DOI QR코드

DOI QR Code

Analysis of Phase Noise Effects in a Short Range Weather Radar

단거리 기상 레이다에서의 위상 잡음 영향 분석

  • Lee, Jonggil (Department of Information and Telecommunication Engineering, Incheon National University)
  • Received : 2018.05.16
  • Accepted : 2018.07.05
  • Published : 2018.08.31

Abstract

Many short range weather radars with the low elevation search capability are needed for analysis and prediction of unusual weather changes or rainfall phenomena which occurs regionally. However, due to the characteristics of low elevation electromagnetic wave beam, it is highly probable that the received weather signals of these radars are seriously contaminated by the ground clutter. Therefore, the filter removing low Doppler frequency band is generally used to mitigate this problem. However, the phase noise in a radar system may limit the removal of the strong clutter and this may cause serious problems in estimating weather parameters because of the remaining clutter. Therefore, in this paper, the characteristics of phase noise in a radar system are investigated and the effects of the system phase noise are analyzed in the improvement of signal to clutter ratio for the strong clutter environment such as a short and low-elevated weather radar.

국지적인 기상 이변이나 강우 현상 등을 분석하고 예보하기 위해서는 지역별로 저고도 탐색이 가능한 다수의 단거리 기상 레이다들이 필요하다. 그러나 이러한 레이다들의 특성인 낮은 고각의 전자파 빔 때문에 지표면 클러터가 기상 신호를 심하게 오염시킬 가능성이 매우 높다. 그러므로 이러한 문제를 완화시키기 위하여 일반적으로 도플러 저주파 대역 차단 필터를 사용하게 된다. 그러나 레이다 시스템에서의 위상잡음은 이러한 강력한 클러터의 제거를 제한시킬 수 있으며 잔존하는 클러터로 인하여 기상 파라미터 추정에 심각한 문제를 야기할 수 있다. 따라서 본 논문에서는 레이다의 시스템 위상 잡음 특성을 분석하고 이러한 위상 잡음이 강력한 클러터가 존재하는 환경, 즉 단거리, 저고도 기상레이다에서의 SCR(signal to clutter ratio) 개선 정도에 미치는 영향을 분석하였다.

Keywords

References

  1. J. L. Reed, A. D. Lanterman, and J. M. Trostel, "Weather radar: Operation and phenomenology," IEEE Aerospace and Electronic Systems Magazine, vol. 32, no. 7, pp. 46-62, July 2017.
  2. F. Barbaresco, V. Brion, and N. Jeannin, "Radar wake-vortices cross-section/Doppler signature characterisation based on simulation and field test trials," IET Radar, Sonar & Navigation, vol. 10, no. 1, pp. 82-96, Jan. 2016. https://doi.org/10.1049/iet-rsn.2015.0132
  3. M. E. Weber, "Advance in operational weather radar technology," Lincoln Laboratory Journal, vol. 16, no. 1, pp. 9-29, Jan. 2006.
  4. D. A. Warde and S. M. Torres, "The autocorrelation spectral density for Doppler-weather-radar signal analysis," IEEE Transactions on Geoscience and Remote Sensing, vol. 52, no. 1, pp. 508-518, Jan. 2014. https://doi.org/10.1109/TGRS.2013.2241775
  5. T. N. Guo, "Unique measurement and modeling of total phase noise in RF receiver," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 60, no. 5, pp. 262-266, May 2013. https://doi.org/10.1109/TCSII.2013.2251966
  6. R. Boudot and E. Rubiola, "Phase noise in RF and microwave amplifiers," IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 59, no. 12, pp. 2613-2624, Dec. 2012. https://doi.org/10.1109/TUFFC.2012.2502
  7. J. Yin, C. M. Unal, and H. W. Russchenberg, "Narrow-band clutter mitigation in spectral polarimetric weather radar," IEEE Transactions on Geoscience and Remote Sensing, vol. 55, no. 8, pp. 4655-4667, Aug. 2017. https://doi.org/10.1109/TGRS.2017.2696263
  8. C. D. Curtis, M. Yeary, and J. L. Lake, "Adaptive nullforming to mitigate ground clutter on the national weather radar testbed phased array radar," IEEE Transactions on Geoscience and Remote Sensing, vol. 54, no. 3, pp. 1282-1291, Mar. 2016. https://doi.org/10.1109/TGRS.2015.2477300
  9. D. Cho et al., "The radar development of the low output using the phased array antenna," Journal of the Korea Institute of Information and Communication Engineering, vol. 21, no. 5, pp. 913-920, May 2017. https://doi.org/10.6109/JKIICE.2017.21.5.913