DOI QR코드

DOI QR Code

Removal of Tar from Biomass Gasification Process

Biomass Gasification 공정에서 발생하는 Tar 제거연구

  • Kim, Ju-Hoe (Department of Applied Environmental Science, Kyunghee University) ;
  • Jo, Young-Min (Department of Applied Environmental Science, Kyunghee University) ;
  • Kim, Jong-Su (Korea Institute of Industrial Technology) ;
  • Kim, Sang-Bum (Korea Institute of Industrial Technology)
  • 김주회 (경희대학교 환경응용과학과) ;
  • 조영민 (경희대학교 환경응용과학과) ;
  • 김종수 (한국생산기술연구원) ;
  • 김상범 (한국생산기술연구원)
  • Received : 2018.05.03
  • Accepted : 2018.08.03
  • Published : 2018.08.31

Abstract

Biomass, a carbon-neutral resource, is an alternative energy source for exhaustion of fossil fuel and environmental problems. Most of energy production systems using biomass operate with a thermal chemical conversion method. Amongst them, gasification generates syngas and applies to boilers or engines for the production of heat and electricity. However, Tar could be formed during the production of syngas and it is condensed at low temperature which may cause to clog the pipelines and combustion chamber, ultimately resulting in decrease of process efficiency. Thus this work utilized water and oily materials such as soybean oil, waste cooking oil and mineral oil for scrubbing liquid. The removal efficiency of Tar appeared 97%, 70%, 63% and 30% for soybean oil, waste cooking oil, mineral oil and water respectively.

화석연료의 고갈과 환경문제를 대응하기 위한 대체에너지 중 재생가능하고 탄소중립(Carbon-neutral)자원인 바이오매스 (Biomass)를 연료로 이용하는 연구가 진행되고 있다. 바이오매스를 사용하는 대부분의 에너지 생산 시스템은 열화학전환방법이 대표적이다. 이 가운데 가스화 기술을 이용해 합성가스 (syngas)를 생산해 보일러나 엔진 등에 적용하여 열과 전기를 생산한다. 하지만 합성가스 (syngas)를 생산하는 과정에서 타르 (tar)가 발생되며 낮은 온도에서 응축되기 때문에 배관 및 엔진 등에 막힘 현상을 일으켜 공정 효율을 감소시키는 문제를 야기한다. 타르를 제거하기 위해 대부분의 가스화 공정에서 물을 이용한 wet scrubber를 사용하고 있는데 효율이 낮은 문제점이 있다. 이에 본 연구에서는 물과 oily material (soybean oil, waste cooking oil, mineral oil)을 이용하여 제거효율이 높은 순으로 나타내자면 Soybean oil>Waste Cooking Oil>Mineral oil>Water 순서로 나타났고 제거효율은 각각 약 97%, 약 70%, 약 63%, 약 30%의 효율을 보여주었으며 식물성 오일 종류인 soybean oil을 사용하였을 때 타르 제거 효율이 가장 높았다.

Keywords

References

  1. N. A. Ahmad, Z. A. Zainal, "Performance and chemical composition of waste palm cooking oil as scrubbing medium for tar removal from biomass producer gas", Journal of Natural Gas Science and Engineering, Vol.32, pp.256-261, 2016. DOI: https://dx.doi.org/10.1016/j.jngse.2016.03.015
  2. KOREA ENERGY AGENCY, 2017 Korea Energy Agency Handbook, 2017
  3. 2017 KOREA ENERGY AGENCY, Energy Statistics Handbook, 2017
  4. Ministry of Environment, Handbook of Paris Agreement, 2016
  5. Yang-Jin Kim, A Study of Tar Removal in the Syngas from Biomass Gasification, Department of Chemical Engineering Graduate School Kunsan National University, 2010
  6. Peter McKendry, Energy production from biomass (part 1): overview of biomass, Bioresource Technolohy, 37-46, 2002
  7. U. D. Lee, Gasification Technologies for Lignocellulosic Biomass, KIS News, Vol.15, No.6, 2012. UCI: http://uci.or.kr/I410-ECN-0102-2013-570-002170947
  8. DECC, NNFCC, E4Tech Review of technology for the gasification of biomass and wastes, NNFCC project 09/008, 2009
  9. W. J. Jo, S. H. Jeong, S. J. Park, Y. T. Choi, D. H. Lee, "Effects of Biomass Gasification by Addition of Steam and Calcined Dolomite in Bubbling Fluidized Beds", Korean Chemical Engineering Research, Vol.53, No.6, pp.783-791, 2015 DOI: https://dx.doi.org/10.9713/kcer.2015.53.6.783
  10. Tae-Young Mun Air gasification of dried sewage sludge: Tar removal and the improvement of producer gas quality by the application of additives in a two-stage gasifier, Department of Energy and Environment System Engineering, Graduate School, University of Seoul, 2013
  11. Martha Lucia Valderrama Rios,, Aldemar Martinez Gonzalez, Electo Eduardo Silva Lora, Oscar Agustin Almazan del Olmo, "Reduction of tar generated during biomass gasification: A review", Biomass and Bioenergy, Vol.108, pp.345-370, 2018. DOI: https://doi.org/10.1016/j.biombioe.2017.12.002
  12. C. Li, K. Suzuki, "Tar property, analysis, reforming mechanism and model for biomass gasification-An overview", Renewable and Sustainable Energy Reviews, Vol.13, No.3, pp.594-604, 2009. https://doi.org/10.1016/j.rser.2008.01.009
  13. Sousa, L. C. R Gasification of Wood, Urban Wastewood (Altholz) and Other Wastes in a Fluidised Bed Reactor, Federal Institute of Technology Zurich, Swiss, Zurich. Ph.D. Dissertation, 2001
  14. A. Ponzio, S. Kalisz, W. Blasiak, "Effect of Operating Conditions on Tar and Gas Composition in High Temperature Air/steam Gasification (HTAG) of Plastic Containing Waste", Fuel Processing Technology, Vol.87, No.3, pp.223-233, 2006. DOI: https://dx.doi.org/10.1016/j.fuproc.2005.08.002
  15. P. C. A. Bergman, S. V. B. van Paasen, H. Boerrigter, "The Novel "OLGA" Technology for Complete Tar Removal from Biomass Producer Gas", Pyrolysis and Gasification of Biomass and Waste, Expert Meeting, October, Strasbourg, 2002
  16. M. Dogru, A. Midilli, C. R. Howarth, "Gasification of sewage sludge using a throated downdraft gasifier and uncertainty analysis", Fuel Processing Technology, Vol.75, No.1, pp.55-82, 2002 DOI: https://dx.doi.org/10.1016/S0378-3820(01)00234-X
  17. S. Koppatz, C. Pfeifer, R. Rauch, H. Hofbauer, T. Marquard-Moellenstedt, M. Specht, "$H_2$ rich product gas by steam gasification of biomass with in situ $CO_2$ absorption in a dual fluidized bed system of 8 MW fuel input", Fuel Processing Technology, Vol.90, No.7-8, pp.914-921, 2009. DOI: https://dx.doi.org/10.1016/j.fuproc.2009.03.016
  18. Wang, L.K., Taricska, J.R., Hung, Y.-T., Eldridge, J.E., Li, K.H,, Wet and dry scrubbling. In: Wang, L.K., Pereira, N.C., Hung, Y.T. (Eds.), Air Pollution Control Technology. Humana Press, New Jersey, pp. 197-305, 2004
  19. Salaices, E., Serrano, B. and Lasa, H., "Biomass Catalytic Steam Gasification Thermodynamics Analysis and Reaction Experiments in a CREC Riser Simulator", Industrial & Engineering Chemistry Research, Vol.49, No.15, pp.6834-6844, 2010 DOI: https://dx.doi.org/10.1021/ie901710n
  20. T. Phuphuakrat, T. Namioka, K. Yoshikawa, "Absorptive removal of biomass tar using water and oily materials", Bioresource Technology, Vol.102, No.2, pp.543-549, 2011. DOI: https://doi.org/10.1016/j.biortech.2010.07.073
  21. D. Geldart, A. R. Abrahamsen, "Homogeneous Fluidization of Fine Powders Using Various Gases and Pressures", Powder Technology, Vol.19, No.1, pp.133-136, 1978. DOI: https://dx.doi.org/10.1016/0032-5910(78)80084-9
  22. T.Shirai, Fluidized beds, Kagaku-Gijutsu-Sha, Kanazawa, 1958
  23. I. Narvaez, A. Orio, M. P. Aznar, J. Corella, "Biomass Gasification with Air in an Atmospheric Bubbling Fluidized Bed Effect of Six Operational Variables on the Quality of the Produced Raw Gas", Industrial & Engineering Chemistry Research, Vol.35, No.7, pp.2110-2120, 1996. DOI: https://dx.doi.org/10.1021/ie9507540
  24. M. Dogru, A. Midilli, C. R. Howarth, "Gasification of sewage sludge using a throated downdraft gasifier and uncertainty analysis", Fuel Processing Technology, Vol.75, No.1, pp.55-82, 2002 DOI: https://dx.doi.org/10.1016/S0378-3820(01)00234-X
  25. B. Ozturk, D. Yilmaz, "Absorptive Removal of Volatile Organic Compounds from Flue Gas Streams", Process Safety and Environmental Protection, Vol.84, No.5, pp.391-398, 2006. DOI: https://dx.doi.org/10.1205/psep05003
  26. A. B. Chhetri, K. C. Watts, M. R. Islam, "Waste cooking oil as an alternative feedstock for biodiesel production", Energies, Vol.1, No.1, pp.3-18, 2008. DOI: https://dx.doi.org/10.3390/en1010003
  27. C. W. Yu, S. Bari, A. Ameen, "A comparison of combustion characteristics of waste cooking oil with diesel as fuel in a direct injection diesel engine", Proceedings of the Institute of Mechanical Engineers Part D: Journal of Automobile Engineering, Vol.216, No.3, pp.237-243, 2002. DOI: https://dx.doi.org/10.1243/0954407021529066
  28. J. M. Nzikou, L. Matos, J. E. Moussounga, C. B. Ndangui, N. P. Pambou-Tobi, E. M. Bandzouzi, A. Kimbonguila, M. Linder, S. Desobry, "Study of oxidative and thermal stability of vegetable oils during frying", Research Journal of Applied Sciences, Vol.4, No.2, pp.94-100, 2009.
  29. S. Bezergianni, S. Voutetakis, A. Kalogianni, "Catalytic hydrocracking of fresh and used cooking oil", Industrial & Engineering Chemistry Research, Vol.48, No.18, pp.8402-8406, 2009. DOI: https://dx.doi.org/10.1021/ie900445m
  30. M. O. Adebajo, R. L. Frost, J. T. Kloprogge, O. Carmody, S. Kokot, "Porous Materials for Oil Spill Cleanup: A Review of Synthesis and Absorbing Properties", Journal of Porous Materials, Vol.10, No.3, pp.159-170, 2003. https://doi.org/10.1023/A:1027484117065
  31. S. P. Singh, D. Singh, "Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel: a review", Renewable and Sustainable Energy Reviews, Vol.14, No.1, pp.200-216, 2010. DOI: https://dx.doi.org/10.1016/j.rser.2009.07.017
  32. G. Knothe, K. R. Steidley, "Kinematic viscosity of biodiesel components (fatty acid alkyl esters) and related compounds at low temperatures", Fuel, Vol.86, No.16, pp.2560-2567, 2007. DOI: https://dx.doi.org/10.1016/j.fuel.2007.02.006
  33. Y. Ueki, S. Saiki, H. Hoshina, N. Seko, "Biodiesel fuel production from waste cooking oil using radiation-grafted fibrous catalysts", Radiation Physics and Chemistry, Vol.143, pp.41-46, 2018. DOI: https://dx.doi.org/10.1016/j.radphyschem.2017.09.010