DOI QR코드

DOI QR Code

초임계이산화탄소-물-골재 반응을 이용한 폐모르타르와 순환골재의 중성화 처리

The Neutralization Treatment of Waste Mortar and Recycled Aggregate by Using the scCO2-Water-Aggregate Reaction

  • 김태형 (부경대학교 지구환경과학과) ;
  • 이진균 (부경대학교 지구환경과학과) ;
  • 정철우 (부경대학교 건축공학과) ;
  • 김지현 (부경대학교 건축공학과) ;
  • 이민희 (부경대학교 지구환경과학과) ;
  • 김선옥 (부경대학교 에너지자원공학과)
  • Kim, Taehyoung (Department of Earth Environmental Sciences, Pukyong National University) ;
  • Lee, Jinkyun (Department of Earth Environmental Sciences, Pukyong National University) ;
  • Chung, Chul-woo (Department of Architectural Engineering, Pukyong National University) ;
  • Kim, Jihyun (Department of Architectural Engineering, Pukyong National University) ;
  • Lee, Minhee (Department of Earth Environmental Sciences, Pukyong National University) ;
  • Kim, Seon-ok (Department of Energy Resources Engineering, Pukyong National University)
  • 투고 : 2018.08.06
  • 심사 : 2018.08.16
  • 발행 : 2018.08.28

초록

기존 연구에서 초임계$CO_2$($scCO_2$)-물-순활골재 반응을 이용한 폐콘크리트 순환골재의 중성화(pH 저감) 처리에서 가장 문제시되었던 오랜 처리시간의 한계(최대 50일)를 최소 3시간까지 단축하는 배치실험과 칼럼실험을 수행하였다. 모르타르(골재를 포함하지 않은 시멘트+모래 혼합체)와 모르타르에 골재를 포함하는 2 종류의 순환골재를 실험에 사용하였다. 입자 크기별로 분류한 세 종류의 폐모르타르 시료에 대하여 $scCO_2$-물-폐모르타르 반응 시간을 1시간부터 24시간까지 다하게 설정하여 반응시킨 후, 폐모르타르의 pH가 지속적으로 9.8 이하로 낮게 유지되는 최소 반응시간을 결정하는 용출 배치실험을 실시하였다. 실제 현장에서 다량의 순환골재를 중성화 처리하는 경우 비평형상태에서 용출이 발생하는데, 이러한 kinetic 효과를 고려한 순환골재의 실제 pH 저감 효율을 측정하고자 대형 칼럼 연속 용출 실험을 실시하였다. 배치실험의 경우, 고압셀 내부에서 3차 증류수 70 mL와 순환골재 시료 35 g을 혼합한 후 100 bar, $50^{\circ}C$ 조건에서 1시간 ~ 24시간 동안 반응시켜 중성화 처리하였다. 처리 후 건조시킨 폐모르타르 시료 10 g + 증류수 50 ml의 비율(1:5 비율)로 혼합하여 10분 동안 150 rpm으로 교반한 후 정치시키고, 총 15일 동안 용출시간 별로 용출수의 pH를 측정하였다. 중성화 처리 후 순환골재의 광물학적 변화를 확인하기 위하여 처리 전/후 XRD, TG/DTA 등의 분석을 실시하였다. 대형 칼럼(직경 16 cm, 높이 1 m) 용출실험을 위해 순환골재 2 종류를 대상으로 3시간 동안 중성화 처리한 순환골재와 처리하지 않은 순환골재로 칼럼을 충진한 후, 증류수를 칼럼 상부에 설치된 스프링클러를 통하여 일정하게 총 220 L를 주입하였다. 칼럼에 충진된 순환골재를 통과하여 하부로부터 유출되는 유출수의 pH와 $Ca^{2+}$ 농도를 시간별로 측정하였다. 배치실험 결과 폐모르타르 시료(직경 10 ~ 13 mm)의 경우 3시간의 중성화 처리에 의해 용출액의 pH가 법적 허용기준인 9.8이하를 유지하는 것으로 나타났다. $scCO_2$ 반응 후 골재의 XRD, TG/DTA 분석 결과, 중성화 처리에 의해 시멘트 모르타르의 주성분인 포틀랜다이트($Ca(OH)_2$) 성분이 감소한 반면 방해석($CaCO_3$)이 2차 광물로 생성됨을 알 수 있었다. 칼럼 실험 결과 중성화 처리한 순환골재의 용출수는 kinetic 효과를 고려한 경우에도 굵은골재와 잔골재 모두 용출수의 pH가 9.8 이하로 유지되어, $scCO_2$를 이용한 순환골재의 3시간 중성화 처리에 의해 건설현장에서 재활용이 가능한 것으로 밝혀졌다.

The batch and column experiments were performed to overcome the limitation of the neutralization process using the $scCO_2$-water-recycled aggregate, reducing its treatment time to 3 hour. The waste cement mortar and two kinds of recycled aggregate were used for the experiment. In the extraction batch experiment, three different types of waste mortar were reacted with water and $scCO_2$ for 1 ~ 24 hour and the pH of extracted solution from the treated waste mortar was measured to determine the minimum reaction time maintaining below 9.8 of pH. The continuous column experiment was also performed to identify the pH reduction effect of the neutralization process for the massive recycled aggregate, considering the non-equilibrium reaction in the field. Thirty five gram of waste mortar was mixed with 70 mL of distilled water in a high pressurized stainless steel cell at 100 bar and $50^{\circ}C$ for 1 ~ 24 hour as the neutralization process. The dried waste mortar was mixed with water at 150 rpm for 10 min. and the pH of water was measured for 15 days. The XRD and TG/DTA analyses for the waste mortar before and after the reaction were performed to identify the mineralogical change during the neutralization process. The acryl column (16 cm in diameter, 1 m in length) was packed with 3 hour treated (or untreated) recycled aggregate and 220 liter of distilled water was flushed down into the column. The pH and $Ca^{2+}$ concentration of the effluent from the column were measured at the certain time interval. The pH of extracted water from 3 hour treated waste mortar (10 ~ 13 mm in diameter) maintained below 9.8 (the legal limit). From XRD and TG/DTA analyses, the amount of portlandite in the waste mortar decreased after the neutralization process but the calcite was created as the secondary mineral. From the column experiment, the pH of the effluent from the column packed with 3 hour treated recycled aggregate kept below 9.8 regardless of their sizes, identifying that the recycled aggregate with 3 hour $scCO_2$ treatment can be reused in real construction sites.

키워드

참고문헌

  1. Choi, J.G. and Lee, G.C. (2015) Study on performance of pH reducing agent applied for wet process of recycled aggregate. J. Rec. Const. Resources, v.3, n.4, p.366-373.
  2. Chung, C., Lee, M., Kim, S. and Kim, J. (2017) The pH reduction of the recycled aggregate originated from the waste concrete by the scCO2 treatment. Econ. Environ. Geol., v.50, n.4, p.257-266. https://doi.org/10.9719/EEG.2017.50.4.257
  3. Fernandez Bertos, M., Simons, S.J.R., Hills, C.D. and Carey, P.J. (2004) A review of accelerated carbonation technology in the treatment of cement-based materials and sequestration of $CO_2$. J. Hazard. Mater., v.112, n.30, p.193-205. https://doi.org/10.1016/j.jhazmat.2004.04.019
  4. Gunning, P.J., Hills, C.D. and Carey, P.J. (2010) Accelerated carbonation treatment of industrial wastes. Waste Manage., v.30, p.1081-1090. https://doi.org/10.1016/j.wasman.2010.01.005
  5. Ha, J.S., Shin, J.H., Chung, L. and Kim, H.S. (2016) Performance evaluation of recycled aggregate concrete made of recycled aggregate modified by carbonation. J. Korea Concr. Inst, v.28, n.4, p.445-454. https://doi.org/10.4334/JKCI.2016.28.4.445
  6. Han, C.G., Han, M.C. and Han S.Y. (2011) Reduction of pH of recycled fine aggregate due to natural and artificial treatment method. J. Rec. Const. Resources, v.13, p.103-110.
  7. KMA (Korea Meteorological Administration) (2017) Annual Climatological Report.
  8. Kim, D.B., Kim, J.H. and Park, J.C. (2016) Experimental study on the pH of recycled aggregate. J. Rec. Const. Resources, v.4, n.1, p.62-67.
  9. Lee, I.S., Bok, Y.J., Hong, S.R. and Kim, J.M. (2012) An experimental study for reduction pH of recycled aggregate. Proceedings of 2012 Fall Conference of Korea Concrete Institute, p.819-820.
  10. Lee, J.C., Song, T.H., Lee, S.H. and Kim, J.B. (2011) A study on the optimization of recycled aggregate alkalinity reducing facility in the field. J. Rec. Const. Resources, v.6, n.3, p.53-60.
  11. MOE (Ministry of Environment) (2009) A Research on the detailed application use of recycled aggregate and protection standard for environmental damage. Final Report.
  12. MOE (Ministry of Environment) (2014) 2013 survey on the generation and the treatment of wastes in Korea. Annual Report.
  13. MOE (Ministry of Environment) (2017) The law on the improvement of construction waste recycling.
  14. MOE (Ministry of Environment) (2018) Water Quality Testing Standard.
  15. MOLIT (Ministry of Land, Infrastructure and Transport) (2016) Concrete standard specification, p.141-142.
  16. de Sena Costa, B.L., de Oliveira Freitas, J.C., Silva Santos, P.H., da Silva Araujo, R.G., dos Santos Oliveira, J.F. and de Araujo Melo, D.M. (2018) Study of carbonation in a class G Portland cement matrix at supercritical and saturated environments. Constr. Build. Mater., v.180, p.308-319. https://doi.org/10.1016/j.conbuildmat.2018.05.287
  17. Song, T.H., Lee, J.C. and Lee, S.H. (2011) A study on the pH characteristic of recycle aggregate according to test methods and elapsed time. J. Rec. Const. Resources, v.15, p.61-68.
  18. Xuan, D.X., Zhan, B.J. and Poon, C.S. (2016) Assessment of mechanical properties of concrete incorporating carbonated recycled concrete aggregates. Cem. Concr. Comp., v.65, p.67-74. https://doi.org/10.1016/j.cemconcomp.2015.10.018