DOI QR코드

DOI QR Code

The Effect of Robot Therapy on Upper Extremity Function in a Patient With Parkinson's Disease

로봇치료가 파킨슨병 환자의 상지 기능에 미치는 영향

  • Lee, Inseon (Dept. of Occupational Therapy, Gyeong-in Rehabilitation Center Hospital) ;
  • Kim, Jongbae (Dept. of Occupational Therapy, College of Health Science, Yonsei University) ;
  • Park, Ji-Hyuk (Dept. of Occupational Therapy, College of Health Science, Yonsei University) ;
  • Park, Hae Yean (Dept. of Occupational Therapy, College of Health Science, Yonsei University)
  • 이인선 (경인의료재활센터병원 작업치료실) ;
  • 김종배 (연세대학교 보건과학대학 작업치료학과) ;
  • 박지혁 (연세대학교 보건과학대학 작업치료학과) ;
  • 박혜연 (연세대학교 보건과학대학 작업치료학과)
  • Received : 2018.07.25
  • Accepted : 2018.08.14
  • Published : 2018.08.31

Abstract

Objective : The purpose of this study was to investigate the effect of robot-assisted therapy on upper extremity function. Methods : This study used a single-subject experimental A-B-A' design. Three Parkinson's disease patients took part. Each subject received a robot-assisted therapy intervention (45 min/session, 5 sessions/week for 4 weeks). Upper extremity movement was evaluated with the Reo Assessment tool in Reogo. The Jebsen-Taylor hand motor function test, Fugle-Mayer Assessment score, Box and Block Test, and Nine-hole pegboard test were assessed pre- and post-intervention. Results : After intervention, all subjects underwent 3D motion analysis of reaching function. There was overall improvement in resistance, smoothness, direction accuracy, path efficiency, initiation time, and time to moving target with robot-assisted therapy. Robot-assisted therapy may have a positive effect on upper extremity movement in Parkinson's disease. Conclusion : Robot-assisted therapy is considered an alternative in clinical occupational therapy to improve upper extremity function in Parkinson's disease.

목적 : 본 연구의 목적은 상지 로봇 치료가 파킨슨병 환자의 상지 기능에 미치는 영향을 알아보는 것이다. 연구방법 : 본 연구는 개별실험 연구방법(single subject experimental research) 중 A-B-A' 설계를 사용하였다. 3명의 파킨슨병 환자에게 총 20회기에 걸쳐 실험을 진행하였고, 로봇치료는 1회당 45분, 주5회로 시행되었다. 대상자의 상지 기능회복을 알아보기 위해 매 회기 Reo Assessment tool을 통해 상지 움직임의 효율성 지수를 측정 하여 결과 값을 분석하였고 상지 기능의 중재 전후 비교를 위하여 사전-사후 평가로 JHF, BBT, NHT를 측정하였으며 결과 분석은 시각적 그래프와 기술 통계량을 사용하였다. 결과 : 상지 로봇 치료를 적용한 뒤 측정된 상지 움직임의 효율성 지수 결과 값인 상지 움직임의 저항, 부드러움, 경로 효율성, 방향 정확성, 움직임 시작 시간, 전체 움직임 시간에 전반적인 향상을 보였고, 이를 통해 상지 로봇 치료가 파킨슨병 환자의 상지 기능에 긍정적인 영향을 미치는 것을 확인할 수 있었다. 결론 : 파킨슨 환자의 상지 기능 향상을 위한 작업치료 적용 과정에서 로봇 치료는 대안적인 방안으로 고려되어질 수 있을 것으로 예상된다.

Keywords

References

  1. Lee, J. E., Choi, J. K., Lim, H. S., Kim, J. H., Cho, J. H., Kim, G. S., ... & Lee, J. H. (2017). The Prevalence and Incidence of Parkinson′s Disease in South Korea: A 10-Year Nationwide Population-Based Study. Journal of the Korean Neurological Association. 35(4). 191-198. doi.org/10.17340/jkna.2017.4.1
  2. Bugar, C. G., Lum, P. S., Shor, P. C., & Van der Loos, H. M. (2000). Development of robots for rehabilitation therapy: The Palo Alto VA/Stanford experience. Journal of Rehabilitation Research and Development, 37(6), 663-673.
  3. Butefisch, C., Hummelsheim, H., Denzler, P., & Mauritz, K. H. (1995). Repetitive training of isolated movements improves the outcome of motor rehabilitation of the centrally paretic hand. Journal of the neurological sciences, 130(1), 59-68. https://doi.org/10.1016/0022-510X(95)00003-K
  4. Calne, D. (2005). A definition of Parkinson's disease. Parkinsonism & Related Disorders, 11, S39-40. https://doi.org/10.1016/j.parkreldis.2005.01.008
  5. Carda, S., Invernizzi, M., Baricich, A., Comi, C., Croquelois, A., & Cisari C. (2012). Robotic gait training is not superior to conventional treadmill training in Parkinson disease: A single-blind randomized controlled trial. Neurorehabil Neural Repair, 26, 1027-1034. https://doi.org/10.1177/1545968312446753
  6. Cromwell, F. S. (1965). Occupatinal therapist manual for basic skill assessment: Primary pre-vocational evaluation. Oasadena. CA: Fair Oaks Printing Co.
  7. Cromwell, F. S. (1976). Occupatinal therapist manual for basic skill assessment: Primary pre-vocational evaluation. Altadena. CA: Fair Oaks Printing Co.
  8. Crutcher, M. D., & DeLong, M. R. (1984). Single cell studies of the primate putamen. Experimental Brain Research, 53(2), 244-258. https://doi.org/10.1007/BF00238154
  9. Fasoli, S. E., Krebs, H. I., Stein, J., & Hogan, N. (2004). Robotic technology and stroke rehabilitation: Translating research into practice. Topic in Stroke Rehabilitation, 11(4), 11-19. https://doi.org/10.1310/G8XB-VM23-1TK7-PWQU
  10. Grice, K. O., Vogel, K. A., Le, V., Mitchell, A., Muniz, S., & Vollmer, M. A. (2003). Adult norms for a commercially available Nine Hole Peg Test for finger dexterity. American Journal of Occupational Therapy, 57(5), 570-573. https://doi.org/10.5014/ajot.57.5.570
  11. Hirsch, M. A., & Farley, B. G. (2009). Exercise and neuroplasticity in persons living with Parkinson's disease. European Journal of Physical and Rehabilitation Medicine, 45(2), 215-229.
  12. Jebson, R. H., Taylor, N., Trieschmann, R. B., Trotter, M. J., & Howard, L. A. (1969). An objective and standardized test of hand function. Archive Physical Medicine Rehabilitation. 50, 311-319.
  13. Konczak, J., Corcos, D. M., Horak, F., Poizner, H., Shapiro, M., Tuite, P., ... & Maschke, M. (2009). Proprioception and motor control in Parkinson's disease. Journal of Motor Behavior, 41(6), 543-552. https://doi.org/10.3200/35-09-002
  14. Kwakkel, G., Kollen, B., & Lindemen, E. (2004). Understanding the pattern of functional recovery after stroke: Facts and theories. Restorative Neurology and Neuroscience, 22(3-5), 281-299.
  15. Li, K. Y., Pickett, K., Nestrasil, I., Tuite, P., & Konczak, J. (2010). The effect of dopamine replacement therapy on haptic sensitivity in Parkinson's disease. Journal of Neurology, 257(12), 1992-1998. https://doi.org/10.1007/s00415-010-5646-9
  16. Lo, A. C., Chang, V. C., Gianfrancesco, M. A., Friedman, J. H., Patterson, T. S., & Benedicto, D. F. (2010). Reduction of freezing of gait in Parkinson's disease by repetitive robot-assisted treadmill training: A pilot study. Journal of Neuroengineering and Rehabilitation, 7(1), 51. https://doi.org/10.1186/1743-0003-7-51
  17. Lum, P. S., Burgar, C. G., Shor, P. C., Majmundar, M., & Van der Loos, M. (2002). Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke. Archives of Physical Medicine and Rehabilitation, 83(7), 952-959. https://doi.org/10.1053/apmr.2001.33101
  18. Majsak, M. J., Kaminski, T., Gentile, A. M., & Flanagan, J. R. (1998). The reaching movements of patients with Parkinson's disease under self-determined maximal speed and visually cued conditions. Brain, 121(4), 755-766. https://doi.org/10.1093/brain/121.4.755
  19. Masiero, S., Celia, A., Rosati, G., & Armani, M. (2007). Robotic-assisted rehabilitation of the upper limb after acute stroke. Archives of Physical Medicine and Rehabilitation, 88(2), 142-149. https://doi.org/10.1016/j.apmr.2006.10.032
  20. Morris, M. E. (2000). Movement disorders in people with Parkinson disease: A model for physical therapy. Physical Therapy, 80(6). 578-597.
  21. Nieuwboer, A., Rochester, L., Muncks, L., & Swinnen, S. P. (2009). Motor learning in Parkinson's disease: Limitations and potential for rehabilitation. Parkinsonism and Related Disorders, 15, S53-S58.
  22. Nieuwboer, A., Rochester, L., Herman, T., Vandenberghe, W., Emil, G. E., Thomaes, T., & Giladi, N. (2009). Reliability of the new freezing of gait questionnaire: Agreement between patients with Parkinson's disease and their cares. Gait and Posture, 30(4), 459-463. https://doi.org/10.1016/j.gaitpost.2009.07.108
  23. Norouzi-Gheidari, N., Archambault, P. S., & Fung, J. (2012). Effects of robot-assisted therapy on stroke rehabilitation in upper limbs: Systematic review and meta-analysis of the literature. Journal of Rehabilitation Research and Development, 49(4), 479-496. https://doi.org/10.1682/JRRD.2010.10.0210
  24. Petzinger, G. M., Fisher, B. E., McEwen, S., Beeler, J. A., Walsh, J. P., & Jakowec, M. W. (2013). Exercise-enhanced neuroplasticity targeting motor and cognitive circuitry in Parkinson's disease. The Lancet Neurology, 12(7). 716-726. https://doi.org/10.1016/S1474-4422(13)70123-6
  25. Picelli, A., Melotti, C., Origano, F., Waldner, A., Fiaschi, A., Santilli, V., & Smania, N. (2012). Robot-assisted gait training in patients with Parkinson disease: A randomized controlled trial. Neurorehabilitation and Neural Repair, 26(4), 353-361. https://doi.org/10.1177/1545968311424417
  26. Picelli, A., Melotti, C., Origano, F., Meri, R., Waldner, A., & Smania, N. (2013). Robot-assisted gait training versus equal intensity treasmill training in patients with mild to moderate Parkinson's disease: A randomized controlled trial. Parkinsonism and Related Disorders, 19(6), 605-610. https://doi.org/10.1016/j.parkreldis.2013.02.010
  27. Picelli, A., Tamburin, S., Passuello, M., Waldner, A., & Smania, N. (2014). Robot-assisted arm training in paients with Parkinson's disease: A pilot study. Journal of Neuroengineering and Rehabilitation, 11(1), 28. https://doi.org/10.1186/1743-0003-11-28
  28. Platz, T., Eickohf, C., Van Kaick, S., Engel, U., Pinkowski, C., Kalok, S., & Pause, M. (2005). Impairment-oriented training or Bobath therapy for severe arm paresis after stroke: A single-blind, multicentre randomized controlled trial. Clinical Rehabilitation, 19(7), 714-724. https://doi.org/10.1191/0269215505cr904oa
  29. Quinn, L., Busse, M., & Dal Bello-Haas, V. (2013). Management of upper extremity dysfunction in people with Parkinson disease and Huntington disease: Facilitating outcomes across the disease lifespan. Journal of Hand Therapy, 26(2), 148-155. https://doi.org/10.1016/j.jht.2012.11.001
  30. Reinkensmeye, D. J., Emken, J. L., & Cramer, S. C. (2004). Robotics, motor learning, and neurologic recovery. Annual Review of Biomedical Engineering, 6, 497-525. https://doi.org/10.1146/annurev.bioeng.6.040803.140223
  31. Ring, H., & Rosenthal, N. (2005). Controlled study of neuroprosthetic functional electrical stimulation in sub-acute post-stroke rehabilitation. Journal of Rehabilitation Medicine, 37(1), 32-36. https://doi.org/10.1080/16501970410035387
  32. Schettino, L. F., Adamovich, S. V., Hening, W., Tunik, E., Sage, J., & Poizner, H. (2006). Hand preshaping in Parkinson's disease: Effects of visual feedback and medication state. Experimental Brain Research, 168(1-2), 186-202. https://doi.org/10.1007/s00221-005-0080-4
  33. Sharpe, M. H., Cermak, S. A., & Sax, D. S. (1983). Motor planning in Parkinson patients. Neuropsychologia, 21(5). 455-462. https://doi.org/10.1016/0028-3932(83)90002-7
  34. Smania, N., Picelli, A., Geroin, C., Munari, D., Waldner, A., & Gandolfi, M. (2013). Robot-assisted gait training in patients with Parkinson's disease. Neurodegenerative Disease Management, 3(4), 321-330. https://doi.org/10.2217/nmt.13.34
  35. Summers, J. J., Kagerer, F. A., Garry, M. I., Hiraga, C. Y., Loftus, A., & Cauraugh, J. H. (2007). Bilateral and unilateral movement training on upper limb function in chronic stroke patients: A TMS study. Journal of the Neurological Sciences, 252(1), 76-82. https://doi.org/10.1016/j.jns.2006.10.011
  36. Trombly, C. A. (1989). Occupational therapy for physical dysfunction (3rd ed.). Baltimore: Williams & Wilkins.
  37. Volpe, B. T., Ferraro, M., Lynch, D., Christos, P., Krol, J., & Trudell, C. (2005). Robotics and other devices in the treatment of patients recovering from stroke. Current Neurology and Neuroscience Reports, 5(6), 465-470. Doi:10.1007/s11910-005-0035-y