DOI QR코드

DOI QR Code

Characterization of Cellulase from Bacillus subtilis NSC Isolated from Soil

토양으로부터 단리한 Bacillus subtilis NSC 유래 Cellulase의 특성 규명

  • Kim, Sang Jin (Department of Food Science and Technology, Daegu Catholic University) ;
  • Park, Chang-Su (Department of Food Science and Technology, Daegu Catholic University)
  • 김상진 (대구가톨릭대학교 식품공학전공) ;
  • 박창수 (대구가톨릭대학교 식품공학전공)
  • Received : 2018.11.21
  • Accepted : 2018.11.27
  • Published : 2018.12.30

Abstract

We isolated microorganisms from soil, which is sampled at forest, Kyeonbuk, Korea, as cellulolytic microorganisms. The isolated strains were identified by analysis of 16S rRNA gene from the starins. The result, four kinds of Bacillus subtilis, one kind of Bacillus amyloliquefaciens, and one kind of Bacillus cereus were identified. Among these strains, Bacillus subtilis was selected due to its high cellulase activity and this strain was named as Bacillus subtilis CNS. The optimum pH and temperature of the cellulase from Bacillus subtilis CNS was pH 5.0 and $40^{\circ}C$, respectively. In the investigation of pH and temperature stability, the cellulase from Bacillus subtilis NSC stabled pH 4.0~6.0 range and until $40^{\circ}C$ for 30 min perfectly. In the enzyme activity for various cellulosic substrate, cellulase from Bacillus subtilis CNS showed the highest activity for CM-cellulose. And, the enzyme activities for alkali swollen cellulose, Alpha-cellulose, Sigmacell-cellulose, and Avicel were approximately 31%, 8%, 8% and 4% of activity for CM-cellulose, respectively. In the degradation of CM-cellulose, the 0.26 U/ml and 0.52 U/ml of cellulase showed 0.43 and 0.76 U/ml activity for CM-cellulose after the reaction of 120 min, respectively.

삼림 토양 시료를 이용하여 cellulase 생산균주를 단리한 결과, Carboxymethylcellulose (CM-cellulose)를 기질로 첨가한 고체배지상에서 명확한 활성환을 형성하는 총 6종류의 cellulase 생산균주를 단리하여, 단리한 균주 유래의 16S rDNA유전자 염기서열 분석을 통하여 균주 동정을 진행하였다. 그 결과 본 연구에서 단리된 균주는 Bacillus subtilis 4종류, Bacillus amyloliquefaciens 1종류, Bacillus cereus 1종류로 동정되었다. 이 중에서 CM-cellulose에 대한 가장 높은 cellulase 활성을 보이는 Bacillus subtilis를 선정하여 Bacillus subtilis NSC로 명명하였다. Bacillus subtilis NSC 유래 cellulase는 균주 배양 36~48시간에서 가장 높은 cellulase 생산성을 보였으며, 최적 pH 및 온도를 검토한 결과, 본 균주 유래 cellulase는 pH 5.0과 $40^{\circ}C$에서 가장 높은 효소 활성을 나타내었다. 그리고, pH 4.0~5.0 조건에서 30분간 효소처리를 하여도 효소활성의 감소가 없었으며, $40^{\circ}C$까지는 30분간의 열처리에도 효소활성의 저하 없이 안정한 특성을 보였다. CM-cellulose, Alkali swollen cellulose, Sigmacell-cellulose, Alpha-cellulose, 그리고 Avicel을 기질로 기질 특이성을 한 결과 CM-cellulose에 대하여 가장 높은 효소 활성을 나타내었으며, cellulose 결정구조를 보유하고 있지않는 CM-cellulose와 Alkali swollen cellulose에 대해서는 명확한 효소활성을 보였다. 하지만, cellulose 결정구조를 보유하고 있는 Sigmacell Cellulose, Alpha-cellulose, 그리고 Avicel 기질에 대해서는 CM-cellulose 활성의 각각 8%, 8%, 그리고 4%의 매우 낮은 효소활성을 나타내었다. Bacillus subtilis NSC 유래 cellulase의 0.26 U/ml 조효소액과 0.52 U/ml 조효소액을 이용하여 CM-cellulose의 분해 특성을 검토하였을 때 두 조효소액 모두 반응 CM-cellulose에 대해 반응 120분 후에 0.43 U/ml와 0.76 U/ml의 효소 활성을 나타내었다.

Keywords

Acknowledgement

Supported by : 대구가톨릭대학교

References

  1. Agustin, Z., Liang, C., Lonkar, S., and Mark, H.: Countercurrent enzymatic saccharification of cellulosic biomass. Biomass Bioenergy 2016, 90, 122-130. https://doi.org/10.1016/j.biombioe.2016.03.033
  2. Khaled, L., Korhone, O., Zrida, M., Hamazoui, A. H., and Budtova, T.: All-cellulose composites from alfa and wood fibers. Ind. Crops Prod. 2019, 127, 135-141. https://doi.org/10.1016/j.indcrop.2018.10.055
  3. Boonchuay, P., Techapun, C., Leksawasdi, N., Seesuriyachan, P., Hanmoungjai, P., Watanabe, M., Takenaka, S., and Chaiyaso, T.: An integrated process for xylooligosaccharide and bioethanol production from corncob. Bioresour. Technol. 2018, 256, 399-407. https://doi.org/10.1016/j.biortech.2018.02.004
  4. Pulidindi, I. N., Kimchi, B. B., and Cgdanken, A.: Can cellulose be a sustainable feedstock for bioethanol production. Renew. Energy 2014, 71, 77-80. https://doi.org/10.1016/j.renene.2014.05.032
  5. Gregg, J. S.: National and regional generation of municipal residue biomass and the future potential for waste-to-energy implementation. Biomass Bioenergy 2010, 34, 379-388. https://doi.org/10.1016/j.biombioe.2009.11.009
  6. Bridgwater, A. V.: Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy 2012, 38, 68-94. https://doi.org/10.1016/j.biombioe.2011.01.048
  7. Kuglarz, M., Merlin, A., Katarzyana, D., and Irini, A: Integrated production of cellulosic bioethanol and succinic acid from rapeseed straw after dilute-acid pretreatment. Bioresour. Technol. 2018, 265, 191-199. https://doi.org/10.1016/j.biortech.2018.05.099
  8. Peng, L. and Gutterson, N.: Energy crop and biotechnology for biofuel production. J. Intergr. Plant Biol. 2011, 53, 253-256. https://doi.org/10.1111/j.1744-7909.2010.01014.x
  9. Dhillon, G. S., Kaur, S., Brar, S. K., and Verma, M.: Potential of apple pomace as a solid substrate for fungal cellulase and hemicellulase bioproduction through solid-state fermentation. Ind. Crops Prod. 2012, 38, 6-13. https://doi.org/10.1016/j.indcrop.2011.12.036
  10. Monschein, M., Reisinger, C., and Nidetzky, B.: Enzymatic hydrolysis of microcrystalline cellulose and pretreated wheat straw: A detailed comparison using convenient kinetic analysis. Bioresour. Technol. 2013, 128, 679-687. https://doi.org/10.1016/j.biortech.2012.10.129
  11. Cheng, C., Yu, J., Pang, Y., Qia, K., Wenhui, Q., Xueqing, Q., Yanlin, Q., and Hongming, L.: Tracing cellulase components in hydrolysate during the enzymatic hydrolysis of corncob residue and its analysis. Bioresour. Technol. 2018, 4, 137-144. https://doi.org/10.1016/j.biteb.2018.07.018
  12. Song, K. J., Jung, B. O., and Chung, S. J.: Preparation and quality characteristics of soymilk mayonnaise with chitooligosaccharide. J. Chitin Chitosan 2013, 18, 32-36.
  13. Hideno, A., Inoue, H., Tsukahara, K., Yano, S., Fang, X., Endo, T., and Sawayama, S.: Production and characterization of cellulases and hemicellulases by Acremonium cellulolyticus using rice straw subjected to various pretreatments as the carbon source. Enzyme Microb. Technol. 2010, 48, 162-168.
  14. Qaisar, S., Zohra, R. R., and Aman, A.: Enhanced production of cellulose degrading CMCase by newly isolated strain of Aspergillus versicolor. Carbohydr. Polym. 2014, 104, 199-203. https://doi.org/10.1016/j.carbpol.2014.01.014
  15. Nisha, S. and Gobi, L.: Enzymatic biopolishing of cotton fabric with free/immobilized cellulase. Carbohydr. Polym. 2018, 191, 95-102. https://doi.org/10.1016/j.carbpol.2018.02.067
  16. Maria, M., Antoni, S., and Adriana, A.: Production and recovery of cellulases through solid-state fermentation of selected lignocelluloscic wastes. J. Clean. Prod. 2019, 209, 937-946. https://doi.org/10.1016/j.jclepro.2018.10.264
  17. Tomme, P., Warren, R. A. J., and Gilkes, N. R.: Cellulose hydrolysis by bacteria a fungi. Adv. Microbial. Physiol. 1995, 37, 1-81.
  18. Beguin, P. and Aubert, J.A.: The biological degradation of cellulose. FEMS Microbiol. Rev. 1994, 13, 25-58. https://doi.org/10.1111/j.1574-6976.1994.tb00033.x
  19. Miller, G. L.: Use of dinitrosalicylic acid reagent for determination of reducing. Anal. Chem. 1959, 31, 426-428. https://doi.org/10.1021/ac60147a030