DOI QR코드

DOI QR Code

Understanding of the effect of charge size to temperature profile in the Czochralski method

쵸크랄스키법에서 온도 프로파일에 대한 충진사이즈의 효과에 대한 이해

  • Received : 2018.07.18
  • Accepted : 2018.08.06
  • Published : 2018.08.31

Abstract

Solar energy has attracted big attentions as one of clean and unlimited renewable energy. Solar energy is transformed to electrical energy by solar cells which are comprised of multi-silicon wafer or mono-silicon wafer. Monosilicon wafers are fabricated from the Czochralski method. In order to decrease fabrication cost, increasing a poly-silicon charge size in one quartz crucible has been developed very much. When we increase a charge size, the temperature control of a Czochralski equipment becomes more difficult due to a strong melt convection. In this study, we simulated a Czochralski equipment temperature at 20 inch and 24 inch in quartz crucible diameter and various charge sizes (90 kg, 120 kg, 150 kg, 200 kg, 250 kg). The simulated temperature profiles are compared with real temperature profiles and analyzed. It turns out that the simulated temperature profiles and real temperature profiles are in good agreement. We can use a simulated profile for the optimization of real temperature profile in the case of increasing charge sizes.

태양광 에너지는 깨끗하며 무한한 재생에너지의 한가지로 많은 관심을 받아왔다. 태양광 에너지는 다결정 실리콘 웨이퍼 혹은 단결정 실리콘 웨이퍼로 구성된 솔라셀에 의해서 전기에너지로 전환된다. 제조원가를 낮추기 위하여 한 개의 석영 도가니에 폴리실리콘의 충진 크기를 증가시키는 연구가 많이 개발되어 왔다. 충진 크기를 증가시키면, 쵸크랄스키 공정장비의 온도제어가 강한 멜트 대류 때문에 힘들어진다. 본 연구에서는 20 inch와 24 inch 석영도가니와 90 Kg, 120 Kg, 150 Kg, 200 Kg, 250 Kg의 다양한 폴리실리콘 충진 크기에서 시뮬레이션을 통해 장비 온도 프로파일을 얻었으며, 실제값과 비교하고 분석하였다. 시뮬레이션 온도 프로파일과 실제 온도프로파일이 잘 일치하였으며, 이로써 충진 사이즈가 증가할 경우, 실제온도 프로파일 최적화를 위해 시뮬레이션을 사용할 수 있게 되었다.

Keywords

References

  1. M. Hosenuzzaman, N.A. Rahim, J. Selvaraj, M. Hasanuzzaman, A.B.M.A. Malek and A. Nahar, "Global prospects, progress, policies, and environmental impact of solar photovoltaic power generation", Renewable and Sustainable Energy Reviews 41 (2015) 284. https://doi.org/10.1016/j.rser.2014.08.046
  2. A.K. Pandey, V.V. Tyagi, J.S.L. Selvaraj, N.A. Rahim and S.K. Tyagi, "Recent advances in solar photovoltaic systems for emerging trends and advanced applications", Renewable and Sustainable Energy Reviews 53 (2016) 859. https://doi.org/10.1016/j.rser.2015.09.043
  3. S.D. Stranks, P.K. Nayak, W. Zhang, T. Stergiopoulos and H.J. Snaith, "Formation of thin films of organic-inorganic perovskites for high-efficiency solar cells", Angewandte Minirevies 54 (2015) 3240.
  4. T.C. Chen, H.C. Wu and C.I. Wang, "The effect of interface shape on anisotropic thermal stress of bulk single crystal during Czochralski growth", J. Cryst. Growth 173 (1997) 367. https://doi.org/10.1016/S0022-0248(96)00894-9
  5. J. Friedrich, L. Stockmeier and G. Muller, "Constitutional supercooling in Czochralski growth of heavily doped silicon crystals", Acta Physica Polonica A 124 (2013) 219. https://doi.org/10.12693/APhysPolA.124.219
  6. K.H. Kim and S.S. Baik, "Optimization of pulling speed for decreasing thermal stress in different quartz crucible size with Czochralski method", 42nd IEEE PVSC 1 (2015) 1.
  7. V.V. Kalaev, "Combined effect of DC magnetic fields and free surface stresses on the melt flow and crystallization front formation during 400mm diameter Si Cz crystal growth", J. Cryst. Growth 303 (2007) 203. https://doi.org/10.1016/j.jcrysgro.2006.11.345
  8. V.V. Kalaev, A. Sattler and L. Kandinski, "Crystal twisting in Cz Si growth", J. Cryst. Growth 413 (2015) 12. https://doi.org/10.1016/j.jcrysgro.2014.12.005
  9. B. Zhou, W. Chen, Z. Li, R. Yue, G. Liu and X. Huang, "Reduction of oxygen concentration by heater design during Czochralski Si growth", J. Cryst. Growth 483 (2018) 164. https://doi.org/10.1016/j.jcrysgro.2017.11.008