올레핀/파라핀 분리용 운반체로서 AgNO₃ 전구체를 활용한 은 나노입자 제조 및 NO₃⁻의 효과 분석

김 민 수*·강 상 욱*,**,†

*상명대학교 화학과, **상명대학교 화학에너지공학과 (2018년 7월 30일 접수, 2018년 8월 23일 수정, 2018년 8월 27일 채택)

Preparation of Silver Nanoparticles Using AgNO₃ Precursor as Carrier for Olefin/Paraffin Separation and the Effect Analysis of NO₃⁻

Minsu kim* and Sang Wook Kang*,**,†

*Department of Chemistry, Sangmyung University, Seoul 03016, Republic of Korea **Department of Chemistry and Energy Engineering, Sangmyung University, Seoul 03016, Republic of Korea (Received July 30, 2018, Revised August 23, 2018, Accepted August 27, 2018)

요 약: 이전 연구에서 올레핀/파라핀 분리를 위해 poly(ethylene oxide)(PEO)/Ag nanoparicles (AgNPs)(전구체AgBF₄)/pbenzoquinone (p-BQ) 복합막이 제조되었으며, 이 복합체 분리막의 성능은 100시간까지 선택도 10과 투과도 15 GPU로 유지 되는 것이 확인되었다. 하지만 전구체인 AgBF₄의 가격이 고가이기 때문에, 본 연구에서는 가격 측면에서 경쟁력이 있는 AgNO₃를 Ag nanoparticles의 전구체로 사용하여 실험을 진행하였다. 그 결과 이미 존재하고 있는 NO₃·가 AgNPs를 감싸고 있기 때문에 분리 성능이 나오지 않는 것으로 관찰되었다. 이번 연구에서는 AgNO₃를 Ag nanoparticles의 전구체로 사용하여 도 높은 성능을 내기 위해 전자수용체 7,7,8,8-tetracyanoquinodimethane (TCNQ)를 사용하여 PEO, polyvinyl alcohol (PVA), polyether block amide-1657 (PEBAX-1657) 고분자 복합막을 제조한 결과, 고분자와 전자수용체의 영향과는 무관하게 분리 성능을 내지 못하는 것으로 분석되었으며, 이는 분리성능에 전구체의 음이온이 결정적 역할을 하는 것으로 분석되었다.

Abstract: In previous studies, a poly(ethylene oxide)(PEO)/Ag nanoparicles (AgNPs)(precursor AgBF₄)/*p*-benzoquinone (*p*-BQ) composite membrane was prepared for olefin/paraffin separation and the performance of this composite membrane was maintained at a selectivity of 10 and a permeability of 15 GPU. However, since the price of AgBF₄ precursor is high, this study used AgNO₃ as a precursor of Ag nanoparticles which is competitive in terms of price. As a result, it was observed that the separation performance was not obtained because the existing NO₃⁻ could surround AgNPs. In this study, we fabricated PEO, poly(vinyl alcohol)(PVA), and polyether block amide-1657 (PEBAX-1657) polymer composite membrane using electron acceptor 7,7,8,8-tetracyanoquinodimethane (TCNQ) for separation performance even when AgNO₃ was used as a precursor of Ag nanoparticles. As a result, it was analyzed that the performance was not observed regardless of the influence of the polymer and the electron acceptor, indicating that the anion of the precursor plays a crucial role in the separation performance.

Keywords: AgNO₃, PEO, PVA, PEBAX-1657, Ag nanoparticles

1. 서 론

올레핀은 석유 화학 산업에서 가장 중요한 물질 중

하나다[1]. 따라서 올레핀과 파라핀의 분리는 석유 화학 산업에서 매우 중요한 공정으로 간주된다[2-3]. 혼합물 을 분리하는 통상적인 분리 공정으로 극저온 증류법이

[†]Corresponding author(e-mail: swkang@smu.ac.kr, http://orcid.org/0000-0001-7211-4064)

있으나 올레핀과 파라핀의 물리적, 화학적 성질이 유사 한 특징 때문에 비용적, 공간적 측면에서 효율적이지 못하다는 단점이 있다[4-6].

따라서 최근 이전의 분리 공정을 대체하기 위해 흡 착, 흡착 및 막 분리와 같은 방법이 개발되어 오고 있 다[7]. 특히, 그중에서 투과도와 선택도를 동시에 증가 시킬 수 있다는 장점으로 인해 촉진수송 분리막이 가장 각광을 받고 있다[8]. 올레핀/파라핀 분리를 위해 지지 액체 막 및 이온 교환막과 같은 많은 다른 유형의 촉진 수송 분리막이 개발되고 있으나[9-11], 이러한 분리막은 액체 매질의 증발로 인해 불안정하여 산업적으로 문제 가 있는 것으로 판명되었다[12-14].

최근 고분자/은 이온 전해질 막은 고체 상태에서도 매우 높은 올레핀/파라핀 혼합물의 우수한 분리 성능 때문에 많은 관심을 받고 있다[2]. 그러나 은 이온에 의 한 촉진수송 분리막은 시간에 따른 은 이온의 환원으로 인해 성능이 감소된다는 단점이 있다[15-17]. 이를 해결 하고자, 은 이온 대신 *p*-benzoquinone (*p*-BQ)에 의해 양극성 분극된 Ag nanoparticles (AgNPs 전구체: AgBF₄)를 올레핀 운반체로 사용하여 전례없는 분리성 능인 선택도 10, 투과도 15 GPU의 분리성능을 확인하 였다[18].

하지만 AgBF4를 전구체로 사용한 은 나노입자의 경 우 상대적으로 가격이 고가이기 때문에 분리막의 상업 화를 위해 AgNO3를 전구체로 사용한 연구가 진행되었 으나 분리성능이 확인되지 않았다. 이는 AgBF4와 달리 NO3⁻가 AgNPs를 감싸고 있기 때문에 좋은 분리 성능 이 나오지 않는 것으로 분석되었다.

본 연구에서는 AgNO₃를 전구체로 사용한 은 나노입 자도 AgBF₄를 전구체로 사용한 은 나노입자와 같이 olefin carrier로서 좋은 성능을 내기 위하여 은 나노입 자(전구체: AgNO₃)에 전자수용체 7,7,8,8-tetracyanoquinodimethane (TCNQ)를 활용하여 poly(ethylene oxide)(PEO), polyvinyl alcohol (PVA), polyether block amide-1657 (PEBAX-1657) 고분자 분리막을 제조하여 성능을 비교 분석하였다.

2. 실험방법

2.1. 재료 및 시약

실험에 사용한 고분자는 PEO (Mw 600,000), PVA (Mw 85,000), Pebax-1657이고, silver tetrafluoroborate (AgBF₄,98%)와 silver nitrate (AgNO₃, 98%), 7,7,8,8-tetracyanoquinodimethane (TCNQ) 모두 Sigma-Aldrich사 에서 구입하였다. 고분자 분리막을 만들기 위해 polysulfone (Toray chemical, Inc., Korea) 지지체를 사용하 였으며, 구입한 시약들은 모두 별도의 정제 과정 없이 그대로 사용하였다.

2.2. 분리막 제조

PEO 고분자를 3 wt%의 비율로 EtOH 용매에 첨가하 여 제조한 3 wt% PEO 용액, PVA 고분자를 4 wt%의 비율로 EtOH/H2O 5 : 5 용매에 첨가하여 제조한 PVA 용액과 PEBAX-1657를 EtOH/H₂O 7 : 3 용매에 첨가 하여 제조한 3 wt% PEBAX-1657용액에 각각 AgNO3 를 첨가하였다. PEO와 PVA 고분자의 경우 고분자와 AgNO₃의 mole ratio가 1 : 0.4, PEBAX-1657을 사용한 용액의 경우에는 AgNO3를 1:0.2 weight ratio로 첨가 하여 실험을 진행했다. 그 용액을 60°C에서 30 min간 교반시켜 은 나노입자를 형성시켜 준 후 TCNQ를 첨가 하였다. 추가적으로 첨가제로는 NaBF4, KBF4, LiBF4를 첨가하였다. 마지막으로 용액을 RK Control Coater (Model 202, Control Coater RK Print-Coat Instruments Ltd., UK)을 사용하여 polysulfone 지지체(Toray chemical, Inc, Korea)에 코팅시켰다. 코팅된 막은 24시간 동 안 진공오븐에서 실온으로 건조시켰다.

2.3. 기체 투과 실험

프로판과 프로필렌(50 : 50 vol%)의 가스 혼합물을 PEO, PVA와 PEBAX-1657 고분자/AgNPs (전구체: AgNO₃)/TCNQ 막에 각각 투과시켰다. Gas chromatography (GC)를 사용하여 선택도를 측정하였고, bubble flow meter를 사용하여 투과도를 측정하였다. 가스 혼 합물의 흐름은 각각 Mass flow meter (MFM)와 mass flow controller (MFC)을 사용하여 확인하고 조절하였 다. 가스 투과도의 단위는 GPU (1GPU = 1×10⁻⁶ cm³(STP)/(cm² s cmHg))로 나타냈다.

3. 결과 및 고찰

3.1. 프로필렌/프로판 혼합 가스에 대한 분리막의 성능

Table 1. Mixed Gas (Propylene/Propane) Permeance and Selectivities of the PEO/AgNPs (Precursor: AgBF₄)/TCNQ, PVA/AgNPs (Precursor: AgNO₃)/TCNQ and PEBAX-1657/AgNPs (Precursor: AgNO₃)/TCNQ Composite Membranes

	Selectivity	Permeance (GPU)
PVP/AgNPs (precursor: AgBF ₄)/TCNQ[20]	100	1.8
PEO/AgNPs (precursor: AgNO ₃)/TCNQ	1	18.7
PVA/AgNPs (precursor: AgNO ₃)/TCNQ	1	15.7
PEBAX-1657/AgNPs (precursor: AgNO ₃)/TCNQ	1	23.1

Table 1은 프로필렌/프로판 혼합 가스에 대한 분리막 의 투과도와 선택도의 성능을 보여준다. 이전 연구에서 AgBF4를 전구체로 사용한 PVP/AgNPs (precursor: AgBF4)/TCNQ 분리막의 경우 선택도 100 투과도 1.8 GPU로서 분리 성능을 보였다. 하지만 AgNO3로 AgNPs를 형성시켜 제조한 막의 경우 PEO, PPEBAX-1657와 PVA 고분자 모두 선택도 1로서 이전 연구의 PEO/AgNPs (precursor: AgNO3)/p-BQ 1 : 0.4 : 0.005 와 마찬가지로 기체 분리성능이 확인되지 않았다.

3.2 BF4⁻ 추가 실험

Table 2. Mixed Gas (Propylene/Propane) Selectivities ofAddition of BF_4^- Ions to PEO/AgNPs (Precursor: AgNO₃)/TCNQ Composite Membranes

Added BF ₄ salt	Selectivity	Permeance (GPU)
NaBF ₄	1	16.1
KBF_4	1	15.3
LiBF ₄	1	17.6

Table 3. Mixed Gas (Propylene/Propane) Selectivities of Addition of BF_4^- Ions to PVA/AgNPs (Precursor: AgNO₃)/ TCNQ Composite Membranes

Added BF ₄ salt	Selectivity	Permeance (GPU)
NaBF ₄	1	13.1
KBF ₄	1	4.1
LiBF ₄	1	17.8

Table 4. Mixed Gas (Propylene/Propane) Selectivities ofAddition of BF_4^- Ions to PEBAX-1657/AgNPs (Precursor:AgNO₃)/TCNQ, Composite Membranes

Added BF ₄ salt	Selectivity	Permeance (GPU)
NaBF ₄	1	22.1
KBF_4	1	22.5
$LiBF_4$	1	24.3

Scheme 1. State of Ag NPs (precursor: AgNO₃) in PEO/AgNPs/TCNQ, PVA/AgNPs/TCNQ and PEBAX-1657/ AgNPs/TCNQ composites.

PEO/AgNPs (precursor: AgBF₄) 분리막의 경우 은 나노입자가 형성될 때 주변에 BF4⁻ 이온이 존재하는 반 면에 PEO/AgNPs (precursor: AgNO₃) 분리막의 경우 주변에 NO3 이온이 존재하게 된다. AgNO3를 전구체 로 사용한 분리막에서도 성능을 내기 위하여 BF4 이온 을 첨가제로 첨가해주었지만 NO3 가 AgNPs를 감싸고 있기 때문에 BF4 가 NPs표면에 붙지 못하여 분리 성능 이 나오지 않는 것으로 관찰되었다. BF4 이온 첨가제 를 위해 NaBF4, KBF4, LiBF4를 추가로 도입했지만 Tables 2-4에서 나타난 것처럼 BF4 첨가제와는 무관하 게 BF4 가 AgNPs에 접근하지 못하는 것으로 분석이 되 었다. 또한 고분자의 영향을 알아보기 위해 PEO, PVA, PEBAX-1657 polymer를 실험을 진행하였지만 기체 투 과 실험 결과로 보았을 때 모두 Scheme 1과 같이 ether, hydroxyl, carbonyl group이 NO3로 감싸진 AgNPs에 어떠한 작용도 하지 못하는 것으로 밝혀졌다.

3.3. SEM 분석

Fig. 1에 보여지는 SEM image는 neat polysulfone 지지체의 구조를 나타내고, Fig. 2는 PEO/AgNPs (precursor:

Fig. 1. Scanning electron microscopy (SEM) image of neat polysulfone support.

Fig. 2. Scanning electron microscopy (SEM) images of (a) PEO/AgNPs (precursor: AgNO₃)/TCNQ, (b) PVA/AgNPs (precursor: AgNO₃)/TCNQ and (c) PEBAX-1657/AgNPs (precursor: AgNO₃)/TCNQ membranes coated on polysulfone support.

AgNO₃)/TCNQ, PVA/AgNPs (precursor: AgNO₃)/ TCNQ 그리고 PEBAX/AgNPs (precursor: AgNO₃)/ TCNQ가 코팅된 polysulfone 지지체 막을 나타낸다. 선 택성을 보이는 selective layer의 두께는 각각 5.4, 6.4 µm 그리고 6.7 µm로 확인되었으며, 용액은 균일하게 고분자 지지체의 표면 위에 균일하게 코팅된 것으로 관 찰되었다.

3.5. TGA (Thermogravimetric analysis) 분석

Thermogravimetric analysis (TGA)는 AgBF4를 전구 체로 사용한 고분자/AgNPs/TCNQ 복합체와 AgNO3를 전구체로 사용한 고분자/AgNPs/TCNQ 복합체가 측정 되었다. Figs. 3-5는 고분자의 상온에서 600°C까지의 무게 손실을 나타냈다. 은 나노입자와 첨가제를 첨가한 막과 순수한 PEO, PVA, PEBAX-1657 그래프를 비교

Fig. 3. Neat PEO, 1/0.4/0.005 PEO/AgNPs (precursor: AgBF₄)/TCNQ and 1/0.4/0.005 PEO/AgNPs (precursor: AgNO₃)/TCNQ composites.

Fig. 4. Neat PVA, 1/0.4/0.005 PVA/AgNPs (precursor: AgBF₄)/TCNQ and 1/0.4/0.005 PVA/AgNPs (precursor: AgNO₃)/TCNQ composites.

Fig. 5. Neat PEBAX-1657, 1/0.2/0.005 PEBAX-1657/AgNPs (precursor: AgBF₄)/TCNQ and 1/0.4/0.005 PVA/AgNPs (precursor: AgNO₃)/TCNQ composites.

해 보았을 때 첨가제를 첨가한 복합막에서 모두 열적 안정도가 감소하는 경향을 보였다. AgBF4를 전구체로 사용하는 복합막은 200-240°C에서 무게손실이 발생하 였다. 이는 AgBF₄ 전구체에 의해 생성된 은 나노입자 가 고분자 사슬 사이에 생성 됨에 따라 사슬 간 상호작 용의 약화로 인한 결과로 분석되었다. AgNO₃를 전구체 로 사용한 복합막의 경우, 150-190°C에서 급격한 무게 손실이 발생했으며 세 고분자 모두 AgBF₄를 전구체로 사용하는 복합막보다 열적 안정도가 감소된 것으로 관 찰되었다. 이는 AgNO₃ 전구체로 제조한 은 나노입자의 경우 AgBF₄ 전구체로 제조한 은 나노입자와 달리 고분 자 내에서 안정화 되지 못하고 불균일한 크기로 서로 뭉침으로써 고분자 내의 interfacial defect를 증가시켰 고, 결과적으로 열적 안정도를 더 감소시키는 것으로 확인이 되었다. 이러한 현상은 고분자와 무관하게 AgNO₃를 전구체로 사용할 경우 은 나노입자가 안정화 되지 못하기 때문에 복합막에서 올레핀 분리성능이 확 인되지 않는 것으로 분석되었다.

4.결 론

이전 연구의 AgBF4를 전구체로 사용한 PEO/AgNPs/ p-BQ 막의 우수한 성능에 착안하여, 상업성을 높이기 위하여 가격이 상대적으로 저렴한 은 나노입자 전구체 인 AgNO3를 사용하여 PEO/AgNPs (precursor: AgNO3)/ p-BQ 실험을 진행한 결과 분리 성능이 확인되지 않았 다. 이번 실험에서는, AgBF4 전구체를 활용하는 이전 연구에서 좋은 성능을 보였던 PEO, PVA PEBAX-1657 고분자 내에 더 높은 electron affinity를 갖는 TCNQ를 이용하여, AgNO3를 전구체로 활용한 연구를 진행하였 다. 그 결과, 고분자의 종류와 무관하게 분리성능이 나 타나지 않는 것으로 확인되었다. 이는 고분자의 작용기 의 은 나노입자 표면과의 상호작용은 영향이 작다고 분 석되었다. 추가적으로 AgNPs의 표면의 BF가 우수한 성능의 인자라 생각되어 NaBF, KBF, LiBF 첨가제를 사용하여 BF를 형성시켰지만, NO가 AgNPs를 감싸고 있기 때문에 첨가제의 종류와 상관없이 BF가 NPs 표 면에 붙지 못하여 분리성능이 나타나지 않는 것으로 분 석되었다. TGA분석으로 고분자와 AgNPs 사이의 상호 작용의 특징을 살펴보았다. AgBF4를 전구체로 사용하 는 복합막의 경우 순수한 고분자 보다 열적 안정도가 감소하는 것으로 확인이 되었으며, 이는 고분자 사슬 사이에 생성된 은 나노입자로 인한 고분자 사슬간 약화 된 상호작용 때문인 것으로 생각되었다. 반면, AgNO3 를 전구체를 사용하는 복합막의 경우 생성된 은 나노입 자가 안정화 되지 못한 채 균일하게 분산되지 않는 것 으로 분석되었다. 결론적으로 AgNPs를 형성할 때 주변 의 고분자 사슬과 음이온 첨가제는 은 나노입자에 영향 을 주지 못하며, 은 나노입자를 사용한 올레핀 기체분 리 성능에 있어서 전구체의 음이온 자체가 매우 중요한 인자라는 사실을 확인하였다.

감 사

본 연구는 2017년도 상명대학교 교내연구비를 지원 받아 수행하였음.

Reference

- R. Bruce Eldridge, "Olefin/paraffin separation technology: A review", *Ind. Eng. Chem. Res.*, **32**, 2208 (1993).
- J. H. Kim, S. M. Park, J. Won, and Y. S. Kang, "Unusual separation property of propylene/propane mixtures through polymer/silver complex membranes containing mixed salts", *J. Membr. Sci.*, 248, 171 (2005).
- J. H. Kim, B. R. Min, J. Won, and Y. S. Kang, "Membranes comprising silver salts physically dispersed in poly(dimethyl siloxane) for the separation of olefin/paraffin", *J. Ind. Eng. Chem.*, **12**, 594 (2006).
- D. E. Gottschlich and D. L. Roberts, "Energy minimization of separation processes using conventional/membrane hybrid systems", *Department of Energy Report* No. DE-AC-07-76ID01570 (1990).
- I. Pinnau and L. G. Toy, "Solid polymer electrolyte composit emembranes for olefin/paraffin separation", J. Membr. Sci., 184, 39 (2001).
- J. Padin, R. T. Yang, and C. L. Munson, "New sorbents for olefin-paraffin separations and olefin purification for C4 hydrocarbons", *Ind. Eng. Chem. Res.*, 38, 3614 (1999).
- 7. R. Faiz and K. Li, "Olefin/paraffin separation using membrane based facilitated transport/chemical

absorption techniques", Chem. Eng. Sci., 73, 261 (2012).

- C. H. Park, J. H. Lee, M. S. Park, and J. H. Kim, "Facilitated transport: Basic concepts and applications to gas separation membranes", *Membr J.*, 27, 205-215 (2017).
- K. Adachi, W. Hu, H. Matsumoto, K. Ito, and A. Tanioka, Permeation of n-butane, 1-butane and 1,3-butadiene through anhydrated Ag+-doped per-fluorocarbon-type ion-exchange membranes, *Polymer*, 39, 2315 (1998).
- C. Y. Park, S. H. Han, J. H. Kim, and Y. T. Lee, "Simulation of separation properties of propylene/propane in silver nanoparticle containing facilitated transport membrane", *Membr J.*, 24, 409-415 (2014).
- S. J. Kim, J. P. Jung, C. H. Park, and J. H. Kim, "Olefin separation membranes based on PEO/ PDMS-g-POEM blends containing AgBF4/Al(NO3)3 mixed salts", *Membr J.*, 25, 496-502 (2015).
- T. Yamaguchi, C. Baertsch, C. A. Koval, R. D. Noble, and C. N. Bowman, "Olefin separation using silver impregnated ion-exchange membranes and silver salt/polymer blend membranes", *J. Membr. Sci.*, **117**, 151 (1996).
- O. H. Leblanc, W. J. Ward, S. L. Matson, and S. G. Kimura, "Facilitated transport in ion-exchange

membranes", J. Membr. Sci., 6, 339 (1980).

- W. S. Ho and D. C. Dalrymple, "Facilitated transport of olefins in Ag+-containing polymer membranes", *J. Membr. Sci.*, **91**, 13 (1994).
- S. W. Kang, J. H. Kim, J. Won, and Y. S. Kang, "Suppression of silver ion reduction by Al(NO₃)₃ complex and its application to highly stabilized olefin transport membranes", *J. Membr. Sci.*, 445, 156 (2013).
- Z. Zhang, B. Zhao, and L. Hu, "PVP protective mechanism of ultrafine silver powder synthesized by chemical reduction processes", *J. Solid State Chem.*, **121**, 105 (1996).
- Y. S. Park, S. Chun, Y. S. Kang, and S. W. Kang, "Durable poly(vinyl alcohol)/AgBF₄/Al(NO₃)₃ complex membrane with high permeance for propylene/propane separation", *Sep. Purif. Technol.*, **174**, 9 (2017).
- G. H. Hong, D. Song, I. S. Chae, J. H. Oh, and S. W. Kang, "Highly permeable poly(ethylene oxide) with silver nanoparticles for facilitated olefin transport", *RSC Adv.*, 4, 4905 (2014).
- I. S. Chae, S. W. Kang, and Y. S. Kang, "Olefin separation via charge transfer and dipole formation at the silver nanoparticle-tetracyanoquinoid interface", *RSC Adv*, 4, 30156 (2014).