H. J. Otto, C. Jauregui, F. Stutzki, F. Jansen, J. Limpert, and A. Tunnermann, "Controlling mode instabilities by dynamic mode excitation with an acousto-optic deflector," Opt. Express 21, 17285-17298 (2013). https://doi.org/10.1364/OE.21.017285
  17. R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, "1.4 kW allfiber narrow-linewidth polarization-maintained fiber amplifier," Proc. SPIE 9255, 92550B (2015).
  18. D. Engin, W. Lu, M. Akbulut, B. McIntosh, H. Verdun, and S. Gupta, "1 kW cw Yb-fiber-amplifier with <0.5 GHz linewidth and near-diffraction limited beam quality, or coherent combining application," Proc. SPIE 7914, 791407 (2011).
  19. C. Wirth, O. Schmidt, I. Tsybin, T. Schreiber, J. Limpert, R. Eberhardt, and A. Tunnermann, "1 kW narrow-linewidth fiber amplifier for spectral beam combining," Presented at the Adv. Solid State Photon, Nara, Japan, 2008, Paper WA6.
  20. G. D. Goodno, S. J. McNaught, J. E. Rothenberg, T. S. McComb, P. A. Thielen, M. G. Wickham, and M. E. Weber, "Active phase and polarization locking of a 1.4 kW fiber amplifier," Opt. Lett. 35, 1542-1544 (2010). https://doi.org/10.1364/OL.35.001542
  21. J. P. Koplow. D. A. V. Kliner, and L. Goldberg, "Single-mode operation of a coiled multimode fiber amplifier," Opt. Lett. 23, 442-444 (2000).
  22. K. Brar, M. Savage-Leuchs, J. Henrie, S. Courtney, C. Dilley, R. Afzal, and E. Honea, "Threshold power and fiber degradation induced modal instabilities in high power fiber amplifiers based on large mode area fibers," Proc. SPIE 8961, 8961R (2014).
  23. R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, "Comparison of the threshold of thermal-induced mode instabilities in polarization-maintaining and non-polarization-maintaining active fibers," J. Opt. 18, 65501 (2016). https://doi.org/10.1088/2040-8978/18/6/065501
  24. B. M. Anderson, A. Flores, and I. Dajani, "Filtered pseudo random modulated fiber amplifier with enhanced coherence and nonlinear suppression," Opt. Express 25, 17671-17682 (2017). https://doi.org/10.1364/OE.25.017671