DOI QR코드

DOI QR Code

Anti-obese related pharmacological effects of standard potato protein extracts on the 45%Kcal high fat diet supplied mice

  • Kang, Su-Jin (The Medical Research Center for Globalization of Herbal Medicine, College of Korean Medicine, Daegu Haany University) ;
  • Song, Chang-Hyun (The Medical Research Center for Globalization of Herbal Medicine, College of Korean Medicine, Daegu Haany University) ;
  • Kim, Jong-Kyu (Central Research Center, Aribio Co. Ltd.) ;
  • Chun, Yoon-Seok (Central Research Center, Aribio Co. Ltd.) ;
  • Han, Chang-Hyun (Clinical Research Division, Korea Institute of Oriental Medicine) ;
  • Lee, Young-Joon (The Medical Research Center for Globalization of Herbal Medicine, College of Korean Medicine, Daegu Haany University) ;
  • Ku, Sae-Kwang (The Medical Research Center for Globalization of Herbal Medicine, College of Korean Medicine, Daegu Haany University)
  • 투고 : 2018.08.08
  • 심사 : 2018.08.22
  • 발행 : 2018.08.31

초록

Objectives : In present study, therefore, possible beneficial pharmacological activities of standard potato protein extracts (SPE) were observed on the mild diabetic obese mice. Methods : After end of 12 weeks of continuous oral administrations of three different dosages of SPE 400, 200 and 100 mg/kg, or metformin 250 mg/kg, analyzed the hepatoprotective, hypolipidemic, hypoglycemic, nephroprotective and anti-obesity effects, separately. In addition, liver antioxidant defense systems were additionally measured with lipid metabolism-related genes expressions and hepatic glucose-regulating enzyme activities for action mechanism. Results : All of diabetes and related complications including obesity were significantly inhibited by treatment of SPE 400, 200 and 100 mg/kg, dose-dependently, and they also dramatically normalized the hepatic lipid peroxidation and depletion of liver endogenous antioxidant defense system, the changes of the hepatic glucose-regulating enzyme activities, also changes of the lipid metabolism-related genes expressions including hepatic $AMPK{\alpha}1$ and $AMPK{\alpha}2$ mRNA expressions, dose-dependently. Especially, SPE 200 mg/kg constantly showed favorable inhibitory activities against type II diabetes and related complications as comparable to those of metformin 250 mg/kg in HFD mice, respectively. Conclusions : The present work demonstrated that SPE 400, 200 and 100 mg/kg showed favorable anti-diabetic and related complications including obesity refinement activities in HFD mice, through AMPK upregulation mediated hepatic glucose enzyme activity and lipid metabolism-related genes expression, antioxidant defense system and pancreatic lipid digestion enzyme modulatory activities.

키워드

참고문헌

  1. Wendel AA, Purushotham A, Liu LF, Belury MA. Conjugated linoleic acid fails to worsen insulin resistance but induces hepatic steatosis in the presence of leptin in ob/ob mice. Journal of lipid research. 2008;49(1):98-106. https://doi.org/10.1194/jlr.M700195-JLR200
  2. Tilg H, Moschen AR. Adipocytokines: mediators linking adipose tissue, inflammation and immunity. Nature reviews Immunology. 2006;6(10):772-783. https://doi.org/10.1038/nri1937
  3. James PT, Leach R, Kalamara E, Shayeghi M. The worldwide obesity epidemic. Obesity research. 2001;9 Suppl 4:228S-233S. https://doi.org/10.1038/oby.2001.123
  4. Zimmet P. The burden of type 2 diabetes: are we doing enough? Diabetes & metabolism. 2003;29(4 Pt 2):6S9-18. https://doi.org/10.1016/S1262-3636(03)72783-9
  5. Kunitomi M, Wada J, Takahashi K, Tsuchiyama Y, Mimura Y, Hida K, Miyatake N, Fujii M, Kira S, Shikata K, Maknio H. Relationship between reduced serum IGF-I levels and accumulation of visceral fat in Japanese men. International journal of obesity and related metabolic disorders : journal of the International Association for the Study of Obesity. 2002;26(3):361-369. https://doi.org/10.1038/sj.ijo.0801899
  6. Hida K, Wada J, Eguchi J, Zhang H, Baba M, Seida A, Hashimoto I, Okada T, Yasuhara A, Nakatsuka A, Shikata K, Hourai S, Futami J, Watanabe E, Matsuki Y, Hiramatsu R, Akagi S, Makino H, Kanwar YS. Visceral adipose tissue-derived serine protease inhibitor: a unique insulin-sensitizing adipocytokine in obesity. Proceedings of the National Academy of Sciences of the United States of America. 2005;102(30):10610-10615. https://doi.org/10.1073/pnas.0504703102
  7. Lebovitz HE. Insulin resistance: definition and consequences. Experimental and clinical endocrinology & diabetes : official journal, German Society of Endocrinology [and] German Diabetes Association. 2001;109 Suppl 2:S135-148. https://doi.org/10.1055/s-2001-18576
  8. Goldstein BJ. Insulin resistance as the core defect in type 2 diabetes mellitus. The American journal of cardiology. 2002;90(5A):3G-10G.
  9. Angulo P. Nonalcoholic fatty liver disease. The New England journal of medicine. 2002;346(16):1221-1231. https://doi.org/10.1056/NEJMra011775
  10. Kadowaki T, Yamauchi T. Adiponectin and adiponectin receptors. Endocrine reviews. 2005;26(3):439-451. https://doi.org/10.1210/er.2005-0005
  11. Inzucchi SE. Oral antihyperglycemic therapy for type 2 diabetes: scientific review. Jama. 2002;287(3):360-372. https://doi.org/10.1001/jama.287.3.360
  12. Kang SJ, Lee JE, Lee EK, Jung DH, Song CH, Park SJ, Choi SH, Han CH, Ku SK, Lee YJ. Fermentation with Aquilariae Lignum enhances the anti-diabetic activity of green tea in type II diabetic db/db mouse. Nutrients. 2014;6(9):3536-3571. https://doi.org/10.3390/nu6093536
  13. Jung YM, Lee SH, Lee DS, You MJ, Chung IK, Cheon WH, Kwon YS, Lee YJ, Ku SK. Fermented garlic protects diabetic, obese mice when fed a high-fat diet by antioxidant effects. Nutrition research (New York, NY). 2011;31(5):387-396. https://doi.org/10.1016/j.nutres.2011.04.005
  14. Kim CM, Yi SJ, Cho IJ, Ku SK. Red-koji fermented red ginseng ameliorates high fat diet-induced metabolic disorders in mice. Nutrients. 2013;5(11):4316-4332. https://doi.org/10.3390/nu5114316
  15. Choi JS, Kim JW, Park JB, Pyo SE, Hong YK, Ku SK, Kim MR. Blood glycemia-modulating effects of melanian snail protein hydrolysates in mice with type II diabetes. International journal of molecular medicine. 2017;39(6):1437-1451. https://doi.org/10.3892/ijmm.2017.2967
  16. Chen H, Qu Z, Fu L, Dong P, Zhang X. Physicochemical properties and antioxidant capacity of 3 polysaccharides from green tea, oolong tea, and black tea. Journal of food science. 2009;74(6):C469-474. https://doi.org/10.1111/j.1750-3841.2009.01231.x
  17. Hays NP, Galassetti PR, Coker RH. Prevention and treatment of type 2 diabetes: current role of lifestyle, natural product, and pharmacological interventions. Pharmacology & therapeutics. 2008;118(2):181-191. https://doi.org/10.1016/j.pharmthera.2008.02.003
  18. Elkahoui S, Bartley GE, Yokoyama WH, Friedman M. Dietary Supplementation of Potato Peel Powders Prepared from Conventional and Organic Russet and Non-organic Gold and Red Potatoes Reduces Weight Gain in Mice on a High-Fat Diet. Journal of agricultural and food chemistry. 2018;66(24):6064-6072. https://doi.org/10.1021/acs.jafc.8b01987
  19. Ju R, Zheng S, Luo H, Wang C, Duan L, Sheng Y, Zhao C, Xu W, Huang K. Purple Sweet Potato Attenuate Weight Gain in High Fat Diet Induced Obese Mice. Journal of food science. 2017;82(3):787-793. https://doi.org/10.1111/1750-3841.13617
  20. Kim MH, Park SC, Kim JY, Lee SY, Lim HT, Cheong H, Hahm KS, Park Y. Purification and characterization of a heat-stable serine protease inhibitor from the tubers of new potato variety "Golden Valley". Biochemical and biophysical research communications. 2006;346(3):681-686. https://doi.org/10.1016/j.bbrc.2006.05.186
  21. Komarnytsky S, Cook A, Raskin I. Potato protease inhibitors inhibit food intake and increase circulating cholecystokinin levels by a trypsin-dependent mechanism. International journal of obesity (2005). 2011;35(2):236-243. https://doi.org/10.1038/ijo.2010.192
  22. Ku SK, Sung SH, Choung JJ, Choi JS, Shin YK, Kim JW. Anti-obesity and anti-diabetic effects of a standardized potato extract in ob/ob mice. Experimental and therapeutic medicine. 2016;12(1):354-364. https://doi.org/10.3892/etm.2016.3256
  23. Lee DG, Park SI, Kang SJ, Kim JW, Lee EK, Song CH, Han CH, Lee YJ, Ku SK. In vitro antioxidant and anti-adipogenic effects of slendesta, standard potato extracts containing 5% protease inhibitor II. African Journal of Traditional, Complementary and Alternative Medicines. 2016;13(2):164-175. https://doi.org/10.4314/ajtcam.v13i2.20
  24. Haluzik M, Colombo C, Gavrilova O, Chua S, Wolf N, Chen M, Stannard B, Dietz KR, Le Roith D, Reitman ML. Genetic background (C57BL/6J versus FVB/N) strongly influences the severity of diabetes and insulin resistance in ob/ob mice. Endocrinology. 2004;145(7):3258-3264. https://doi.org/10.1210/en.2004-0219
  25. Lin HZ, Yang SQ, Chuckaree C, Kuhajda F, Ronnet G, Diehl AM. Metformin reverses fatty liver disease in obese, leptin-deficient mice. Nature medicine. 2000;6(9):998-1003. https://doi.org/10.1038/79697
  26. Kurundkar SB, Sachan N, Kodam KM, Kulkarni VM, Bodhankar SL, Ghole VS. Effect of a novel biphenyl compound, VMNS2e on ob/ob mice. European journal of pharmacology. 2011;650(1):472-478. https://doi.org/10.1016/j.ejphar.2010.09.067
  27. Plummer MR, Hasty AH. Atherosclerotic lesion formation and triglyceride storage in obese apolipoprotein AI-deficient mice. The Journal of nutritional biochemistry. 2008;19(10):664-673. https://doi.org/10.1016/j.jnutbio.2007.08.009
  28. Margalit M, Shalev Z, Pappo O, Sklair-Levy M, Alper R, Gomori M, Engelhardt D, Rabbani E, Ilan Y. Glucocerebroside ameliorates the metabolic syndrome in OB/OB mice. The Journal of pharmacology and experimental therapeutics. 2006;319(1):105-110. https://doi.org/10.1124/jpet.106.104950
  29. Sone H, Suzuki H, Takahashi A, Yamada N. Disease model: hyperinsulinemia and insulin resistance. Part A-targeted disruption of insulin signaling or glucose transport. Trends in molecular medicine. 2001;7(7):320-322. https://doi.org/10.1016/S1471-4914(01)02041-X
  30. Park SH, Ko SK, Chung SH. Euonymus alatus prevents the hyperglycemia and hyperlipidemia induced by high-fat diet in ICR mice. Journal of ethnopharmacology. 2005;102(3):326-335. https://doi.org/10.1016/j.jep.2005.06.041
  31. Ma A, Wang J, Yang L, An Y, Zhu H. AMPK activation enhances the anti-atherogenic effects of high density lipoproteins in apoE-/- mice. Journal of lipid research. 2017;58(8):1536-1547. https://doi.org/10.1194/jlr.M073270
  32. Korea Food and Drug Administration. Testing Guidelines for Safety Evaluation of Drugs. In: Korea Food and Drug Administration, editor. 2015.
  33. Lee JE, Kang SJ, Choi SH, Song CH, Lee YJ, Ku SK. Fermentation of Green Tea with 2% Aquilariae lignum Increases the Anti-Diabetic Activity of Green Tea Aqueous Extracts in the High Fat-Fed Mouse. Nutrients. 2015;7(11):9046-9078. https://doi.org/10.3390/nu7115447
  34. Chung SI, Rico CW, Kang MY. Comparative study on the hypoglycemic and antioxidative effects of fermented paste (doenjang) prepared from soybean and brown rice mixed with rice bran or red ginseng marc in mice fed with high fat diet. Nutrients. 2014;6(10):4610-4624. https://doi.org/10.3390/nu6104610
  35. Folch J, Lees M, Sloane Stanley GH. A simple method for the isolation and purification of total lipides from animal tissues. The Journal of biological chemistry. 1957;226(1):497-509.
  36. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. The Journal of biological chemistry. 1951;193(1):265-275.
  37. Sun Y, Oberley LW, Li Y. A simple method for clinical assay of superoxide dismutase. Clinical chemistry. 1988;34(3):497-500.
  38. Hulcher FH, Oleson WH. Simplified spectrophotometric assay for microsomal 3-hydroxy-3-methylglutaryl CoA reductase by measurement of coenzyme A. Journal of lipid research. 1973;14(6):625-631.
  39. Davidson AL, Arion WJ. Factors underlying significant underestimations of glucokinase activity in crude liver extracts: physiological implications of higher cellular activity. Archives of biochemistry and biophysics. 1987;253(1):156-167. https://doi.org/10.1016/0003-9861(87)90648-5
  40. Alegre M, Ciudad CJ, Fillat C, Guinovart JJ. Determination of glucose-6-phosphatase activity using the glucose dehydrogenase-coupled reaction. Analytical biochemistry. 1988;173(1):185-189. https://doi.org/10.1016/0003-2697(88)90176-5
  41. Bentle LA, Lardy HA. Interaction of anions and divalent metal ions with phosphoenolpyruvate carboxykinase. The Journal of biological chemistry. 1976;251(10):2916-2921.
  42. Sung YY, Kim DS, Kim SH, Kim HK. Anti-obesity activity, acute toxicity, and chemical constituents of aqueous and ethanol Viola mandshurica extracts. BMC complementary and alternative medicine. 2017;17(1):297. https://doi.org/10.1186/s12906-017-1810-4
  43. Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative CT method. Nature protocols. 2008;3(6):1101-1108. https://doi.org/10.1038/nprot.2008.73
  44. Kawakami S, Han KH, Nakamura Y, Shimada K, Kitano T, Aritsuka T, Nagura T, Ohba K, Nakamura K, Fukushima M. Effects of dietary supplementation with betaine on a nonalcoholic steatohepatitis (NASH) mouse model. Journal of nutritional science and vitaminology. 2012;58(5):371-375. https://doi.org/10.3177/jnsv.58.371
  45. Fujita H, Fujishima H, Koshimura J, Hosoba M, Yoshioka N, Shimotomai T, Morii T, Narita T, Kakei M, Ito S. Effects of antidiabetic treatment with metformin and insulin on serum and adipose tissue adiponectin levels in db/db mice. Endocrine journal. 2005;52(4):427-433. https://doi.org/10.1507/endocrj.52.427
  46. Mitchell M, Armstrong DT, Robker RL, Norman RJ. Adipokines: implications for female fertility and obesity. Reproduction (Cambridge, England). 2005;130(5):583-597. https://doi.org/10.1530/rep.1.00521
  47. Wilson JS, Korsten MA, Leo MA, Lieber CS. Combined effects of protein deficiency and chronic ethanol consumption on rat pancreas. Digestive diseases and sciences. 1988;33(10):1250-1259. https://doi.org/10.1007/BF01536675
  48. Gartner LP, Hiatt JL. Color Textbook of Histology. 3rd ed. Philadelphia: Saunders; 2007.
  49. Snedeker SM, Hay AG. Do interactions between gut ecology and environmental chemicals contribute to obesity and diabetes? Environmental health perspectives. 2012;120(3):332-339. https://doi.org/10.1289/ehp.1104204
  50. Larsen ML, Horder M, Mogensen EF. Effect of long-term monitoring of glycosylated hemoglobin levels in insulin-dependent diabetes mellitus. The New England journal of medicine. 1990;323(15):1021-1025. https://doi.org/10.1056/NEJM199010113231503
  51. Terauchi Y, Takamoto I, Kubota N, Matsui J, Suzuki R, Komeda K, Hara A, Toyoda Y, Miwa I, Aizawa S, Tsutsumi S, Tsubamoto Y, Hashimoto S, Eto K, Nakamura A, Noda M, Tobe K, Aburatani H, Nagai R, Kadowaki T. Glucokinase and IRS-2 are required for compensatory beta cell hyperplasia in response to high-fat diet-induced insulin resistance. The Journal of clinical investigation. 2007;117(1):246-257. https://doi.org/10.1172/JCI17645
  52. Noriega-Lopez L, Tovar AR, Gonzalez-Granillo M, Hernandez-Pando R, Escalante B, Santillan-Doherty P, Torres N. Pancreatic insulin secretion in rats fed a soy protein high fat diet depends on the interaction between the amino acid pattern and isoflavones. The Journal of biological chemistry. 2007;282(28):20657-20666. https://doi.org/10.1074/jbc.M701045200
  53. Neves RH, Alencar AC, Aguila MB, Mandarim-de-Lacerda CA, Machado-Silva JR, Gomes DC. Hepatic stereology of Schistosomiasis mansoni infected-mice fed a high-fat diet. Memorias do Instituto Oswaldo Cruz. 2006;101 Suppl 1:253-260. https://doi.org/10.1590/S0074-02762006000900039
  54. Quine SD, Raghu PS. Effects of (-)-epicatechin, a flavonoid on lipid peroxidation and antioxidants in streptozotocin-induced diabetic liver, kidney and heart. Pharmacological reports : PR. 2005;57(5):610-615.
  55. Sodikoff C. Laboratory Profiles of Small Animal Diseases: A Guide to Laboratory Diagnosis. 2nd ed. St. Louise: Mosby; 1995.
  56. Garg MC, Singh KP, Bansal DD. Effect of vitamin C supplementation on oxidative stress in experimental diabetes. Indian journal of experimental biology. 1997;35(3):264-266.
  57. Ceriello A, Quatraro A, Giugliano D. New insights on non-enzymatic glycosylation may lead to therapeutic approaches for the prevention of diabetic complications. Diabetic medicine : a journal of the British Diabetic Association. 1992;9(3):297-299. https://doi.org/10.1111/j.1464-5491.1992.tb01783.x
  58. Maiese K. New Insights for Oxidative Stress and Diabetes Mellitus. Oxidative medicine and cellular longevity. 2015;2015:875961.
  59. Akbel E, Arslan-Acaroz D, Demirel HH, Kucukkurt I, Ince S. The subchronic exposure to malathion, an organophosphate pesticide, causes lipid peroxidation, oxidative stress, and tissue damage in rats: the protective role of resveratrol. Toxicology research. 2018;7(3):503-512. https://doi.org/10.1039/C8TX00030A
  60. Jung UJ, Park YB, Kim SR, Choi MS. Supplementation of persimmon leaf ameliorates hyperglycemia, dyslipidemia and hepatic fat accumulation in type 2 diabetic mice. PloS one. 2012;7(11):e49030. https://doi.org/10.1371/journal.pone.0049030
  61. Wu D, Wen W, Qi CL, Zhao RX, Lu JH, Zhong CY, Chen YY. Ameliorative effect of berberine on renal damage in rats with diabetes induced by high-fat diet and streptozotocin. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2012;19(8-9):712-718. https://doi.org/10.1016/j.phymed.2012.03.003
  62. Wu D, Zheng N, Qi K, Cheng H, Sun Z, Gao B, Zhang Y, Pang W, Huangfu C, Ji S, Xue M, Ji A, Li Y. Exogenous hydrogen sulfide mitigates the fatty liver in obese mice through improving lipid metabolism and antioxidant potential. Medical gas research. 2015;5(1):1. https://doi.org/10.1186/s13618-014-0022-y
  63. Coope GJ, Atkinson AM, Allott C, McKerrecher D, Johnstone C, Pike KG, Holme PC, Vertigan H, Gill D, Coghlan MP, Leighton B. Predictive blood glucose lowering efficacy by Glucokinase activators in high fat fed female Zucker rats. British journal of pharmacology. 2006;149(3):328-335. https://doi.org/10.1038/sj.bjp.0706848
  64. van Schaftingen E, Gerin I. The glucose-6-phosphatase system. The Biochemical journal. 2002;362(Pt 3):513-532. https://doi.org/10.1042/bj3620513
  65. Lin CH, Kuo YH, Shih CC. Effects of Bofu-Tsusho-San on diabetes and hyperlipidemia associated with AMP-activated protein kinase and glucose transporter 4 in high-fat-fed mice. International journal of molecular sciences. 2014;15(11):20022-20044. https://doi.org/10.3390/ijms151120022
  66. Dulloo AG, Seydoux J, Jacquet J. Adaptive thermogenesis and uncoupling proteins: a reappraisal of their roles in fat metabolism and energy balance. Physiology & behavior. 2004;83(4):587-602. https://doi.org/10.1016/j.physbeh.2004.07.028
  67. Wu X, Motoshima H, Mahadev K, Stalker TJ, Scalia R, Goldstein BJ. Involvement of AMP-activated protein kinase in glucose uptake stimulated by the globular domain of adiponectin in primary rat adipocytes. Diabetes. 2003;52(6):1355-1363. https://doi.org/10.2337/diabetes.52.6.1355