DOI QR코드

DOI QR Code

Effect of Rolling Conditions on Microstructure and Mechanical Properties of Thick Steel Plates for Offshore Platforms

해양플랜트용 후판강의 미세조직과 기계적 특성에 미치는 압연 조건의 영향

  • Kim, Jongchul (Technical Research Center, Hyundai Steel Company) ;
  • Suh, Yonhchan (Technical Research Center, Hyundai Steel Company) ;
  • Hwang, Sungdoo (Technical Research Center, Hyundai Steel Company) ;
  • Shin, Sang Yong (School of Materials Science and Engineering, University of Ulsan)
  • 김종철 (현대제철 기술연구소) ;
  • 서용찬 (현대제철 기술연구소) ;
  • 황성두 (현대제철 기술연구소) ;
  • 신상용 (울산대학교 첨단소재공학부)
  • Received : 2018.07.23
  • Accepted : 2018.08.09
  • Published : 2018.08.27

Abstract

In this study, three kinds of steels are manufactured by varying the rolling conditions, and their microstructures are analyzed. Tensile and Charpy impact tests are performed at room temperature to investigate the correlation between microstructure and mechanical properties. In addition, heat affected zone(HAZ) specimens are fabricated through the simulation of the welding process, and the HAZ microstructure is analyzed. The Charpy impact test of the HAZ specimens is performed at $-40^{\circ}C$ to investigate the low temperature HAZ toughness. The main microstructures of steels are quasi-polygonal ferrite and pearlite with fine grains. Because coarse granular bainite forms with an increasing finish rolling temperature, the strength decreases and elongation increases. In the steel with the lowest reduction ratio, coarse granular bainite forms. In the HAZ specimens, fine acicular ferrites are the main features of the microstructure. The volume fraction of coarse bainitic ferrite and granular bainite increases with an increasing finish rolling temperature. The Charpy impact energy at $-40^{\circ}C$ decreases with an increasing volume fraction of bainitic ferrite and granular bainite. In the HAZ specimen with the lowest reduction ratio, coarse bainitic ferrite and granular bainite forms and the Charpy impact energy at $-40^{\circ}C$ is the lowest.

Keywords

References

  1. T. C. Cheng, C. Yu, T. C. Yang, C. Y. Huang, H. C. Lin and R.-K. Shiue, Arch. Metall. Mater., 63, 167 (2018).
  2. D. S. Liu, Q. L. Li and T. Emi, Metall. Mater. Trans. A, 42, 1349 (2011). https://doi.org/10.1007/s11661-010-0458-1
  3. Y. L. Zhou, T. Jia, X. J. Zhang, Z. Y. Liu and R. D. K. Misra, Mater. Sci. Eng., A, 626, 352 (2015). https://doi.org/10.1016/j.msea.2014.12.074
  4. B. L. Bramfitt and J. G. Speer, Metall. Trans. A, 21, 817 (1990). https://doi.org/10.1007/BF02656565
  5. J. H. Chen, Y. Kikut, T. Araki, M. Yoned and Y. Matsuda, Acta Metall. 32, 1779 (1984). https://doi.org/10.1016/0001-6160(84)90234-7
  6. C. M. Kim, J. B. Lee and W. Y. Choo, Proc. 13th Int. Conf. Offshore and Polar Eng., Honolulu, Hawaii, 90 (2003).
  7. B. C. Kim, S. Lee, N. J. Kim and D. Y. Lee, Metall. Mater. Trans. A, 22A, 139 (1991).
  8. N. Yurioka, Weld. World, 35, 375 (1995).
  9. R. E. Dolby, Weld. Res. Int., 7, 298 (1977).
  10. Y. U. Zhang, X. Li and H. Ma, Metall. Mater. Trans. B, 47, 2148 (2016). https://doi.org/10.1007/s11663-015-0534-4
  11. X. L. Wang, Y. T. Tsai, J. R. Yang, Z. Q. Wang, X. C. Li, C. J. Shang and R. D. K. Misra, Weld, World, 61, 1155 (2017). https://doi.org/10.1007/s40194-017-0498-x
  12. A. D. Schino and P. E. D. Nunzio, Mater. Lett., 186, 86 (2017). https://doi.org/10.1016/j.matlet.2016.09.092
  13. M. Hamada, Y. Fukada and Y. Komiz, ISIJ Int., 35, 1196 (1995). https://doi.org/10.2355/isijinternational.35.1196
  14. S. F. Medina, ISIJ Int., 39, 930 (1999). https://doi.org/10.2355/isijinternational.39.930
  15. M. Chapa, ISIJ Int., 42, 1288 (2002). https://doi.org/10.2355/isijinternational.42.1288
  16. A. D. Schino and C. Guarnaschelli, Mater. Lett., 63, 1968 (2009). https://doi.org/10.1016/j.matlet.2009.06.032
  17. A. D. Schino, L. Alleva and M. Guagnelli, Mater. Sci. Forum, 860, 715 (2012).
  18. C. Yu, T. C. Yang, C. Y. Huang and R. K. Shiue, Metall. Mater. Trans. A, 47A, 4777 (2016).
  19. S. K. Dhua, D. Mukerjee and D. S. Sarma, Metall. Mater. Trans. A, 32A, 2259 (2001).
  20. B. Hwang, C. G. Lee and S. J. Kim, Metall. Mater. Trans. A, 42A, 717 (2011).
  21. T. C. Yang, C. Y. Huang, T. C. Cheng, C. Yu and R. K. Shiue, Adv. Mater. Res., 936, 1312 (2014). https://doi.org/10.4028/www.scientific.net/AMR.936.1312
  22. G. Heigl, H. Lengauer and P. Hodnik, Steel Res. Intl., 79, 931 (2008). https://doi.org/10.1002/srin.200806223
  23. T. Araki, Atlas for Bainitic Microstructures, ISIJ, Tokyo, Japan, 1 (1992).
  24. G. Krauss and S.W. Thompson, ISIJ Int., 35, 937 (1995). https://doi.org/10.2355/isijinternational.35.937
  25. H. K. D. H. Bhadeshia, Mater. Sci. Eng., A, A378, 34 (2004).
  26. D. Deng and S. Kiyoshima, Comp. Mater. Sci., 62, 23 (2012). https://doi.org/10.1016/j.commatsci.2012.04.037
  27. H. Qiu, M. Enoki, Y. Kawaguchi and T. Kishi, ISIJ Int., 40, 34 (2000). https://doi.org/10.2355/isijinternational.40.Suppl_S34
  28. N. J. Kim, A. J. Yang and G. Thomas, Metall. Trans. A, 16A, 471 (1985).
  29. G. E. Dieter, Mechanical Metallurgy, McGraw-Hill Book Co., New York (1988).
  30. G. Krauss, Steels Processing, Structure, and Performance, Asm Intl. (2005).