DOI QR코드

DOI QR Code

Performance Analysis on Digital Phase Difference Measurement Techniques for Interferometer Direction Finder

인터페로미터 방향 탐지기의 디지털 위상차 측정 기법 성능 분석

  • Received : 2018.06.26
  • Accepted : 2018.07.25
  • Published : 2018.08.31

Abstract

This paper describes interferometer direction finder which measures the angle of arrival based on calculation of the phase difference of received radio signal from different antennas. Modern Electronic Warfare direction finder uses digital phase difference measuring techniques which have less effect on temperature variation and better performance under low Signal to Noise Ratio environment. In this paper, we analyze acceptable phase difference error for requirement of system's direction finding accuracy and introduce digital phase difference calculation techniques. We have investigated quantitative analysis on phase difference calculation according to sample number, SNR, interference injection. Through the simulation, frequency domain measurement technique is better performance than the time domain one at the environment of low SNR and interference injection. Proposed method can be used to determine the performance of interferometer direction finder.

본 논문은 서로 다른 안테나로부터 수신되는 무선 신호의 위상차를 계산하여 신호의 도래방향을 측정하는 인터페로미터 방향 탐지 장치에 관한 것이다. 최신의 전자전용 방향 탐지기는 위상차 측정에 있어서 온도에 따른 위상측정 편차가 작고, 낮은 신호 대 잡음비 환경 에서도 비교적 위상측정 성능이 우수한 디지털 위상차 측정 방법이 적용되고 있다. 시스템에서 요구되는 방향 탐지 정확도 성능 달성을 위한 위상차 측정 허용 오차를 도출하고, 디지털 위상차 측정 방법에 대하여 소개하였다. 샘플 개수, 신호 대 잡음비, 간섭신호 유입에 따른 성능을 정량적으로 분석하였고, 시뮬레이션을 통하여 주파수 영역 측정방법이 시간영역 대비 낮은 SNR 및 간섭신호 유입 환경에서 더 좋은 성능을 보임을 확인하였다. 제안한 방법은 인터페로미터 방향 탐지 장치의 성능 결정에 활용 할 수 있을 것이다.

Keywords

References

  1. R. G. Wiley, ELINT The Interception and Analysis of Radar Signals, Artech House, pp. 131-139, 2006.
  2. D. L. Adamy, EW102 A Second Course in Electronic Warfare, Artech House, pp. 162-163, 2004.
  3. B. J. Park, J. H. Lee and K. S. Lee, "A VHF Band 4 Channel Phase Discriminator," The Journal of Korean Institute of Electromagnetic Engineering and Science, vol. 25, no. 9, pp. 912-918, Sep. 2014. https://doi.org/10.5515/KJKIEES.2014.25.9.912
  4. Y. H. Kim, J. S. Lim, G. S. Chae and K. Kim, "An investigation of the Azimuth Error for Correlative Interferometer Direction Finding," Journal of the Korea Convergence Society, vol. 6, no. 5, pp. 249-255, Jun. 2015. https://doi.org/10.15207/JKCS.2015.6.5.249
  5. J. S. Lim and G. S. Chae, "Analysis of Direction Finding Accuracy for Amplitude-Phase Comparison and Correlative Interferometer Method," Journal of Digital convergence, vol. 14, no. 1, pp. 195-201, Jan. 2016. https://doi.org/10.14400/JDC.2016.14.1.195
  6. M. H. Chae, "Accuracy Analysis of 2-D Direction Finding Based on Phase Comparison," The Journal of Korean Institute of Electromagnetic Engineering and Science, vol. 28, no. 8, pp. 653-660, Aug. 2017. https://doi.org/10.5515/KJKIEES.2017.28.8.653
  7. J. H. Lee and J. M. Woo, "The Direction Finding Ambiguity Analysis for 3 Element and 4 Element Phase Interferometer DF System," Journal of the Korea Institute of Military Science and Technology, vol. 17, no. 4, pp. 544-550, Aug. 2014. https://doi.org/10.9766/KIMST.2014.17.4.544
  8. J. Duprat and J. M. Muller, "The CORDIC algorithm : New Results for Fast VLSI Implementation," IEEE Transactions on Computers, vol. 42, no. 2, pp. 168-178, 1993. https://doi.org/10.1109/12.204786
  9. B. Hua, Z. Jianjiang, G. Zhixiong, C. Jianhua and X. Weijie "Digital Phase Detecting Based on Hilbert Transform and Its DSP Implementation," Nanjing University of Aeronautics and Astronautics, Technical Report, 2011.
  10. A. V. Oppenheim, R. W. Schafer and J. R. Buck, Discrete-Time Signal Processing, 2th ed. New Jersery, NJ: Prentice Hall, pp. 629-692, 1999.

Cited by

  1. 딥러닝 기반 자동 변조 인식 성능 분석 vol.25, pp.3, 2018, https://doi.org/10.6109/jkiice.2021.25.3.427