DOI QR코드

DOI QR Code

Gas Separation Properties of Microporous Carbon Membranes Containing Mesopores

중간기공을 갖는 미세다공성 탄소 분리막의 기체 투과 특성

  • Shin, Jae Eun (Department of Energy Engineering, Hanyang University) ;
  • Park, Ho Bum (Department of Energy Engineering, Hanyang University)
  • Received : 2018.07.11
  • Accepted : 2018.07.13
  • Published : 2018.08.31

Abstract

The silica containing carbon ($C-SiO_2$) membranes were fabricated using poly(imide siloxane)(Si-PI) and polyvinylpyrrolidone (PVP) blended polymer. The characteristics of porous carbon structures prepared by the pyrolysis of polymer blends were related with the micro-phase separation behaviors of the two polymers. The glass transition temperatures ($T_g$) of the mixed polymer blends of Si-PI and PVP were observed with a single $T_g$ using differential scanning calorimetry. Furthermore, the nitrogen adsorption isotherms of the $C-SiO_2$ membranes were investigated to define the characteristics of porous carbon structures. The $C-SiO_2$ membranes derived from Si-PI/PVP showed the type IV isotherm and possessed the hysteresis loop, which was associated with the mesoporous carbon structures. For the molecular sieving probe, the $C-SiO_2$ membranes were prepared with the ratio of Si-PI/PVP and the pyrolysis conditions, such as the pyrolysis temperature and the isothermal times. Consequently, the $C-SiO_2$ membranes prepared by the pyrolysis of Si-PI/PVP at $550^{\circ}C$ with the isothermal time of 120 min showed the $O_2$ permeability of 820 Barrer ($1{\times}10^{-10}cm^3(STP)cm/cm^2{\cdot}s{\cdot}cmHg$) and $O_2/N_2$ selectivity of 14.

Poly(imide siloxane)(Si-PI)와 polyvinylpyrrolidone (PVP)를 혼합한 고분자를 사용하여 실리카가 함유된 탄소 분리막을 제조하였다. 고분자 혼합물의 열분해에 의해 제조 된 다공성 탄소 구조의 특성은 두 고분자의 미세 상 분리 거동과 관련이 있다. Si-PI와 PVP의 고분자 혼합물의 유리 전이 온도(Tg)는 시차 주사 열량계를 사용하여 단일 Tg로 관찰되었다. 또한 $C-SiO_2$ 막의 질소 흡착 등온선을 조사하여 다공성 탄소 구조의 특성을 규명했다. Si-PI/PVP로부터 유도 된 $C-SiO_2$ 막은 IV형 등온선을 나타내었고 중간기공의 탄소 구조와 관련된 히스테리시스 루프를 가지고 있었다. 분자 여과 확인을 위해서, Si-PI/PVP의 비율과 열분해 온도 및 등온 시간과 같은 열분해 조건을 다르게 하여 $C-SiO_2$ 막을 제조하였다. 결과적으로, 120분 간의 등온 시간 동안 $550^{\circ}C$에서 Si-PI/PVP의 열분해에 의해 제조된 $C-SiO_2$ 막의 투과도는 820 Barrer ($1{\times}10^{-10}cm^3(STP)cm/cm^2{\cdot}s{\cdot}cmHg$)이었으며, $O_2/N_2$ 선택도는 14이었다.

Keywords

References

  1. H. Suda and K. Haraya, "Carbon molecular sieve membranes: preparation, characterization, and gas permeation properties", ACS Symposium Series, 744: Membrane Formation and Modification, pp. 295, Washington, USA (2000).
  2. A. Singh and W. J. Koros, "Significance of entropic selectivity for advanced gas separation membranes", Ind. Eng. Chem. Res., 35, 1231 (1996). https://doi.org/10.1021/ie950559l
  3. H. B. Park and Y. M. Lee, "Pyrolytic carbon-silica membrane: a promising membrane materials for improved gas separation", J. Membr. Sci., 213, 263 (2003). https://doi.org/10.1016/S0376-7388(02)00533-1
  4. A. Singh and W. J. Koros, "Pyrolytic carbon membranes for air separations", Membr. J., 7, 15 (1997).
  5. Y. M. Lee, H. B. Park, and I. Y. Suh, "Preparation and applications of carbon molecular sieve membranes for gas separation", Membr. J., 11, 1 (2001).
  6. C. W. Jones and W. J. Koros, "Carbon molecular sieve gas separation membranes. I. Preparation and characterization based on polyimide precursors", Carbon, 32, 1419 (1994). https://doi.org/10.1016/0008-6223(94)90135-X
  7. H. Suda and K. Haraya, "Molecular sieving effect of carbonized Kapton polyimide membrane", J. Chem. Soc. Chem. Commun., 11, 1179 (1995).
  8. J. Hayashi, M. Yamamoto, K. Kusakabe, and S. Morooka, "Simultaneous improvement of permeance and permselectivity of 3,3',4,4'-biphenyltetracarboxylic dianhydride-4,4,'-oxydianiline polyimide membrane by carbonization", Ind. Eng. Chem. Res., 34, 4364 (1995). https://doi.org/10.1021/ie00039a028
  9. J. Hayashi, H. Mizuta, M. Yamanoto, K. Kusakabe, and S. Morooka, "Effect of oxidation on gas permeation of carbon molecular sieving membranes based on BPDA-pp'ODA polyimide", Ind. Eng. Chem. Sci., 36, 2134 (1997).
  10. H. Hatori, Y. Yamada, M. Shiraishi, H. Nakata, and S. Yoshitomi, "Carbon molecular sieve films from polyimide", Carbon, 30, 305 (1992). https://doi.org/10.1016/0008-6223(92)90095-E
  11. C. G. Vincent and W. J. Koros, "Effect of polyimide pyrolysis conditions on carbon molecular sieve membrane properties", Ind. Eng. Chem. Res., 35, 2999 (1996). https://doi.org/10.1021/ie950746j
  12. S. Wang, M. Zeng, and Z. Wang, "Asymmetric molecular sieve carbon membranes", J. Membr. Sci., 109, 267 (1996). https://doi.org/10.1016/0376-7388(95)00205-7
  13. F. K. Katsaros, T. A. Steriotis, A. K. Stubos, A. Mitropolos, N. K. Kanellopoulos, and S. Tennison, "High pressure gas permeability of microporous carbon membranes", Microporous Mater., 8, 171 (1997). https://doi.org/10.1016/S0927-6513(96)00080-6
  14. Y. D. Cheng and R. T. Yang, "Preparation of carbon molecular sieve membrane and diffusion of binary mixtures in the membrane", Ind. Eng. Chem. Res., 33, 3146 (1994). https://doi.org/10.1021/ie00036a033
  15. Y. K. Kim, H. B. Park, and Y. M. Lee, "The gas separation properties of carbon molecular sieve membranes derived from polyimides having carboxylic acid groups", J. Membr. Sci., 235, 139 (2004). https://doi.org/10.1016/j.memsci.2004.02.004
  16. S. J. Jeong, J. H. Lim, S. H. Han, H. C. Koh, and S. Y. Ha, "Study on the gas separation of carbon molecular sieve (CMS) membrane for recovering the perfluorocompound gases from the electronics industry", Membr. J., 26, 220 (2016). https://doi.org/10.14579/MEMBRANE_JOURNAL.2016.26.3.220
  17. H. B. Park, Y. K. Kim, J. M. Lee, S. Y. Lee, and Y. M. Lee, "Relationship between chemical structure of aromatic polyimides and gas permeation properties of their carbon molecular sieve membranes", J. Membr. Sci., 229, 117 (2004). https://doi.org/10.1016/j.memsci.2003.10.023
  18. W. Zhou, M. Yoshino, H. Kita, and K. Okamoto, "Carbon molecular sieve membranes derived from phenolic resin with a pendant sulfonic acid group", Ind. Eng. Chem. Res., 40, 4801 (2001). https://doi.org/10.1021/ie010402v
  19. A. F. Ismail and L. I. B. David, "A review on the latest development of carbon membranes for gas separation", J. Membr. Sci., 193, 1 (2001). https://doi.org/10.1016/S0376-7388(01)00510-5
  20. J. Ozaki, N. Endo, W. Ohizumi, K. Igarashi, M. Nakahara, and A. Oya, "Novel preparation method for the production of mesoporous carbon fiber from a polymer blend", Carbon, 35, 1031 (1997). https://doi.org/10.1016/S0008-6223(97)89878-8
  21. H. Hatori, T. Kobayashi, Y. Hanzawa, Y. Yamada, Y. Iimura, T. Kimura, and M. Shiraishi, "Mesoporous carbon membranes from polyimide blended with poly(ethylene glycol)", J. Appl. Polym. Sci., 79, 836 (2001). https://doi.org/10.1002/1097-4628(20010131)79:5<836::AID-APP80>3.0.CO;2-1
  22. H. B. Park, I. Y. Suh, and Y. M. Lee, "Novel pyrolytic carbon membranes containing silica: preparation and characterization", Chem. Mater., 14, 3034 (2002). https://doi.org/10.1021/cm020216v
  23. H. B. Park, D. W. Han, and Y. M. Lee, "Effect of a UV/Ozone treatment on siloxane-containing copolyimides: Surface modification and gas transport characteristics", Chem. Mater., 15, 2346 (2003). https://doi.org/10.1021/cm030016z
  24. H. B. Park and Y. M. Lee, "High permeability, high selectivity carbon-silica membranes for gas separation", Membr. J., 12, 107 (2002).
  25. Y. K. Kim, H. B. Park, and Y. M. Lee, "Carbon molecular sieve membranes derived from thermally labile polymer containing blend polymers and their gas separation properties", J. Membr. Sci., 243, 9 (2004). https://doi.org/10.1016/j.memsci.2004.05.001
  26. J. H. Kim, M. S. Whang, and C. K. Kim, "Novel miscible blends composed of poly(ether sulfone) and poly(1-vinylpyrrolidone-co-styrene) copolymers and their interaction energies", Macromolecules, 37, 2287 (2004). https://doi.org/10.1021/ma0356156
  27. H. B. Park, C. H. Jung, Y. K. Kim, S. Y. Nam, S. Y. Lee, and Y. M. Lee, "Pyrolytic carbon membranes containing silica derived from poly(imide siloxane): The effect of siloxane chain length on gas transport behavior and a study on the separation of mixed gases", J. Membr. Sci., 235, 87 (2004). https://doi.org/10.1016/j.memsci.2004.01.025
  28. J. M. Lee, M. G. Lee, S. J. Kim, H. C. Koh, and S. Y. Nam, "Characterization of gas permeation properties of polyimide copolymer membranes", Membr. J., 25, 223 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.3.223
  29. S. W. Kuo and F. C. Chang, "Miscibility and hydrogen bonding in blends of poly(vinyphenolco-methyl methacrylate) with poly(ethylene oxide)", Macromolecules, 34, 4089 (2001). https://doi.org/10.1021/ma010047k
  30. J. R. Fried, "Polymer science and technology", Prentice-Hall International Inc., London (1995).
  31. H. B. Park, "Membrane materials for gas and vapor separation derived from siloxane containing copolymers", Ph. D Dissertation, Univ. of Hanyang, Seoul (2001).
  32. J. W. Patrick, "Porosity in carbons: Characterization and applications", Edward Arnold, London (1995).
  33. K. S. W. Sing, "The use of gas adsorption for the characterization of porous solids", Colloids Surf., 38, 113 (1989). https://doi.org/10.1016/0166-6622(89)80148-9
  34. M. Yamazaki, M. Kayama, K. Ikeda, T. Alii, and S. Ichihara, "Nanostructured carbonaceous material with continuous pores obtained from reaction-induced phase separation of miscible polymer blends", Carbon, 42, 1641 (2004). https://doi.org/10.1016/j.carbon.2004.02.018
  35. A. S. Ghosal and W. J. Koros, "Air separation properties of flat sheet homogeneous pyrolytic carbon membranes", J. Membr. Sci., 174, 177 (2000). https://doi.org/10.1016/S0376-7388(00)00392-6
  36. D. Q. Vu, W. J. Koros, and S. J. Miller, "High pressure $CO_2$/CH4 separation using carbon molecular sieve hollow fiber membranes", Ind. Eng. Chem. Res., 41, 367 (2002). https://doi.org/10.1021/ie010119w
  37. D. Q. Vu, W. J. Koros, and S. J. Miller, "Mixed matrix membranes using carbon molecular sieves. I. Preparation and experimental results", J. Membr. Sci., 211, 311 (2003). https://doi.org/10.1016/S0376-7388(02)00429-5