DOI QR코드

DOI QR Code

Preparation of Carbon Electrodes Using Activated Carbon Fibers and Their Performance Characterization for Capacitive Deionization Process

활성탄소섬유를 이용한 탄소전극의 제조 및 축전식 탈염공정에서의 성능평가

  • Park, Cheol Oh (Department of Advanced Materials and Chemical Engineering, Hannam University) ;
  • Oh, Ju Seok (Department of Advanced Materials and Chemical Engineering, Hannam University) ;
  • Rhim, Ji Won (Department of Advanced Materials and Chemical Engineering, Hannam University)
  • 박철오 (한남대학교 화공신소재공학과) ;
  • 오주석 (한남대학교 화공신소재공학과) ;
  • 임지원 (한남대학교 화공신소재공학과)
  • Received : 2018.08.16
  • Accepted : 2018.08.27
  • Published : 2018.08.31

Abstract

In this study, the carbon electrodes using activated carbon fibers (ACFs) were prepared for the capacitive deionization process. The Polyvinylidene fluoride (PVDF) was used as the binder and the mixed ACFs with proper solvent was cast on the commercial graphite sheets to prepare the carbon electrodes. At this moment, the different particle sizes of ACFs were applied and the mixing ratio of solvent, PVDF and ACFs, 80 : 2 : 18 and 80 : 5 : 15, were used for the electrode preparation. Then their salt removal efficiencies were characterized under the various operating conditions, adsorption potential and time, desorption potential and time, concentration of feed NaCl solution and flow rate as well. Typically, the salt removal efficiency of 53.6% were obtained at the particle size below $32{\mu}m$, mixing ratio 80 : 2 : 18, adsorption 1.2 V and 3 min, desorption -0.1V and 1 min, and 15 mL/min flow rate of NaCl 100 mg/L.

본 연구에서는 활성탄소섬유를 이용하여 축전식 탈염공정에 적용할 탄소전극을 제조하였다. polyvinylidene fluoride (PVDF)를 바인더로 사용했으며 적절한 용매에 활성탄소섬유를 배합한 후 상용의 그라파이트 시트에 캐스팅하여 탄소전극을 제조하였다. 이 때 활성탄소섬유의 입자 크기를 달리하였고, 용매, 고분자 바인더 그리고 활성탄소섬유를 80 : 2 : 18, 80 : 5 : 15의 배합비율로 전극을 제조하였다. 그런 다음 염 제거 효율을 흡착전압과 시간, 탈착전압과 시간, NaCl 공급액의 농도와 유속 등에 운전조건에 대하여 염 제거 효율을 측정하였다. 대표적으로 활성탄소섬유의 입자크기가 $32{\mu}m$ 이하이며 80 : 2 : 18의 배합비율에서 1.2 V, 3분의 흡착조건, -0.1 V, 1분의 탈착조건, NaCl 100 mg/L, 15 mL/min의 공급액 조건에서 53.6%의 염 제거 효율을 보였다.

Keywords

References

  1. H. M. Qiblawey and F. Banat, "Solar thermal desalination technologies", Desalination, 220, 633 (2008). https://doi.org/10.1016/j.desal.2007.01.059
  2. F. Meng, S. R. Chaeb, A. Drewsc, M. Kraumec, H. S. Shind, and F. Yang, "Recent advances in membrane bioreactors (MBRs): Membrane fouling and membrane material", Water. Res., 43, 1489 (2009). https://doi.org/10.1016/j.watres.2008.12.044
  3. P. Xu, J. E. Drewes, T. U. Kim, C Bellona, and G. Amy, "Effect of membrane fouling on transport of organic contaminants in NF/RO membrane applications", J. Membr. Sci., 279, 165 (2006). https://doi.org/10.1016/j.memsci.2005.12.001
  4. K. P. Lee, T. C. Arnot, and D. Mattia, "A review of reverse osmosis membrane materials for desalination-Development to date and future potential", J. Membr. Sci., 370, 1 (2011). https://doi.org/10.1016/j.memsci.2010.12.036
  5. S. Porada, R. Zhao, A. van der Wal, V. Presser, and P. M. Biesheuvel, "Review on the science and technology of water desalination by capacitive deionization", Prog. Mater. Sci., 58, 1388 (2013). https://doi.org/10.1016/j.pmatsci.2013.03.005
  6. Y. J. Kim and J. H. Choi, "Enhanced desalination efficiency in capacitive deionization with an ion-selective membrane", Sep. Purif. Technol., 71, 70 (2010). https://doi.org/10.1016/j.seppur.2009.10.026
  7. M. W. Ryoo, J. H. Kim, and G. Seo, "Role of titania incorporated on activated carbon cloth for capacitive deionization of NaCl solution", J. Colloid. Interface. Sci., 264, 414 (2003). https://doi.org/10.1016/S0021-9797(03)00375-8
  8. S. Proda, L. Weinstein, R. Dash, A. van der Wal, M. Bryjak, Y. Gogotsi, and P. M. Biesheuvel, "Water desalination using capacitive deionization with microporous carbon electrodes", ACS. Appl. Mater. Interfaces., 4, 1194 (2012). https://doi.org/10.1021/am201683j
  9. H. Li, L. Zou, L. Pan, and Z. Sun, "Novel graphene-like electrodes for capacitive deionization", Environ. Sci. Technol., 44, 8692 (2010). https://doi.org/10.1021/es101888j
  10. J. S. Kim, J. H. Jung, and J. W. Rhim, "Performance study of membrane capacitive deionization process applied by perfluoropolymer and aminated poly(ether imide) ion exchange membranes", Membr. J., 25, 60 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.1.60
  11. B. Jia and W. Zhang, "Preparation and application of electrodes in capacitive deionization (CDI): A state-of-art review", Nanoscale. Res. Lett., 11, 64 (2016). https://doi.org/10.1186/s11671-016-1284-1
  12. J. C. Farmer, D. V. Fix, G. V. Mack, R. W. Pekala, and J. F. Poco, "Capacitive deionization of NH4ClO4 solutions with carbon aerogel electrodes", J. Appl. Electrochem., 26, 1007 (1996).
  13. R. W. Pekala, J. C. Farmer, C. T. Alviso, T. D. Tran, S. T. Mayer, J. M. Miller, and B. Dunn, "Carbon aerogels for electrochemical applications", J. Non. Cryst. Solids., 225, 74 (1998). https://doi.org/10.1016/S0022-3093(98)00011-8
  14. R. Ryoo, S. H. Joo, and S. Jun, "Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation", J. Phys. Chem. B, 103, 7743 (1999). https://doi.org/10.1021/jp991673a
  15. P. Avouris and C. Dimitrakopoulos, "Graphene: Synthesis and applications", Mater. Today. (Kidlington), 15, 86 (2012). https://doi.org/10.1016/S1369-7021(12)70044-5
  16. D. C. Moon, K. H. Lee, C. S. Kim, D. H. Kim, M. R. Kim, C. H. Shin, I. Y. Park, S. Y. Nam, and C. G. Lee, "Micropore analysis and adsorption characteristics of activated carbon fibers", J. Anal. Sci. Technol., 13, 89 (2000).
  17. H. Li, L. Pan, Y. Zhang, L, Zou, C. Sun, Y. Zhan, and Z. Sun, "Kinetics and thermodynamics study for electrosorption of NaCl onto carbon nanotubes and carbon nanofibers electrodes", Chem. Phys. Lett., 485, 161 (2010). https://doi.org/10.1016/j.cplett.2009.12.031
  18. C. O. Park and J. W. Rhim, "Performance of membrane capacitive deionization process using polyvinylidene fluoride heterogeneous ion exchange membranes Part II: Performance study of membrane capacitive deionization process", Membr. J., 27, 240 (2017). https://doi.org/10.14579/MEMBRANE_JOURNAL.2017.27.3.240
  19. G. Y. Kim and J. W. Rhim, "Performance study of membrane capacitive deionization installed with sulfonated poly(ether ether ketone) and poly(vinyl amine)/poly(vinyl alcohol) membranes", Membr. J., 26, 62 (2016). https://doi.org/10.14579/MEMBRANE_JOURNAL.2016.26.1.62