DOI QR코드

DOI QR Code

제조방법에 따른 떫은감 (Diosyros kaki Thumb.)의 대사체 프로파일링과 중성지질/콜레스테롤 대사 관련 유전자발현 연구 : in vitro 및 in vivo 연구

Metabolites profiling and hypolipidemic/hypocholesterolemic effects of persimmon (Diosyros kaki Thumb.) by different processing procedures: in vitro and in vivo studies

  • 박수연 (이화여자대학교 식품영양학과) ;
  • 오은경 (이화여자대학교 식품영양학과) ;
  • 임예니 (이화여자대학교 식품영양학과) ;
  • 신지윤 (이화여자대학교 임상보건융합대학원) ;
  • 정희아 (차의과학대학교 식품생명공학과) ;
  • 박송이 (차의과학대학교 식품생명공학과) ;
  • 이진희 (차의과학대학교 식품생명공학과) ;
  • 최정숙 (농촌진흥청 국립농업과학원 농식품자원부) ;
  • 권오란 (이화여자대학교 식품영양학과)
  • Park, Soo-Yeon (Department of Nutritional Science and Food Management, Ewha Womans University) ;
  • Oh, Eun-Kyung (Department of Nutritional Science and Food Management, Ewha Womans University) ;
  • Lim, Yeni (Department of Nutritional Science and Food Management, Ewha Womans University) ;
  • Shin, Ji-Yoon (Ewha Graduate School of Converging Clinical&Public Health) ;
  • Jung, Hee-Ah (Department of Food Science and Biotechnology, CHA University) ;
  • Park, Song-Yi (Department of Food Science and Biotechnology, CHA University) ;
  • Lee, Jin Hee (Department of Food Science and Biotechnology, CHA University) ;
  • Choe, Jeong-Sook (Department of Agrofood Resources, Rural Development Administration National Institute of Agricultural Sciences) ;
  • Kwon, Oran (Department of Nutritional Science and Food Management, Ewha Womans University)
  • 투고 : 2018.06.18
  • 심사 : 2018.07.09
  • 발행 : 2018.08.31

초록

본 연구는 떫은감 청도반시의 분말을 열수 추출하고 칼럼 추출하는 과정에서 획득한 PWE와 TEP에 대한 대사체 프로파일을 분석하고, 유리지방산을 처리한 HepG2 세포와 식이로 고지혈증을 유도한 Wistar계 흰쥐의 간조직을 사용하여 중성지질 및 콜레스테롤 대사 관련 유전자 발현을 측정하였다. 대사체 분석은 가스크로마토그래프-질량분석법과 액체크로마토그래프-질량분석법을 사용하였으며, PLS-DA 분석과 heatmap 분석을 실시한 결과 PWE는 떫은감 분말과 비교적 유사한 대사체 프로파일을, 그리고 TEP는 떫은감 분말과 매우 다른 대사체 프로파일을 가지고 있음을 확인하였다. 세포실험과 또한 세포실험에서 얻어진 결과를 검증하기 위해 수행된 동물실험에서 PWE와 TEP는 모두 SREBP1c와 FAS 유전자 발현을 감소하여 간의 지방축적을 감소시키는 것으로 관찰되었으나, 콜레스테롤 축적을 억제하는 효능은 PWE에 비해 TEP에서 우세하게 증가하는 것이 관찰되었다. 특별히 TEP는 SREBP2, HMGCR 유전자 발현을 억제하고 LDLR 유전자 발현을 촉진하는 것으로 나타났다. TEP는 탄닌 중 Gallic acid 그리고 장쇄지방산아미드인 Oleamide와 Palmitamide 함량이 유의하게 증가되었으므로, 향후 이들 성분과 타깃 유전자의 상관성을 분석하고, 이를 통해 시스템네트워크로 나타내어 대사체 프로파일에 따른 지질 및 콜레스테롤 대사 간 상호 영향을 추가적으로 연구해야 할 것으로 사료된다.

Purpose: Our previous study demonstrated that persimmon (Diospyros kaki Thumb.) at different stages of ripening provided different protective effects against high-fat/cholesterol diet (HFD)-induced dyslipidemia in rats. In this study, we compared the metabolites profile and gene expressions related to triglyceride (TG)/cholesterol metabolism in vitro and in vivo after treating with persimmon water extracts (PWE) or tannin-enriched persimmon concentrate (TEP). Methods: Primary and secondary metabolites in test materials were determined by GC-TOF/MS, UHPLC-LTQ-ESI-IT-MS/MS, and UPLC-Q-TOF-MS. The expression of genes related to TG and cholesterol metabolism were determined by RT-PCR both in HepG2 cells stimulated by oleic acid/palmitic acid and in liver tissues obtained from Wistar rats fed with HFD and PWE at 0, 150, 300, and 600 mg/d (experiment I) or TEP at 0, 7, 14, and 28 mg/d (experiment II) by oral gavage for 9 weeks. Results: PLS-DA analysis and heatmap analysis demonstrated significantly differential profiling of metabolites of PWE and TEP according to processing of persimmon powder. In vitro, TEP showed similar hypolipidemic effects as PWE, but significantly enhanced hypocholesterolemic effects compared to PWE in sterol regulatory element-binding protein 2 (SREBP2), HMG-CoA reductase (HMGCR), proprotein convertase subtilisin/kexin type 9 (PCSK9), cholesterol $7{\alpha}-hydroxylase$ (CYP7A1), and low density lipoprotein receptor (LDLR) gene expression. Consistently, TEP and PWE showed similar hypolipidemic capacity in vivo, but significantly enhanced hypocholesterolemic capacity in terms of SREBP2, HMGCR, and bile salt export pump (BSEP) gene expression. Conclusion: These results suggest that column extraction after hot water extraction may be a good strategy to enhance tannins and long-chain fatty acid amides, which might cause stimulation of hypocholesterolemic actions through downregulation of cholesterol biosynthesis gene expression and upregulation of LDL receptor gene expression.

키워드

참고문헌

  1. Yokozawa T, Park CH, Noh JS, Roh SS. Role of oligomeric proanthocyanidins derived from an extract of persimmon fruits in the oxidative stress-related aging process. Molecules 2014; 19(5): 6707-6726. https://doi.org/10.3390/molecules19056707
  2. Lee YA, Cho EJ, Tanaka T, Yokozawa T. Inhibitory activities of proanthocyanidins from persimmon against oxidative stress and digestive enzymes related to diabetes. J Nutr Sci Vitaminol (Tokyo) 2007; 53(3): 287-292. https://doi.org/10.3177/jnsv.53.287
  3. Zou B, Ge ZZ, Zhang Y, Du J, Xu Z, Li CM. Persimmon tannin accounts for hypolipidemic effects of persimmon through activating of AMPK and suppressing NF-${\kappa}$B activation and inflammatory responses in high-fat diet rats. Food Funct 2014; 5(7): 1536-1546. https://doi.org/10.1039/C3FO60635J
  4. Zou B, Li CM, Chen JY, Dong XQ, Zhang Y, Du J. High molecular weight persimmon tannin is a potent hypolipidemic in high-cholesterol diet fed rats. Food Res Int 2012; 48(2): 970-977. https://doi.org/10.1016/j.foodres.2012.05.024
  5. Jang IC, Jo EK, Bae MS, Lee HJ, Jeon GI, Park E, Yuk HG, Ahn GH, Lee SC. Antioxidant and antigenotoxic activities of different parts of persimmon (Diospyros kaki cv. Fuyu) fruit. J Med Plant Res 2010; 4(2): 155-60.
  6. Matsumoto K, Yokoyama S, Gato N. Hypolipidemic effect of young persimmon fruit in C57BL/6.KOR-ApoEshl mice. Biosci Biotechnol Biochem 2008; 72(10): 2651-2659. https://doi.org/10.1271/bbb.80319
  7. Matsumoto K, Yokoyama S, Gato N. Bile acid-binding activity of young persimmon (Diospyros kaki) fruit and its hypolipidemic effect in mice. Phytother Res 2010; 24(2): 205-210. https://doi.org/10.1002/ptr.2911
  8. Ahn Y, Gebereamanuel MR, Oh EK, Kwon O. Inhibitory effects of persimmon (Diospyros kaki Thumb.) against diet-induced hypertriglyceridemia/hypercholesterolemia in rats. J Nutr Health 2017; 50(3): 225-235. https://doi.org/10.4163/jnh.2017.50.3.225
  9. Del Bubba M, Giordani E, Pippucci L, Cincinelli A, Checchini L, Galvan P. Changes in tannins, ascorbic acid and sugar content in astringent persimmons during on-tree growth and ripening and in response to different postharvest treatments. J Food Compos Anal 2009; 22(7-8): 668-677. https://doi.org/10.1016/j.jfca.2009.02.015
  10. Association of Official Analytical Chemists. Official methods of analysis. 15th edition. Arlington (VA): Association of Official Analytical Chemists; 1990.
  11. Adams MA, Bobik A, Korner PI. Differential development of vascular and cardiac hypertrophy in genetic hypertension. Relation to sympathetic function. Hypertension 1989; 14(2): 191-202. https://doi.org/10.1161/01.HYP.14.2.191
  12. Karaman S, Toker OS, Yuksel F, Cam M, Kayacier A, Dogan M. Physicochemical, bioactive, and sensory properties of persimmon-based ice cream: technique for order preference by similarity to ideal solution to determine optimum concentration. J Dairy Sci 2014; 97(1): 97-110. https://doi.org/10.3168/jds.2013-7111
  13. Dauchet L, Amouyel P, Hercberg S, Dallongeville J. Fruit and vegetable consumption and risk of coronary heart disease: a meta-analysis of cohort studies. J Nutr 2006; 136(10): 2588-2593. https://doi.org/10.1093/jn/136.10.2588
  14. Zhao D, Zhou C, Sheng Y, Liang G, Tao J. Molecular cloning and expression of phytoene synthase, lycopene beta-cyclase, and beta-carotene hydroxylase genes in persimmon (Diospyros kaki L.) fruits. Plant Mol Biol Report 2011; 29(2): 345-351. https://doi.org/10.1007/s11105-010-0238-5
  15. Santos AD, Fonseca FA, Dutra LM, Santos MF, Menezes LR, Campos FR, Nagata N, Ayub R, Barison A. $^1H$ HR-MAS NMR-based metabolomics study of different persimmon cultivars (Diospyros kaki) during fruit development. Food Chem 2018; 239: 511-519. https://doi.org/10.1016/j.foodchem.2017.06.133
  16. Bitou N, Ninomiya M, Tsujita T, Okuda H. Screening of lipase inhibitors from marine algae. Lipids 1999; 34(5): 441-445. https://doi.org/10.1007/s11745-999-0383-7
  17. Latha RC, Daisy P. Insulin-secretagogue, antihyperlipidemic and other protective effects of gallic acid isolated from Terminalia bellerica Roxb. in streptozotocin-induced diabetic rats. Chem Biol Interact 2011; 189(1-2): 112-118. https://doi.org/10.1016/j.cbi.2010.11.005
  18. Hsu CL, Yen GC. Effect of gallic acid on high fat diet-induced dyslipidaemia, hepatosteatosis and oxidative stress in rats. Br J Nutr 2007; 98(4): 727-735. https://doi.org/10.1017/S000711450774686X
  19. Ngamukote S, Mäkynen K, Thilawech T, Adisakwattana S. Cholesterol-lowering activity of the major polyphenols in grape seed. Molecules 2011; 16(6): 5054-5061. https://doi.org/10.3390/molecules16065054
  20. Roth BD, Blankley CJ, Hoefle ML, Holmes A, Roark WH, Trivedi BK, Essenburg AD, Kieft KA, Krause BR, Stanfield RL. Inhibitors of acyl-CoA:cholesterol acyltransferase. 1. Identification and structure-activity relationships of a novel series of fatty acid anilide hypocholesterolemic agents. J Med Chem 1992; 35(9): 1609-1617. https://doi.org/10.1021/jm00087a016
  21. Seo JB, Moon HM, Kim WS, Lee YS, Jeong HW, Yoo EJ, Ham J, Kang H, Park MG, Steffensen KR, Stulnig TM, Gustafsson JA, Park SD, Kim JB. Activated liver X receptors stimulate adipocyte differentiation through induction of peroxisome proliferator-activated receptor ${\gamma}$ expression. Mol Cell Biol 2004; 24(8): 3430-3444. https://doi.org/10.1128/MCB.24.8.3430-3444.2004
  22. Chen W, Yang CC, Sheu HM, Seltmann H, Zouboulis CC. Expression of peroxisome proliferator-activated receptor and CCAAT/enhancer binding protein transcription factors in cultured human sebocytes. J Invest Dermatol 2003; 121(3): 441-447. https://doi.org/10.1046/j.1523-1747.2003.12411.x
  23. Lee SM, Han HW, Kim Y. JNK-mediated SREBP-2 processing by genistein up-regulates LDLR expression in HepG2 cells. Nutr Food Sci 2014; 4: 308.
  24. Russell DW, Setchell KD. Bile acid biosynthesis. Biochemistry 1992; 31(20): 4737-4749. https://doi.org/10.1021/bi00135a001
  25. Hashimoto K, Cohen RN, Yamada M, Markan KR, Monden T, Satoh T, Mori M, Wondisford FE. Cross-talk between thyroid hormone receptor and liver X receptor regulatory pathways is revealed in a thyroid hormone resistance mouse model. J Biol Chem 2006; 281(1): 295-302. https://doi.org/10.1074/jbc.M507877200
  26. Cohen JC, Boerwinkle E, Mosley TH Jr, Hobbs HH. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N Engl J Med 2006; 354(12): 1264-1272. https://doi.org/10.1056/NEJMoa054013
  27. Li Y, Xu S, Mihaylova MM, Zheng B, Hou X, Jiang B, Park O, Luo Z, Lefai E, Shyy JY, Gao B, Wierzbicki M, Verbeuren TJ, Shaw RJ, Cohen RA, Zang M. AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice. Cell Metab 2011; 13(4): 376-388. https://doi.org/10.1016/j.cmet.2011.03.009

피인용 문헌

  1. Bioactivities of Phenolic Compounds from Kiwifruit and Persimmon vol.26, pp.15, 2021, https://doi.org/10.3390/molecules26154405