DOI QR코드

DOI QR Code

Identification and Analysis of Putative Polyhydroxyalkanoate Synthase (PhaC) in Pseudomonas fluorescens

  • Lim, Ju Hyoung (Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Rhie, Ho-Gun (Department of Biology, Kyung Hee University) ;
  • Kim, Jeong Nam (Department of Microbiology, College of Natural Sciences, Pusan National University)
  • Received : 2018.03.08
  • Accepted : 2018.05.01
  • Published : 2018.07.28

Abstract

Pseudomonas fluorescens KLR101 was found to be capable of producing polyhydroxyalkanoate (PHA) using various sugars and fatty acids with carbon numbers ranging from 2 to 6. The PHA granules consisted mainly of a poly(3-hydroxybutyrate) homopolymer and/or poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer. Genomic DNA of P. fluorescens was fractionated and cloned into a lambda library, in which a 5.8-kb fragment that hybridized to a heterologous phaC probe from Ralstonia eutropha was identified. In vivo expression in Klebsiella aerogenes KC2671 (pUMS), restriction mapping, Southern hybridization experiments, and sequencing data revealed that PHA biosynthesis by P. fluorescens relied upon a polypeptide encoded by a 1,683-bp non-operonal ORF, which was preceded by a possible -24/-12 promoter and highly similar to DNA sequences of a gene encoding PHA synthase in the genus Pseudomonas. In vivo expression of the putative PHA synthase gene ($phaC_{Pf}$) in a recombinant Escherichia coli strain was investigated by using glucose and decanoate as substrates. E. coli (${phaC_{Pf}}^+$, pUMS) grown in medium containing glucose accumulated PHA granules consisting mainly of 3-hydroxybutyrate, whereas only a trace amount of 3-hydroxydecanoate was detected from an E. coli fadR mutant (${phaC_{Pf}}^+$) grown in medium containing decanoate. In vitro enzymatic assessment experiments showed that 3-hydroxybutyryl-CoA was efficiently used as a substrate of purified $PhaC_{Pf}$, suggesting that the putative PHA synthase of P. fluorescens utilizes mainly short-chain-length PHA precursors as a substrate.

Keywords

References

  1. Anderson AJ, Dawes EA. 1990. Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol. Rev. 54: 450-472.
  2. Madison LL, Huisman GW. 1999. Metabolic engineering of poly(3-hydroxyalkanoates): from DNA to plastic. Microbiol. Mol. Biol. Rev. 63: 21-53. https://doi.org/10.1128/MMBR.63.1.21-53.1999
  3. Peoples OP, Sinskey AJ. 1989. Poly-beta-hydroxybutyrate (PHB) biosynthesis in Alcaligenes eutrophus H16. Identification and characterization of the PHB polymerase gene (phbC). J. Biol. Chem. 264: 15298-15303.
  4. Schubert P, Steinbuchel A, Schlegel HG. 1988. Cloning of the Alcaligenes eutrophus genes for synthesis of poly-betahydroxybutyric acid (PHB) and synthesis of PHB in Escherichia coli. J. Bacteriol. 170: 5837-5847. https://doi.org/10.1128/jb.170.12.5837-5847.1988
  5. Slater SC, Voige WH, Dennis DE. 1988. Cloning and expression in Escherichia coli of the Alcaligenes eutrophus H16 poly-beta-hydroxybutyrate biosynthetic pathway. J. Bacteriol. 170: 4431-4436. https://doi.org/10.1128/jb.170.10.4431-4436.1988
  6. Kadouri D, Jurkevitch E , Okon Y, Castro-Sowinski S. 2005. Ecological and agricultural significance of bacterial polyhydroxyalkanoates. Crit. Rev. Microbiol. 31: 55-67. https://doi.org/10.1080/10408410590899228
  7. Rehm BH, Steinbuchel A. 1999. Biochemical and genetic analysis of PHA synthases and other proteins required for PHA synthesis. Int. J. Biol. Macromol. 25: 3-19. https://doi.org/10.1016/S0141-8130(99)00010-0
  8. Lee HJ, Choi MH, Kim TU, Yoon SC. 2001. Accumulation of polyhydroxyalkanoic acid containing large amounts of unsaturated monomers in Pseudomonas fluorescens BM07 utilizing saccharides and its inhibition by 2-bromooctanoic acid. Appl. Environ. Microbiol. 67: 4963-4974. https://doi.org/10.1128/AEM.67.11.4963-4974.2001
  9. Sheu DS, Wang YT, Lee CY. 2000. Rapid detection of polyhydroxyalkanoate-accumulating bacteria isolated from the environment by colony PCR. Microbiology 146: 2019-2025. https://doi.org/10.1099/00221287-146-8-2019
  10. Solaiman DK, Ashby RD, Foglia TA. 2000. Rapid and specific identification of medium-chain-length polyhydroxyalkanoate synthase gene by polymerase chain reaction. Appl. Microbiol. Biotechnol. 53: 690-694. https://doi.org/10.1007/s002530000332
  11. Timm A, Steinbuchel A. 1990. Formation of polyesters consisting of medium-chain-length 3-hydroxyalkanoic acids from gluconate by Pseudomonas aeruginosa and other fluorescent pseudomonads. Appl. Environ. Microbiol. 56: 3360-3367.
  12. Tobin KM, O'Connor KE. 2005. Polyhydroxyalkanoate accumulating diversity of Pseudomonas species utilising aromatic hydrocarbons. FEMS Microbiol. Lett. 253: 111-118. https://doi.org/10.1016/j.femsle.2005.09.025
  13. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. 1997. The CLUSTAL_X Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25: 4876-4882. https://doi.org/10.1093/nar/25.24.4876
  14. Kumar S, Tamura K, Nei M. 2004. MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief. Bioinform. 5: 150-163. https://doi.org/10.1093/bib/5.2.150
  15. Hall B, Baldwin J , Rhie HG, Dennis D. 1998. Cloning o f the Nocardia corallina polyhydroxyalkanoate synthase gene and production of poly-(3-hydroxybutyrate-co-3-hydroxyhexanoate) and poly-(3-hydroxyvalerate-co-3-hydroxyheptanoate). Can. J. Microbiol. 44: 687-691. https://doi.org/10.1139/w98-048
  16. Kalousek S, Lubitz W. 1995. High-level poly(beta-hydroxybutyrate) production in recombinant Escherichia coli in sugarfree, complex medium. Can. J. Microbiol. 41(Suppl 1): 216-221. https://doi.org/10.1139/m95-190
  17. Zorn H, Breithaupt DE, Takenberg M, Schwack W, Berger RG. 2003. Enzymatic hydrolysis of carotenoid esters of marigold flowers (Tagetes erecta L.) and red paprika (Capsicum annuum L.) by commercial lipases and Pleurotus sapidus extracellular lipase. Enzyme Microb. Technol. 32: 623-628. https://doi.org/10.1016/S0141-0229(03)00020-6
  18. Qi Q, Steinbuchel A, Rehm BH. 1998. Metabolic routing towards polyhydroxyalkanoic acid synthesis in recombinant Escherichia coli (fadR): inhibition of fatty acid beta-oxidation by acrylic acid. FEMS Microbiol. Lett. 167: 89-94.
  19. DiRusso CC, Nunn WD. 1985. Cloning and characterization of a gene (fadR) involved in regulation of fatty acid metabolism in Escherichia coli. J. Bacteriol. 161: 583-588.
  20. Ostle AG, Holt JG. 1982. Nile blue A as a fluorescent stain for poly-beta-hydroxybutyrate. Appl. Environ. Microbiol. 44: 238-241. https://doi.org/10.1128/AEM.44.1.238-241.1982
  21. Brandl H, Gross RA, Lenz RW, Fuller RC. 1988. Pseudomonas oleovorans as a source of poly(beta-hydroxyalkanoates) for potential applications as biodegradable polyesters. Appl. Environ. Microbiol. 54: 1977-1982.
  22. Qi Q, Steinbuchel A, Rehm BHA. 2000. In vitro synthesis of poly(3-hydroxydecanoate): purification and enzymatic characterization of type II polyhydroxyalkanoate synthases PhaC1 and PhaC2 from Pseudomonas aeruginosa. Appl. Microbiol. Biotechnol. 54: 37-43. https://doi.org/10.1007/s002530000357
  23. Ellman GL. 1959. Tissue sulfhydryl groups. Arch. Biochem Biophys. 82: 70-77. https://doi.org/10.1016/0003-9861(59)90090-6
  24. Gerngross TU, Martin DP. 1995. Enzyme-catalyzed synthesis of poly[(R)-(-)-3-hydroxybutyrate]: formation of macroscopic granules in vitro. Proc. Natl. Acad. Sci. USA 92: 6279-6283. https://doi.org/10.1073/pnas.92.14.6279
  25. Gerngross TU, Snell KD, Peoples OP, Sinskey AJ, Csuhai E, Masamune S, et al. 1994. Overexpression and purification of the soluble polyhydroxyalkanoate synthase from Alcaligenes eutrophus: evidence for a required posttranslational modification for catalytic activity. Biochemistry 33: 9311-9320. https://doi.org/10.1021/bi00197a035
  26. Kraak MN, Kessler B, Witholt B. 1997. In vitro activities of granule-bound poly[(R)-3-hydroxyalkanoate]polymerase C1 of Pseudomonas oleovorans - development of an activity test for medium-chain-length-poly(3-hydroxyalkanoate) polymerases. Eur. J. Biochem. 250: 432-439. https://doi.org/10.1111/j.1432-1033.1997.0432a.x
  27. Huisman GW, Deleeuw O, Eggink G, Witholt B. 1989. Synthesis of poly-3-hydroxyalkanoates is a common feature of fluorescent pseudomonads. Appl. Environ. Microbiol. 55: 1949-1954.
  28. Shine J, Dalgarno L. 1975. Determinant of cistron specificity in bacterial ribosomes. Nature 254: 34-38. https://doi.org/10.1038/254034a0
  29. Dixon R. 1986. The xylABC promoter from the Pseudomonas putida Tol plasmid is activated by nitrogen regulatory genes in Escherichia coli. Mol. Gen. Genet. 203: 129-136. https://doi.org/10.1007/BF00330393
  30. Huisman GW, Wonink E, Meima R, Kazemier B, Terpstra P, Witholt B. 1991. Metabolism of poly(3-hydroxyalkanoates) (PHAs) by Pseudomonas oleovorans. Identification and sequences of genes and function of the encoded proteins in the synthesis and degradation of PHA. J. Biol. Chem. 266: 2191-2198.
  31. Song J, Jensen RA. 1996. PhhR, a divergently transcribed activator of the phenylalanine hydroxylase gene cluster of Pseudomonas aeruginosa. Mol. Microbiol. 22: 497-507. https://doi.org/10.1046/j.1365-2958.1996.00131.x
  32. Ciesielski S, Cydzik-Kwiatkowska A, Pokoj T, Klimiuk E. 2006. Molecular detection and diversity of medium-chainlength polyhydroxyalkanoates-producing bacteria enriched from activated sludge. J. Appl. Microbiol. 101: 190-199. https://doi.org/10.1111/j.1365-2672.2006.02973.x
  33. Matsusaki H, Manji S, Taguchi K, Kato M, Fukui T, Doi Y. 1998. Cloning and molecular analysis of the poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyalkanoate) biosynthesis genes in Pseudomonas sp. strain 61-3. J. Bacteriol. 180: 6459-6467.
  34. Nishikawa T, Ogawa K, Kohda R, Wang ZX, Miyasaka H, Umeda F, et al. 2002. Cloning and molecular analysis of poly(3-hydroxyalkanoate) biosynthesis genes in Pseudomonas aureofaciens. Curr. Microbiol. 44: 132-135. https://doi.org/10.1007/s00284-001-0063-z
  35. Timm A, Steinbuchel A. 1992. Cloning and molecular analysis of the poly(3-hydroxyalkanoic acid) gene locus of Pseudomonas aeruginosa PAO1. Eur. J. Biochem. 209: 15-30. https://doi.org/10.1111/j.1432-1033.1992.tb17256.x
  36. Saitou N, Nei M. 1987. The neighbor-joining method - a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.
  37. Rhie HG, Dennis D. 1995. Role of fadR and atoC (Con) mutations in poly(3-hydroxybutyrate-co-3-hydroxyvalerate) synthesis in recombinant pha(+) Escherichia coli. Appl. Environ Microbiol. 61: 2487-2492.
  38. Brosius J. 1988. Expression vectors employing lambda-, trp-, lac-, and lpp-derived promoters. Biotechnology 10: 205-225.
  39. Tabor S, Richardson CC. 1985. A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc. Natl. Acad. Sci. USA 82: 1074-1078. https://doi.org/10.1073/pnas.82.4.1074
  40. Fitch WM. 1971. Toward defining the course of evolution: minimum change for a specific tree topology. Syst. Zool. 20: 406-416. https://doi.org/10.2307/2412116