DOI QR코드

DOI QR Code

Magnetic Properties and Magnetocaloric Effect in Ordered Double Perovskites Sr1.8Pr0.2FeMo1-xWxO6

  • Hussain, Imad (School of Materials Science and Engineering, Changwon National University) ;
  • Anwar, Mohammad Shafique (School of Materials Science and Engineering, Changwon National University) ;
  • Khan, Saima Naz (Department of Physics, Abdul Wali Khan University Mardan) ;
  • Lee, Chan Gyu (School of Materials Science and Engineering, Changwon National University) ;
  • Koo, Bon Heun (School of Materials Science and Engineering, Changwon National University)
  • Received : 2018.04.26
  • Accepted : 2018.07.27
  • Published : 2018.08.27

Abstract

We report the structural, magnetic and magnetocaloric properties of $Sr_{1.8}Pr_{0.2}FeMo_{1-x}W_xO_6$($0.0{\leq}x{\leq}0.4$) samples prepared by the conventional solid state reaction method. The X-ray diffraction analysis confirms the formation of the tetragonal double perovskite structure with a I4/mmm space group in all the synthesized samples. The temperature dependent magnetization measurements reveal that all the samples go through a ferromagnetic to paramagnetic phase transition with an increasing temperature. The Arrott plot obtained for each synthesized sample demonstrates the second order nature of the magnetic phase transition. A magnetic entropy change is obtained from the magnetic isotherms. The values of maximum magnetic entropy change and relative cooling power at an applied field of 2.5 T are found to be $0.40Jkg^{-1}K^{-1}$ and $69Jkg^{-1}$ respectively for the $Sr_{1.8}Pr_{0.2}FeMoO_6$ sample. The tunability of magnetization and excellent magnetocaloric features at low applied magnetic field make these materials attractive for use in magnetic refrigeration technology.

Keywords

References

  1. P. T. Phong, N. V. Dang, P. H. Nam, L. T. H. Phong, D. H. Manh, N. M. An and In-Ja Lee, J. Alloys Compd. 683, 67 (2016). https://doi.org/10.1016/j.jallcom.2016.05.047
  2. M. S. Anwar, F. Ahmed, S. R. Lee, R. Danish and B. H. Koo, Jpn. J. Appl. Phys., 52, 10MC12 (2013). https://doi.org/10.7567/JJAP.52.10MC12
  3. A. Selmi, R. M'nassri, W. Cheikhrouhou-Koubaa, N. Chniba Boudjada and A. Cheikhrouhou, J. Alloys Compd., 619, 626 (2014).
  4. A. G. Gamzatov, A. M. Aliev and A. R. Kaul, J. Alloys Compd., 710, 292 (2017). https://doi.org/10.1016/j.jallcom.2017.03.300
  5. B. G. Shen, J. R. Sun, F. X. Hu, H. W. Zhang and Z. H. Cheng, Adv. Mater., 21, 4545 (2009). https://doi.org/10.1002/adma.200901072
  6. B. Uthaman, G. R. Raji, S. Thomas, K. G. Suresh and M. R. Varma, J. Appl. Phys., 117, 013910 (2015). https://doi.org/10.1063/1.4905544
  7. M. Ovichi, H. Elbidweihy, E. D. Torre, et al., J. Appl. Phys., 117, 17D107 (2015). https://doi.org/10.1063/1.4907191
  8. I. Hussain, M. S. Anwar, J. W. Kim, K. C. Chung and B. H. Koo, Ceram. Int., 42, 13098 (2016). https://doi.org/10.1016/j.ceramint.2016.05.094
  9. K. I. Kobayashi, T. Kimura, H. Sawada, K. Terakura and Y. Tokura, Nature., 395, 677 (1998). https://doi.org/10.1038/27167
  10. J. B. Philipp, P. Majewski, L. Alff, A. Erb and R. Gross, Phys. Rev. B., 68, 144431 (2003). https://doi.org/10.1103/PhysRevB.68.144431
  11. A. H. Habib, A. Saleem, C. V. Tomy and D. Bahadur, J. Appl. Phys., 97, 10A906-1 (2005). https://doi.org/10.1063/1.1847934
  12. M. Musa Saad H-E, Mater. Chem. Phys., 145, 36 (2014). https://doi.org/10.1016/j.matchemphys.2014.01.014
  13. I. Hussain, M. S. Anwar, S. N. Khan, J. W. Kim, K. C. Chung and Bon Heun Koo, J. Alloys Compd. 694, 815 (2017). https://doi.org/10.1016/j.jallcom.2016.10.073
  14. C. Frontera, D. Rubi, J. Navarro, J. L. Garcia-Munoz and J. Fontcuberta, Phys. Rev. B., 68, 012412 (2003). https://doi.org/10.1103/PhysRevB.68.012412
  15. D. Rubi, C. Frontera, G. Herranz, J.L.G. Munoz, J. Fontcuberta and C. Ritter, J. Appl. Phys., 95, 7082 (2004). https://doi.org/10.1063/1.1667443
  16. A. K. Azad, S. G. Eriksson, K. Abdullah, A. Riksson and M. Tseggai, J. Solid State Chem., 179, 1303 (2006). https://doi.org/10.1016/j.jssc.2006.01.043
  17. E. K. Hemery, G. V. M. Williams and H. J. Trodahl, Phys. Rev. B., 74, 054423 (2006). https://doi.org/10.1103/PhysRevB.74.054423
  18. D. D. Sarma, P. Mahadevan, T. Saha-Dasgupta, S. Ray and A. Kumar, Phys. Rev. Lett., 85, 2549 (2000). https://doi.org/10.1103/PhysRevLett.85.2549
  19. J. Navarro, C. Frontera, L. I. Balcells, B. Martinez and J. Fontcuberta, Phys. Rev. B., 64, 092411 (2001). https://doi.org/10.1103/PhysRevB.64.092411
  20. Q. Zhang, T. Wei and Yun-Hui Huang, J. Power Sources, 198, 59 (2012). https://doi.org/10.1016/j.jpowsour.2011.09.092
  21. F. Sriti, N. Nguyen, C. Martin, A. Ducouret and B. Raveau, J. Magn. Magn. Mater., 250, 123 (2002). https://doi.org/10.1016/S0304-8853(02)00370-0
  22. A. K. Azad, S. -G. Eriksson, S. A. Ivanov, R. Mathieu, P. Svedlindh, J. Eriksen and H. Rundlof, J. Alloys Compd., 364, 77 (2004). https://doi.org/10.1016/S0925-8388(03)00611-X
  23. Q. Zhang, Z. F. Xu, H. B. Sun, X. Zhang, H. Wang and G. H. Rao, J. Alloys Compd., 745, 525 (2018). https://doi.org/10.1016/j.jallcom.2018.02.207
  24. M. Bourouina, A. Krichene, N. Chniba Boudjada, M. Khitouni and W. Boujelben, Ceram. Int., 43, 8139 (2017). https://doi.org/10.1016/j.ceramint.2017.03.138
  25. B. K. Banerjee, Phys. Lett., 12, 16 (1964).