DOI QR코드

DOI QR Code

With the greatest care, stromal interaction molecule (STIM) proteins verify what skeletal muscle is doing

  • Cho, Chung-Hyun (Department of Pharmacology, College of Medicine, Seoul National University) ;
  • Lee, Keon Jin (Department of Physiology, College of Medicine, The Catholic University of Korea) ;
  • Lee, Eun Hui (Department of Physiology, College of Medicine, The Catholic University of Korea)
  • Received : 2018.04.11
  • Published : 2018.08.31

Abstract

Skeletal muscle contracts or relaxes to maintain the body position and locomotion. For the contraction and relaxation of skeletal muscle, $Ca^{2+}$ in the cytosol of skeletal muscle fibers acts as a switch to turn on and off a series of contractile proteins. The cytosolic $Ca^{2+}$ level in skeletal muscle fibers is governed mainly by movements of $Ca^{2+}$ between the cytosol and the sarcoplasmic reticulum (SR). Store-operated $Ca^{2+}$ entry (SOCE), a $Ca^{2+}$ entryway from the extracellular space to the cytosol, has gained a significant amount of attention from muscle physiologists. Orai1 and stromal interaction molecule 1 (STIM1) are the main protein identities of SOCE. This mini-review focuses on the roles of STIM proteins and SOCE in the physiological and pathophysiological functions of skeletal muscle and in their correlations with recently identified proteins, as well as historical proteins that are known to mediate skeletal muscle function.

Keywords

References

  1. Marieb EN and Hoehn K (2010) Human anatomy & physiology, 8th ed, Benjamin Cummings, San Francisco
  2. Zucchi R and Ronca-Testoni S (1997) The sarcoplasmic reticulum $Ca^{2+}$ channel/ryanodine receptor: modulation by endogenous effectors, drugs and disease states. Pharmacol Rev 49, 1-51
  3. Lee EH (2010) $Ca^{2+}$ channels and skeletal muscle diseases. Prog Biophys Mol Biol 103, 35-43 https://doi.org/10.1016/j.pbiomolbio.2010.05.003
  4. Lee EH, Kim DH and Allen PD (2006) Interplay between intra- and extracellular calcium ions. Mol Cells 21, 315-329
  5. Endo M (1977) Calcium release from the sarcoplasmic reticulum. Physiol Rev 57, 71-108 https://doi.org/10.1152/physrev.1977.57.1.71
  6. Putney JW Jr. (1986) A model for receptor-regulated calcium entry. Cell Calcium 7, 1-12 https://doi.org/10.1016/0143-4160(86)90026-6
  7. Hoth M and Penner R (1992) Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature 355, 353-356 https://doi.org/10.1038/355353a0
  8. Kurebayashi N and Ogawa Y (2001) Depletion of $Ca^{2+}$ in the sarcoplasmic reticulum stimulates $Ca^{2+}$ entry into mouse skeletal muscle fibres. J Physiol 533, 185-199 https://doi.org/10.1111/j.1469-7793.2001.0185b.x
  9. Zhang SL, Yu Y, Roos J et al (2005) STIM1 is a $Ca^{2+}$ sensor that activates CRAC channels and migrates from the $Ca^{2+}$ store to the plasma membrane. Nature 437, 902-905 https://doi.org/10.1038/nature04147
  10. Roos J, DiGregorio PJ, Yeromin AV et al (2005) STIM1, an essential and conserved component of store-operated $Ca^{2+}$ channel function. J Cell Biol 169, 435-445 https://doi.org/10.1083/jcb.200502019
  11. Liou J, Kim ML, Heo WD et al (2005) STIM is a $Ca^{2+}$ sensor essential for $Ca^{2+}$-store-depletion-triggered $Ca^{2+}$ influx. Curr Biol 15, 1235-1241 https://doi.org/10.1016/j.cub.2005.05.055
  12. Parker NJ, Begley CG, Smith PJ and Fox RM (1996) Molecular cloning of a novel human gene (D11S4896E) at chromosomal region 11p15.5. Genomics 37, 253-256 https://doi.org/10.1006/geno.1996.0553
  13. Williams RT, Manji SS, Parker NJ et al (2001) Identification and characterization of the STIM (stromal interaction molecule) gene family: coding for a novel class of transmembrane proteins. Biochem J 357, 673-685 https://doi.org/10.1042/bj3570673
  14. Yeromin AV, Zhang SL, Jiang W, Yu Y, Safrina O and Cahalan MD (2006) Molecular identification of the CRAC channel by altered ion selectivity in a mutant of Orai. Nature 443, 226-229 https://doi.org/10.1038/nature05108
  15. Prakriya M, Feske S, Gwack Y, Srikanth S, Rao A and Hogan PG (2006) Orai1 is an essential pore subunit of the CRAC channel. Nature 443, 230-233 https://doi.org/10.1038/nature05122
  16. Vig M, Beck A, Billingsley JM et al (2006) CRACM1 multimers form the ion-selective pore of the CRAC channel. Curr Biol 16, 2073-2079 https://doi.org/10.1016/j.cub.2006.08.085
  17. Feske S, Gwack Y, Prakriya M et al (2006) A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature 441, 179-185 https://doi.org/10.1038/nature04702
  18. Vig M, Peinelt C, Beck A et al (2006) CRACM1 is a plasma membrane protein essential for store-operated $Ca^{2+}$ entry. Science 312, 1220-1223 https://doi.org/10.1126/science.1127883
  19. Ito K, Komazaki S, Sasamoto K et al (2001) Deficiency of triad junction and contraction in mutant skeletal muscle lacking junctophilin type 1. J Cell Biol 154, 1059-1067 https://doi.org/10.1083/jcb.200105040
  20. Woo JS, Cho CH, Lee KJ, Kim DH, Ma J and Lee EH (2012) Hypertrophy in skeletal myotubes induced by junctophilin-2 mutant, Y141H, involves an increase in store-operated $Ca^{2+}$ entry via Orai1. J Biol Chem 287, 14336-14348 https://doi.org/10.1074/jbc.M111.304808
  21. Komazaki S, Nishi M, Takeshima H and Nakamura H (2001) Abnormal formation of sarcoplasmic reticulum networks and triads during early development of skeletal muscle cells in mitsugumin29-deficient mice. Dev Growth Differ 43, 717-723 https://doi.org/10.1046/j.1440-169X.2001.00609.x
  22. Nishi M, Komazaki S, Kurebayashi N et al (1999) Abnormal features in skeletal muscle from mice lacking mitsugumin29. J Cell Biol 147, 1473-1480 https://doi.org/10.1083/jcb.147.7.1473
  23. Shamoo AE and MacLennan DH (1974) A $Ca^{{+}{+}}$-dependent and -selective ionophore as part of the $Ca^{{+}{+}}$ plus $Mg^{{+}{+}}$-dependent adenosinetriphosphatase of sarcoplasmic reticulum. Proc Natl Acad Sci U S A 71, 3522-3526 https://doi.org/10.1073/pnas.71.9.3522
  24. Brandl CJ, deLeon S, Martin DR and MacLennan DH (1987) Adult forms of the $Ca^{2+}$ATPase of sarcoplasmic reticulum. Expression in developing skeletal muscle. J Biol Chem 262, 3768-3774
  25. Murphy RM, Larkins NT, Mollica JP, Beard NA and Lamb GD (2009) Calsequestrin content and SERCA determine normal and maximal $Ca^{2+}$ storage levels in sarcoplasmic reticulum of fast- and slow-twitch fibres of rat. J Physiol 587, 443-460 https://doi.org/10.1113/jphysiol.2008.163162
  26. Woo JS, Cho CH, Lee KJ, Kim DH, Ma J and Lee EH (2012) Hypertrophy in skeletal myotubes induced by junctophilin-2 mutant, Y141H, involves an increase in store-operated $Ca^{2+}$ entry via Orai1. J Biol Chem 287, 14336-14348 https://doi.org/10.1074/jbc.M111.304808
  27. Lee KJ, Woo JS, Hwang JH et al (2013) STIM1 negatively regulates $Ca^{2+}$ release from the sarcoplasmic reticulum in skeletal myotubes. Biochem J 453, 187-200 https://doi.org/10.1042/BJ20130178
  28. Jayaraman T, Brillantes AM, Timerman AP et al (1992) FK506 binding protein associated with the calcium release channel (ryanodine receptor). J Biol Chem 267, 9474-9477
  29. Timerman AP, Ogunbumni E, Freund E, Wiederrecht G, Marks AR and Fleischer S (1993) The calcium release channel of sarcoplasmic reticulum is modulated by FK-506-binding protein. Dissociation and reconstitution of FKBP-12 to the calcium release channel of skeletal muscle sarcoplasmic reticulum. J Biol Chem 268, 22992-22999
  30. Avila G, Lee EH, Perez CF, Allen PD and Dirksen RT (2003) FKBP12 binding to RyR1 modulates excitationcontraction coupling in mouse skeletal myotubes. J Biol Chem 278, 22600-22608 https://doi.org/10.1074/jbc.M205866200
  31. Lee EH, Rho SH, Kwon SJ, Eom SH, Allen PD and Kim DH (2004) N-terminal region of FKBP12 is essential for binding to the skeletal ryanodine receptor. J Biol Chem 279, 26481-26488 https://doi.org/10.1074/jbc.M309574200
  32. Phimister AJ, Lango J, Lee EH et al (2007) Conformationdependent stability of junctophilin 1 (JP1) and ryanodine receptor type 1 (RyR1) channel complex is mediated by their hyper-reactive thiols. J Biol Chem 282, 8667-8677 https://doi.org/10.1074/jbc.M609936200
  33. Lee EH, Song DW, Lee JM, Meissner G, Allen PD and Kim DH (2006) Occurrence of atypical $Ca^{2+}$ transients in triadin-binding deficient-RYR1 mutants. Biochem Biophys Res Commun 351, 909-914 https://doi.org/10.1016/j.bbrc.2006.10.115
  34. Lee JM, Rho SH, Shin DW et al (2004) Negatively charged amino acids within the intraluminal loop of ryanodine receptor are involved in the interaction with triadin. J Biol Chem 279, 6994-7000 https://doi.org/10.1074/jbc.M312446200
  35. Guo W and Campbell KP (1995) Association of triadin with the ryanodine receptor and calsequestrin in the lumen of the sarcoplasmic reticulum. J Biol Chem 270, 9027-9030 https://doi.org/10.1074/jbc.270.16.9027
  36. Lee KJ, Park CS, Woo JS, Kim DH, Ma J and Lee EH (2012) Mitsugumin 53 attenuates the activity of sarcoplasmic reticulum $Ca^{2+}$-ATPase 1a (SERCA1a) in skeletal muscle. Biochem Biophys Res Commun 428, 383-388 https://doi.org/10.1016/j.bbrc.2012.10.063
  37. Lee KJ, Hyun C, Woo JS, Park CS, Kim DH and Lee EH (2014) Stromal interaction molecule 1 (STIM1) regulates sarcoplasmic/endoplasmic reticulum $Ca^{2+}$-ATPase 1a (SERCA1a) in skeletal muscle. Pflugers Arch 466, 987-1001 https://doi.org/10.1007/s00424-013-1361-6
  38. Lee EH, Cherednichenko G, Pessah IN and Allen PD (2006) Functional coupling between TRPC3 and RyR1 regulates the expressions of key triadic proteins. J Biol Chem 281, 10042-10048 https://doi.org/10.1074/jbc.M600981200
  39. Stiber J, Hawkins A, Zhang ZS et al (2008) STIM1 signalling controls store-operated calcium entry required for development and contractile function in skeletal muscle. Nat Cell Biol 10, 688-697 https://doi.org/10.1038/ncb1731
  40. Luik RM, Wang B, Prakriya M, Wu MM and Lewis RS (2008) Oligomerization of STIM1 couples ER calcium depletion to CRAC channel activation. Nature 454, 538-542 https://doi.org/10.1038/nature07065
  41. Zhou Y, Wang X, Wang X et al (2015) STIM1 dimers undergo unimolecular coupling to activate Orai1 channels. Nat Commun 6, 8395 https://doi.org/10.1038/ncomms9395
  42. Luik RM, Wu MM, Buchanan J and Lewis RS (2006) The elementary unit of store-operated $Ca^{2+}$ entry: local activation of CRAC channels by STIM1 at ER-plasma membrane junctions. J Cell Biol 174, 815-825 https://doi.org/10.1083/jcb.200604015
  43. Penna A, Demuro A, Yeromin AV et al (2008) The CRAC channel consists of a tetramer formed by Stim-induced dimerization of Orai dimers. Nature 456, 116-120 https://doi.org/10.1038/nature07338
  44. Park CY, Hoover PJ, Mullins FM et al (2009) STIM1 clusters and activates CRAC channels via direct binding of a cytosolic domain to Orai1. Cell 136, 876-890 https://doi.org/10.1016/j.cell.2009.02.014
  45. Yuan JP, Zeng W, Dorwart MR, Choi YJ, Worley PF and Muallem S (2009) SOAR and the polybasic STIM1 domains gate and regulate Orai channels. Nat Cell Biol 11, 337-343 https://doi.org/10.1038/ncb1842
  46. Lewis RS (2007) The molecular choreography of a store-operated calcium channel. Nature 446, 284-287 https://doi.org/10.1038/nature05637
  47. Launikonis BS, Murphy RM and Edwards JN (2010) Toward the roles of store-operated $Ca^{2+}$ entry in skeletal muscle. Pflugers Arch 460, 813-823 https://doi.org/10.1007/s00424-010-0856-7
  48. Ma J and Pan Z (2003) Retrograde activation of storeoperated calcium channel. Cell Calcium 33, 375-384 https://doi.org/10.1016/S0143-4160(03)00050-2
  49. Launikonis BS and Rios E (2007) Store-operated $Ca^{2+}$ entry during intracellular $Ca^{2+}$ release in mammalian skeletal muscle. J Physiol 583, 81-97 https://doi.org/10.1113/jphysiol.2007.135046
  50. Wei-Lapierre L, Carrell EM, Boncompagni S, Protasi F and Dirksen RT (2013) Orai1-dependent calcium entry promotes skeletal muscle growth and limits fatigue. Nat Commun 4, 2805 https://doi.org/10.1038/ncomms3805
  51. Edwards JN, Murphy RM, Cully TR, von Wegner F, Friedrich O and Launikonis BS (2010) Ultra-rapid activation and deactivation of store-operated $Ca^{2+}$ entry in skeletal muscle. Cell Calcium 47, 458-467 https://doi.org/10.1016/j.ceca.2010.04.001
  52. Darbellay B, Arnaudeau S, Bader CR, Konig S and Bernheim L (2011) STIM1L is a new actin-binding splice variant involved in fast repetitive $Ca^{2+}$ release. J Cell Biol 194, 335-346 https://doi.org/10.1083/jcb.201012157
  53. Hirata Y, Brotto M, Weisleder N et al (2006) Uncoupling store-operated $Ca^{2+}$ entry and altered $Ca^{2+}$ release from sarcoplasmic reticulum through silencing of junctophilin genes. Biophys J 90, 4418-4427 https://doi.org/10.1529/biophysj.105.076570
  54. Zhao X, Weisleder N, Han X et al (2006) Azumolene inhibits a component of store-operated calcium entry coupled to the skeletal muscle ryanodine receptor. J Biol Chem 281, 33477-33486 https://doi.org/10.1074/jbc.M602306200
  55. Huang GN, Zeng W, Kim JY et al (2006) STIM1 carboxyl-terminus activates native SOC, I(crac) and TRPC1 channels. Nat Cell Biol 8, 1003-1010 https://doi.org/10.1038/ncb1454
  56. Stathopulos PB, Zheng L, Li GY, Plevin MJ and Ikura M (2008) Structural and mechanistic insights into STIM1-mediated initiation of store-operated calcium entry. Cell 135, 110-122 https://doi.org/10.1016/j.cell.2008.08.006
  57. Ercan E, Chung SH, Bhardwaj R and Seedorf M (2012) Di-arginine signals and the K-rich domain retain the $Ca^{2+}$ sensor STIM1 in the endoplasmic reticulum. Traffic 13, 992-1003 https://doi.org/10.1111/j.1600-0854.2012.01359.x
  58. Saitoh N, Oritani K, Saito K et al (2011) Identification of functional domains and novel binding partners of STIM proteins. J Cell Biochem 112, 147-156 https://doi.org/10.1002/jcb.22910
  59. Spassova MA, Soboloff J, He LP, Xu W, Dziadek MA and Gill DL (2006) STIM1 has a plasma membrane role in the activation of store-operated $Ca^{2+}$ channels. Proc Natl Acad Sci U S A 103, 4040-4045 https://doi.org/10.1073/pnas.0510050103
  60. Grosse J, Braun A, Varga-Szabo D et al (2007) An EF hand mutation in Stim1 causes premature platelet activation and bleeding in mice. J Clin Invest 117, 3540-3550 https://doi.org/10.1172/JCI32312
  61. Stathopulos PB, Zheng L and Ikura M (2009) Stromal interaction molecule (STIM) 1 and STIM2 calcium sensing regions exhibit distinct unfolding and oligomerization kinetics. J Biol Chem 284, 728-732 https://doi.org/10.1074/jbc.C800178200
  62. Zheng L, Stathopulos PB, Schindl R, Li GY, Romanin C and Ikura M (2011) Auto-inhibitory role of the EF-SAM domain of STIM proteins in store-operated calcium entry. Proc Natl Acad Sci U S A 108, 1337-1342 https://doi.org/10.1073/pnas.1015125108
  63. Covington ED, Wu MM and Lewis RS (2010) Essential role for the CRAC activation domain in store-dependent oligomerization of STIM1. Mol Biol Cell 21, 1897-1907 https://doi.org/10.1091/mbc.e10-02-0145
  64. Wang L, Zhang L, Li S et al (2015) Retrograde regulation of STIM1-Orai1 interaction and store-operated $Ca^{2+}$ entry by calsequestrin. Sci Rep 5, 11349 https://doi.org/10.1038/srep11349
  65. Zhang L, Wang L, Li S, Xue J and Luo D (2016) Calsequestrin-1 regulates store-operated $Ca^{2+}$ entry by inhibiting STIM1 aggregation. Cell Physiol Biochem 38, 2183-2193 https://doi.org/10.1159/000445574
  66. Shin DW, Pan Z, Kim EK et al (2003) A retrograde signal from calsequestrin for the regulation of store-operated $Ca^{2+}$ entry in skeletal muscle. J Biol Chem 278, 3286-3292 https://doi.org/10.1074/jbc.M209045200
  67. Zhao X, Min CK, Ko JK et al (2010) Increased storeoperated $Ca^{2+}$ entry in skeletal muscle with reduced calsequestrin-1 expression. Biophys J 99, 1556-1564 https://doi.org/10.1016/j.bpj.2010.06.050
  68. Lee HJ, Bae GU, Leem YE et al (2012) Phosphorylation of Stim1 at serine 575 via netrin-2/Cdo-activated ERK1/2 is critical for the promyogenic function of Stim1. Mol Biol Cell 23, 1376-1387 https://doi.org/10.1091/mbc.e11-07-0634
  69. Li T, Finch EA, Graham V et al (2012) STIM1-$Ca^{2+}$ signaling is required for the hypertrophic growth of skeletal muscle in mice. Mol Cell Biol 32, 3009-3017 https://doi.org/10.1128/MCB.06599-11
  70. Darbellay B, Arnaudeau S, Konig S et al (2009) STIM1-and Orai1-dependent store-operated calcium entry regulates human myoblast differentiation. J Biol Chem 284, 5370-5380 https://doi.org/10.1074/jbc.M806726200
  71. Darbellay B, Arnaudeau S, Ceroni D, Bader CR, Konig S and Bernheim L (2010) Human muscle economy myoblast differentiation and excitation-contraction coupling use the same molecular partners, STIM1 and STIM2. J Biol Chem 285, 22437-22447 https://doi.org/10.1074/jbc.M110.118984
  72. Phuong TTT and Kang TM (2015) Stromal interaction molecule 2 regulates C2C12 myoblast differentiation. Integr Med Res 4, 242-248 https://doi.org/10.1016/j.imr.2015.09.001
  73. Antigny F, Sabourin J, Sauc S, Bernheim L, Koenig S and Frieden M (2017) TRPC1 and TRPC4 channels functionally interact with STIM1L to promote myogenesis and maintain fast repetitive $Ca^{2+}$ release in human myotubes. Biochim Biophys Acta 1864, 806-813 https://doi.org/10.1016/j.bbamcr.2017.02.003
  74. Hoth M and Niemeyer BA (2013) The neglected CRAC proteins: Orai2, Orai3, and STIM2. Curr Top Membr 71, 237-271
  75. Brandman O, Liou J, Park WS and Meyer T (2007) STIM2 is a feedback regulator that stabilizes basal cytosolic and endoplasmic reticulum $Ca^{2+}$ levels. Cell 131, 1327-1339 https://doi.org/10.1016/j.cell.2007.11.039
  76. Wang X, Wang Y, Zhou Y et al (2014) Distinct Orai-coupling domains in STIM1 and STIM2 define the Orai-activating site. Nat Commun 5, 3183 https://doi.org/10.1038/ncomms4183
  77. Oh MR, Lee KJ, Huang M et al (2017) STIM2 regulates both intracellular $Ca^{2+}$ distribution and $Ca^{2+}$ movement in skeletal myotubes. Sci Rep 7, 17936 https://doi.org/10.1038/s41598-017-18256-3
  78. Yang X, Jin H, Cai X, Li S and Shen Y (2012) Structural and mechanistic insights into the activation of Stromal interaction molecule 1 (STIM1). Proc Natl Acad Sci U S A 109, 5657-5662 https://doi.org/10.1073/pnas.1118947109
  79. Cui B, Yang X, Li S et al (2013) The inhibitory helix controls the intramolecular conformational switching of the C-terminus of STIM1. PLoS One 8, e74735 https://doi.org/10.1371/journal.pone.0074735
  80. Stathopulos PB, Schindl R, Fahrner M et al (2013) STIM1/Orai1 coiled-coil interplay in the regulation of store-operated calcium entry. Nat Commun 4, 2963 https://doi.org/10.1038/ncomms3963
  81. Hou X, Pedi L, Diver MM and Long SB (2012) Crystal structure of the calcium release-activated calcium channel Orai. Science 338, 1308-1313 https://doi.org/10.1126/science.1228757
  82. Rothberg BS, Wang Y and Gill DL (2013) Orai channel pore properties and gating by STIM: implications from the Orai crystal structure. Sci Signal 6, pe9 https://doi.org/10.1126/scisignal.6306er9
  83. Pan Z, Yang D, Nagaraj RY et al (2002) Dysfunction of store-operated calcium channel in muscle cells lacking mg29. Nat Cell Biol 4, 379-383 https://doi.org/10.1038/ncb788
  84. Brotto MA, Nagaraj RY, Brotto LS, Takeshima H, Ma JJ and Nosek TM (2004) Defective maintenance of intracellular $Ca^{2+}$ homeostasis is linked to increased muscle fatigability in the MG29 null mice. Cell Res 14, 373-378 https://doi.org/10.1038/sj.cr.7290237
  85. Nagaraj RY, Nosek CM, Brotto MA et al (2000) Increased susceptibility to fatigue of slow- and fast-twitch muscles from mice lacking the MG29 gene. Physiol Genomics 4, 43-49 https://doi.org/10.1152/physiolgenomics.2000.4.1.43
  86. Zhao X, Yoshida M, Brotto L et al (2005) Enhanced resistance to fatigue and altered calcium handling properties of sarcalumenin knockout mice. Physiol Genomics 23, 72-78 https://doi.org/10.1152/physiolgenomics.00020.2005
  87. Sopariwala DH, Pant M, Shaikh SA et al (2015) Sarcolipin overexpression improves muscle energetics and reduces fatigue. J Appl Physiol (1985) 118, 1050-1058 https://doi.org/10.1152/japplphysiol.01066.2014
  88. Boncompagni S, Michelucci A, Pietrangelo L, Dirksen RT and Protasi F (2017) Exercise-dependent formation of new junctions that promote STIM1-Orai1 assembly in skeletal muscle. Sci Rep 7, 14286 https://doi.org/10.1038/s41598-017-14134-0
  89. Zhao X, Weisleder N, Thornton A et al (2008) Compromised store-operated $Ca^{2+}$ entry in aged skeletal muscle. Aging Cell 7, 561-568 https://doi.org/10.1111/j.1474-9726.2008.00408.x
  90. Zahn JM, Sonu R, Vogel H et al (2006) Transcriptional profiling of aging in human muscle reveals a common aging signature. PLoS Genet 2, e115 https://doi.org/10.1371/journal.pgen.0020115
  91. Almada AE and Wagers AJ (2016) Molecular circuitry of stem cell fate in skeletal muscle regeneration, ageing and disease. Nat Rev Mol Cell Biol 17, 267-279 https://doi.org/10.1038/nrm.2016.7
  92. Berchtold MW, Brinkmeier H and Muntener M (2000) Calcium ion in skeletal muscle: its crucial role for muscle function, plasticity, and disease. Physiol Rev 80, 1215-1265 https://doi.org/10.1152/physrev.2000.80.3.1215
  93. Woo JS, Hwang JH, Ko JK et al (2010) S165F mutation of junctophilin 2 affects $Ca^{2+}$ signalling in skeletal muscle. Biochem J 427, 125-134 https://doi.org/10.1042/BJ20091225
  94. Picard C, McCarl CA, Papolos A et al (2009) STIM1 mutation associated with a syndrome of immunodeficiency and autoimmunity. N Engl J Med 360, 1971-1980 https://doi.org/10.1056/NEJMoa0900082
  95. Fuchs S, Rensing-Ehl A, Speckmann C et al (2012) Antiviral and regulatory T cell immunity in a patient with stromal interaction molecule 1 deficiency. J Immunol 188, 1523-1533 https://doi.org/10.4049/jimmunol.1102507
  96. Goonasekera SA, Davis J, Kwong JQ et al (2014) Enhanced $Ca^{2+}$ influx from STIM1-Orai1 induces muscle pathology in mouse models of muscular dystrophy. Hum Mol Genet 23, 3706-3715 https://doi.org/10.1093/hmg/ddu079
  97. Morgan-Hughes JA (1998) Tubular aggregates in skeletal muscle: their functional significance and mechanisms of pathogenesis. Curr Opin Neurol 11, 439-442 https://doi.org/10.1097/00019052-199810000-00005
  98. Tasca G, D'Amico A, Monforte M et al (2015) Muscle imaging in patients with tubular aggregate myopathy caused by mutations in STIM1. Neuromuscul Disord 25, 898-903 https://doi.org/10.1016/j.nmd.2015.07.008
  99. Okuma H, Saito F, Mitsui J et al (2016) Tubular aggregate myopathy caused by a novel mutation in the cytoplasmic domain of STIM1. Neurol Genet 2, e50 https://doi.org/10.1212/NXG.0000000000000050
  100. Walter MC, Rossius M, Zitzelsberger M et al (2015) 50 years to diagnosis: Autosomal dominant tubular aggregate myopathy caused by a novel STIM1 mutation. Neuromuscul Disord 25, 577-584 https://doi.org/10.1016/j.nmd.2015.04.005
  101. Bohm J, Chevessier F, Koch C et al (2014) Clinical, histological and genetic characterisation of patients with tubular aggregate myopathy caused by mutations in STIM1. J Med Genet 51, 824-833 https://doi.org/10.1136/jmedgenet-2014-102623
  102. Bohm J, Chevessier F, Maues De Paula A et al (2013) Constitutive activation of the calcium sensor STIM1 causes tubular-aggregate myopathy. Am J Hum Genet 92, 271-278 https://doi.org/10.1016/j.ajhg.2012.12.007
  103. MacLennan DH and Phillips MS (1992) Malignant hyperthermia. Science 256, 789-794 https://doi.org/10.1126/science.1589759
  104. Nelson TE (2002) Malignant hyperthermia: a pharmacogenetic disease of $Ca^{{+}{+}}$ regulating proteins. Curr Mol Med 2, 347-369 https://doi.org/10.2174/1566524023362429
  105. Duke AM, Hopkins PM, Calaghan SC, Halsall JP and Steele DS (2010) Store-operated $Ca^{2+}$ entry in malignant hyperthermia-susceptible human skeletal muscle. J Biol Chem 285, 25645-25653 https://doi.org/10.1074/jbc.M110.104976
  106. Dainese M, Quarta M, Lyfenko AD et al (2009) Anesthetic- and heat-induced sudden death in calsequestrin-1-knockout mice. FASEB J 23, 1710-1720 https://doi.org/10.1096/fj.08-121335
  107. Yarotskyy V, Protasi F and Dirksen RT (2013) Accelerated activation of SOCE current in myotubes from two mouse models of anesthetic- and heat-induced sudden death. PLoS One 8, e77633 https://doi.org/10.1371/journal.pone.0077633
  108. Chelu MG, Goonasekera SA, Durham WJ et al (2006) Heat- and anesthesia-induced malignant hyperthermia in an RyR1 knock-in mouse. FASEB J 20, 329-330 https://doi.org/10.1096/fj.05-4497fje
  109. Jungbluth H (2007) Central core disease. Orphanet J Rare Dis 2, 25 https://doi.org/10.1186/1750-1172-2-25
  110. Ervasti JM and Campbell KP (1993) Dystrophin-associated glycoproteins: their possible roles in the pathogenesis of Duchenne muscular dystrophy. Mol Cell Biol Hum Dis Ser 3, 139-166
  111. Edwards JN, Friedrich O, Cully TR, von Wegner F, Murphy RM and Launikonis BS (2010) Upregulation of store-operated $Ca^{2+}$ entry in dystrophic mdx mouse muscle. Am J Physiol Cell Physiol 299, C42-50 https://doi.org/10.1152/ajpcell.00524.2009
  112. Boittin FX, Petermann O, Hirn C et al (2006) $Ca^{2+}$-independent phospholipase A2 enhances store-operated $Ca^{2+}$ entry in dystrophic skeletal muscle fibers. J Cell Sci 119, 3733-3742 https://doi.org/10.1242/jcs.03184
  113. Zhao X, Moloughney JG, Zhang S, Komazaki S and Weisleder N (2012) Orai1 mediates exacerbated $Ca^{2+}$ entry in dystrophic skeletal muscle. PLoS One 7, e49862 https://doi.org/10.1371/journal.pone.0049862
  114. Onopiuk M, Brutkowski W, Young C et al (2015) Store-operated calcium entry contributes to abnormal $Ca^{2+}$ signalling in dystrophic mdx mouse myoblasts. Arch Biochem Biophys 569, 1-9 https://doi.org/10.1016/j.abb.2015.01.025
  115. Takamori M (2008) Autoantibodies against TRPC3 and ryanodine receptor in myasthenia gravis. J Neuroimmunol 200, 142-144 https://doi.org/10.1016/j.jneuroim.2008.06.001
  116. Zhang BT, Yeung SS, Cheung KK, Chai ZY and Yeung EW (2014) Adaptive responses of TRPC1 and TRPC3 during skeletal muscle atrophy and regrowth. Muscle Nerve 49, 691-699 https://doi.org/10.1002/mus.23952
  117. Cai C, Masumiya H, Weisleder N et al (2009) MG53 nucleates assembly of cell membrane repair machinery. Nat Cell Biol 11, 56-64 https://doi.org/10.1038/ncb1812
  118. He B, Tang RH, Weisleder N et al (2012) Enhancing muscle membrane repair by gene delivery of MG53 ameliorates muscular dystrophy and heart failure in delta-Sarcoglycan-deficient hamsters. Mol Ther 20, 727-735 https://doi.org/10.1038/mt.2012.5
  119. Weisleder N, Takizawa N, Lin P et al (2012) Recombinant MG53 protein modulates therapeutic cell membrane repair in treatment of muscular dystrophy. Sci Transl Med 4, 139ra185
  120. Cai C, Weisleder N, Ko JK et al (2009) Membrane repair defects in muscular dystrophy are linked to altered interaction between MG53, caveolin-3, and dysferlin. J Biol Chem 284, 15894-15902 https://doi.org/10.1074/jbc.M109.009589
  121. Ahn MK, Lee KJ, Cai C et al (2016) Mitsugumin 53 regulates extracellular $Ca^{2+}$ entry and intracellular $Ca^{2+}$ release via Orai1 and RyR1 in skeletal muscle. Sci Rep 6, 36909 https://doi.org/10.1038/srep36909
  122. Vandebrouck C, Martin D, Colson-Van Schoor M, Debaix H and Gailly P (2002) Involvement of TRPC in the abnormal calcium influx observed in dystrophic (mdx) mouse skeletal muscle fibers. J Cell Biol 158, 1089-1096 https://doi.org/10.1083/jcb.200203091
  123. Yang T, Allen PD, Pessah IN and Lopez JR (2007) Enhanced excitation-coupled calcium entry in myotubes is associated with expression of RyR1 malignant hyperthermia mutations. J Biol Chem 282, 37471-37478 https://doi.org/10.1074/jbc.M701379200
  124. Cherednichenko G, Ward CW, Feng W et al (2008) Enhanced excitation-coupled calcium entry in myotubes expressing malignant hyperthermia mutation R163C is attenuated by dantrolene. Mol Pharmacol 73, 1203-1212 https://doi.org/10.1124/mol.107.043299
  125. Cho CH, Woo JS, Perez CF and Lee EH (2017) A focus on extracellular $Ca^{2+}$ entry into skeletal muscle. Exp Mol Med 49, e378 https://doi.org/10.1038/emm.2017.208
  126. Feske S (2010) CRAC channelopathies. Pflugers Arch 460, 417-435 https://doi.org/10.1007/s00424-009-0777-5
  127. Lee EH, Woo JS, Hwang JH, Park JH and Cho CH (2013) Angiopoietin 1 enhances the proliferation and differentiation of skeletal myoblasts. J Cell Physiol 228, 1038-1044 https://doi.org/10.1002/jcp.24251
  128. Woo JS, Cho CH, Kim DH and Lee EH (2010) TRPC3 cation channel plays an important role in proliferation and differentiation of skeletal muscle myoblasts. Exp Mol Med 42, 614-627 https://doi.org/10.3858/emm.2010.42.9.061