DOI QR코드

DOI QR Code

Investigation of Tensile Strain Rate Effects on Composite Material for Aircraft Structural Survivability Assessment

항공기 구조생존성 평가를 위한 복합재의 변형률 속도 영향성 분석

  • Received : 2018.04.13
  • Accepted : 2018.06.27
  • Published : 2018.08.31

Abstract

Hydrodynamic ram phenomenon could be generated by external threats such as impact and blast in the aircraft. High strain rate deformation caused by the hydrodynamic ram phenomenon is one of the main factors to influence structural survivability. Mechanical properties of composite structure change rapidly under conditions of high strain rate. Therefore, it is necessary to experimentally investigate the influence of strain rates for aircraft structural survivability. In this paper, tensile tests of composite material were conducted for low and high strain rates to investigate the influence of the various strain rates. Tensile modulus increases more compared to tensile strength at high strain rate under hydrodynamic ram condition. Regression analysis was conducted to predict tensile modulus at various strain rates because it is one of the main damaging factors for composite structures under high strain rate conditions. Also, the mechanical properties of composite materials were acquired and analyzed under high strain rate conditions. It is hypothesized that the results from this study would be used for designing aircraft composite structures and evaluation considering structural survivability.

항공기의 경우 충격 및 폭발과 같은 외부 피격에 의해 수압 램 현상이 발생할 수 있다. 고변형률 변형을 동반하는 수압 램 현상은 구조 생존성에 큰 영향을 미치는 요인 중 하나이다. 복합재 구조물의 기계적 물성은 이러한 고변형률 조건하에서 급격하게 변화하기 때문에 이러한 영향성을 실험적으로 분석하는 것은 항공기 생존성 평가를 위해 반드시 필요하다. 본 연구에서는 변형률 속도 변화의 영향성을 분석하기 위해 저속 및 고속 시험조건으로 인장시험을 수행하였다. 시험결과 수압 램 발생 환경과 유사한 수준으로 변형률 속도가 증가하면 인장계수가 인장강도보다 더 증가한다. 고변형률 조건에서 인장계수가 복합재 구조물 파손의 주요 요소이므로 회귀분석을 통해서 변형률 속도 변화에 따른 인장계수를 예측하였다. 항공기 피격시 발생할 수 있는 고변형률에 대한 복합재의 기계적 물성 자료를 획득하고 분석하였다. 획득된 자료는 향후 구조 생존성을 고려한 항공기 복합재 구조 설계 및 평가에 활용가능하다.

Keywords

References

  1. J. S. Kim, J. H. Roh and S. Y. Lee, "A study on bending behaviors of laminated composites using 2D strain-based failure theory," Journal of Aerospace System Engineering, vol. 11, no. 5, pp. 13-19, 2017
  2. S. J. Kim, S. W. Park and T. U. Kim, "Study for determining design allowable values of light weight composite unmanned aircraft structures," Journal of The Society for Aerospace System Engineering, vol. 11, no. 4, pp. 1-7, 2017
  3. Y. M. Yang, M. J. Kim, J. S. Kim and S. Y. Lee, "Optimal manufacturing of composite wing ribs in solar-powered UAVs: a study," Journal of The Society for Aerospace System Engineering, vol. 10, no. 4, pp. 50-58, 2016 https://doi.org/10.20910/JASE.2016.10.4.50
  4. S. P. Renze, S. W. Carnegie and F. Sandow, "Experimental evaluation of srvivable composite structural concepts," AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and materials Conference and Exhibit, pp. 39-46, 1996.
  5. G. J. Czarnecki and R. Hinrichsen, "Assessment of dynamic skin-spar joint failure properties," AIAA 2007-1672, U.S. Air Force T&E Days, February 2007.
  6. S. Gurusideswar, N. Srinivasan, R. Velmurugan and N. K. Gupta, "Tensile response of epoxy and glass/epoxy composites at low and medium strain rate regimes," Procedia Engineering, vol. 173, pp. 686-693, 2017. https://doi.org/10.1016/j.proeng.2016.12.148
  7. A. Selvarathinam, M. Stewart, S. Engelstad and B. Eby, "Application of progressive damage failure analysis to large aircraft composite structures," 2018 AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and materials Conference, Kissimmee, Florida, January 2018.
  8. D. R. Hufner and S. I. Hill, "High strain rate testing and modeling of a woven E-glass-vinylester composite in dry and saturated conditions," Journal of Composite Materials, vol. 51, no. 21, pp. 3017-3039, 2017. https://doi.org/10.1177/0021998316681185
  9. N. Taniguchi, T. Nishiwaki and H. Kawada, "Tensile strength of unidirectional CFRP laminate under high strain rate," Advanced Composite Material, vol. 16, no. 2, pp. 167-180, 2007. https://doi.org/10.1163/156855107780918937
  10. M. M. Shokrieh, M. J. Omidi, "Tension behavior of unidirectional glass/epoxy composites under different strain rates," Composite Structures, vol. 88, pp. 595-601, 2009. https://doi.org/10.1016/j.compstruct.2008.06.012
  11. ASTM D3039, "Standard Test method for tensile properties of polymer matrix composite materials," American Society for Testing and Materials International.
  12. A. A. Mosawe, R. A. Mahaidi and X. L. Zhao, "Engineering properties of CFRP laminate under high strain rates," Composite Structures, vol. 180, pp. 9-15, 2017. https://doi.org/10.1016/j.compstruct.2017.08.005